1
|
Halpin-McCormick A, Campbell Q, Negrão S, Morrell PL, Hübner S, Neyhart JL, Kantar MB. Environmental genomic selection to leverage polygenic local adaptation in barley landraces. Commun Biol 2025; 8:618. [PMID: 40240546 PMCID: PMC12003830 DOI: 10.1038/s42003-025-08045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Climate change is threatening agricultural production across the globe. Germplasm collections provide an opportunity to explore where variation exists with important crop species. Genome environment association (GEA) is a standard approach for investigating the genetic basis of adaptation to natural environments. While these analyses provide insight into local adaptation, they have not been widely adopted in breeding or conservation programs. This may be attributable to the difficulty in identifying the best individuals for transplantation/relocation in conservation efforts or identification of the best parents in breeding programs. To explore the potential utility in future breeding programs, we used the cereal crop - barley (Hordeum vulgare L.) due to its wide adaptability to different environments and agroecologies, ranging from marginal and low input fields to high-productive farms. Here, we conduct environmental genomic selection (EGS) on 753 landrace barley accessions using a mini-core of 31 landrace accessions and a de-novo core of 100 as the training populations. Since local adaptation to the environment is polygenic, a whole-genome approach is likely to be more accurate for selection. Here we show how an integrative approach coupling environmental genomic selection and species distribution modelling can help identify key parents for adaptation to specific environmental variables.
Collapse
Affiliation(s)
- Anna Halpin-McCormick
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Quinn Campbell
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Sónia Negrão
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Sariel Hübner
- Department of Bioinformatics and Galilee Research Institute (MIGAL), Tel Hai Academic College, Upper Galilee, Israel
| | - Jeffrey L Neyhart
- USDA, Agricultural Research Service, Genetic Improvement for Fruits & Vegetables Laboratory, Chatsworth, NJ, USA.
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
2
|
Yang Y, He S, Xu L, Wang M, Chen S, Bai Z, Yang T, Zhao B, Wang L, Zhang H, Zhang J, Zhang R. Transcriptome and WGCNA reveals the potential genetic basis of photoperiod-sensitive male sterility in soybean. BMC Genomics 2025; 26:131. [PMID: 39934659 DOI: 10.1186/s12864-025-11314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Soybean (Glycine max (L.) Merr.) is a crucial crop due to its high plant protein and oil content. Previous studies have shown that soybeans exhibit significant heterosis in terms of yield and protein content However, the practical application of soybean heterosis remains difficult, as the molecular mechanisms underlying photoperiod-sensitive genic male sterile (PGMS) is still unclear. RESULTS This study characterized the PGMS line 88-428BY, which is sterile under short-day (SD) conditions and fertile under long-day (LD) conditions. To elucidate the genetic basis for this trait, we collected anthers, from 88-428BY under SD and LD conditions at three developmental stages, resulting in the identification of differentially expressed genes (DEGs) (2333, 2727 and 7282 DEGs, respectively) using Illumina transcriptome analysis. Using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, we fund that among the DEGs, enriched genes were associated with photoperiod stress, light stimulus, oxidation-reduction processes, multicellular organism development and protein phosphorylation. Additionally, weighted correlation network analysis identified four modules (blue, brown, red, and yellow) that were significantly correlated with PGMS, revealing co-expressed hub genes with potential regulatory roles. Functional annotation of 224 DEGs with|KME| >0.9 across the four modules in seven databases highlighted their involvement in light stimulus, oxidation-reduction processes, multicellular organism development, and protein phosphorylation, suggesting their importance in soybean PGMS. By integrating fertility-related genes previously identified by other studies with the DEGs from our analysis, we identified eight candidate genes associated with the photosensitive sterility in soybeans. CONCLUSIONS This study enhances the understanding of PGMS in soybean and establishes the genetic basis for a two-line hybrid seed production system in soybean.
Collapse
Affiliation(s)
- Yuhua Yang
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
- Houji laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| | - Suqin He
- Houji laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Lihong Xu
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Minggui Wang
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuichun Chen
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhiyuan Bai
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Tingting Yang
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Bo Zhao
- Houji laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Lixiang Wang
- Houji laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
- College of Agricultural, Shanxi Agricultural University, Taigu, 030801, China
| | - Haiping Zhang
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China
| | - Jiangjiang Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| | - Ruijun Zhang
- Center of Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan, Shanxi, 030031, China.
| |
Collapse
|
3
|
Li S, Wang W, Sun L, Zhu H, Hou R, Zhang H, Tang X, Clark CB, Swarm SA, Nelson RL, Ma J. Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean. Nat Commun 2024; 15:7588. [PMID: 39217192 PMCID: PMC11365945 DOI: 10.1038/s41467-024-52044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Resistance to pod shattering is a key domestication-related trait selected for seed production in many crops. Here, we show that the transition from shattering in wild soybeans to shattering resistance in cultivated soybeans resulted from selection of mutations within the coding sequences of two nearby genes - Sh1 and Pdh1. Sh1 encodes a C2H2-like zinc finger transcription factor that promotes shattering by repressing SHAT1-5 expression, thereby reducing the secondary wall thickness of fiber cap cells in the abscission layers of pod sutures, while Pdh1 encodes a dirigent protein that orchestrates asymmetric lignin distribution in inner sclerenchyma, creating torsion in pod walls that facilitates shattering. Integration analyses of quantitative trait locus mapping, genome-wide association studies, and allele distribution in representative soybean germplasm suggest that these two genes are primary modulators underlying this domestication trait. Our study thus provides comprehensive understanding regarding the genetic, molecular, and cellular bases of shattering resistance in soybeans.
Collapse
Affiliation(s)
- Shuai Li
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Rui Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Huiying Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xuemin Tang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Stephen A Swarm
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
- Beck's Hybrids, Atlanta, IN, USA
| | - Randall L Nelson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Cho Y, Kim JY, Kim SK, Kim SY, Kim N, Lee J, Park JL. Whole-genome sequencing analysis of soybean diversity across different countries and selection signature of Korean soybean accession. G3 (BETHESDA, MD.) 2024; 14:jkae118. [PMID: 38833595 PMCID: PMC11304964 DOI: 10.1093/g3journal/jkae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Soybean is an important agricultural crop known for its high protein and oil content, contributing to essential nutritional and health benefits for humans. Domesticated in China over 5,000 years ago, soybean has since adapted to diverse environments and spread worldwide. This study aimed to investigate the genomic characteristics and population structures of 2,317 publicly available soybean whole-genome sequences from diverse geographical regions, including China, Korea, Japan, Europe, North America, and South America. We used large-scale whole-genome sequencing data to perform high-resolution analyses to reveal the genetic characteristics of soybean accessions. Soybean accessions from China and Korea exhibited landrace characteristics, indicating higher genetic diversity and adaptation to local environments. On the other hand, soybean accessions from Japan, the European Union, and South America were found to have low genetic diversity due to artificial selection and breeding for agronomic traits. We also identified key variants and genes associated with the ability to adapt to different environments. In Korean soybean accessions, we observed strong selection signals for isoflavone synthesis, an adaptive trait critical for improving soybean adaptability, survival, and reproductive success by mitigating environmental stress. Identifying specific genomic regions showing unique patterns of selective sweeps for genes such as HIDH, CYP73A11, IFS1, and CYP81E11 associated with isoflavone synthesis provided valuable insights into potential adaptation mechanisms. Our research has significantly improved our understanding of soybean diversity at the genetic level. We have identified key genetic variants and genes influencing adaptability, laying the foundation for future advances in genomics-based breeding programs and crop improvement efforts.
Collapse
Affiliation(s)
- Youngbeom Cho
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jae-Yoon Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon-Kyu Kim
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jinhyuk Lee
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jong-Lyul Park
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Gilbert C, Martin N. Using agro-ecological zones to improve the representation of a multi-environment trial of soybean varieties. FRONTIERS IN PLANT SCIENCE 2024; 15:1310461. [PMID: 38590744 PMCID: PMC10999551 DOI: 10.3389/fpls.2024.1310461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024]
Abstract
This research introduces a novel framework for enhancing soybean cultivation in North America by categorizing growing environments into distinct ecological and maturity-based zones. Using an integrated analysis of long-term climatic data and records of soybean varietal trials, this research generates a zonal environmental characterization which captures major components of the growing environment which affect the range of adaptation of soybean varieties. These findings have immediate applications for optimizing multi-environment soybean trials. This characterization allows breeders to assess the environmental representation of a multi-environmental trial of soybean varieties, and to strategize the distribution of testing and the placement of test sites accordingly. This application is demonstrated with a historical scenario of a soybean multi-environment trial, using two resource allocation models: one targeted towards improving the general adaptation of soybean varieties, which focuses on widely cultivated areas, and one targeted towards specific adaptation, which captures diverse environmental conditions. Ultimately, the study aims to improve the efficiency and impact of soybean breeding programs, leading to the development of cultivars resilient to variable and changing climates.
Collapse
Affiliation(s)
- Catherine Gilbert
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, Urbana, IL, United States
| | - Nicolas Martin
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, Urbana, IL, United States
| |
Collapse
|
6
|
Li Y, Zhao W, Tang J, Yue X, Gu J, Zhao B, Li C, Chen Y, Yuan J, Lin Y, Li Y, Kong F, He J, Wang D, Zhao TJ, Wang ZY. Identification of the domestication gene GmCYP82C4 underlying the major quantitative trait locus for the seed weight in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:62. [PMID: 38418640 DOI: 10.1007/s00122-024-04571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
KEY MESSAGE A major quantitative trait locus (QTL) for the hundred-seed weight (HSW) was identified and confirmed in the two distinct soybean populations, and the target gene GmCYP82C4 underlying this locus was identified that significantly associated with soybean seed weight, and it was selected during the soybean domestication and improvement process. Soybean is a major oil crop for human beings and the seed weight is a crucial goal of soybean breeding. However, only a limited number of target genes underlying the quantitative trait loci (QTLs) controlling seed weight in soybean are known so far. In the present study, six loci associated with hundred-seed weight (HSW) were detected in the first population of 573 soybean breeding lines by genome-wide association study (GWAS), and 64 gene models were predicted in these candidate QTL regions. The QTL qHSW_1 exhibits continuous association signals on chromosome four and was also validated by region association study (RAS) in the second soybean population (409 accessions) with wild, landrace, and cultivar soybean accessions. There were seven genes in qHSW_1 candidate region by linkage disequilibrium (LD) block analysis, and only Glyma.04G035500 (GmCYP82C4) showed specifically higher expression in flowers, pods, and seeds, indicating its crucial role in the soybean seed development. Significant differences in HSW trait were detected when the association panels are genotyped by single-nucleotide polymorphisms (SNPs) in putative GmCYP82C4 promoter region. Eight haplotypes were generated by six SNPs in GmCYP82C4 in the second soybean population, and two superior haplotypes (Hap2 and Hap4) of GmCYP82C4 were detected with average HSW of 18.27 g and 18.38 g, respectively. The genetic diversity of GmCYP82C4 was analyzed in the second soybean population, and GmCYP82C4 was most likely selected during the soybean domestication and improvement process, leading to the highest proportion of Hap2 of GmCYP82C4 both in landrace and cultivar subpopulations. The QTLs and GmCYP82C4 identified in this study provide novel genetic resources for soybean seed weight trait, and the GmCYP82C4 could be used for soybean molecular breeding to develop desirable seed weight in the future.
Collapse
Affiliation(s)
- Yang Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Wenqian Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jiajun Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiuli Yue
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Biyao Zhao
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Cong Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Yanhang Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Jianbo Yuan
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Yan Lin
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jin He
- College of Agriculture, Guizhou University, Guiyang, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang, China
| | - Tuan-Jie Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China.
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, China.
| |
Collapse
|
7
|
Neyhart JL, Kantar MB, Zalapa J, Vorsa N. Genomic-environmental associations in wild cranberry (Vaccinium macrocarpon Ait.). G3 (BETHESDA, MD.) 2022; 12:jkac203. [PMID: 35944211 PMCID: PMC9526045 DOI: 10.1093/g3journal/jkac203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
Understanding the genetic basis of local adaptation in natural plant populations, particularly crop wild relatives, may be highly useful for plant breeding. By characterizing genetic variation for adaptation to potentially stressful environmental conditions, breeders can make targeted use of crop wild relatives to develop cultivars for novel or changing environments. This is especially appealing for improving long-lived woody perennial crops such as the American cranberry (Vaccinium macrocarpon Ait.), the cultivation of which is challenged by biotic and abiotic stresses. In this study, we used environmental association analyses in a collection of 111 wild cranberry accessions to identify potentially adaptive genomic regions for a range of bioclimatic and soil conditions. We detected 126 significant associations between SNP marker loci and environmental variables describing temperature, precipitation, and soil attributes. Many of these markers tagged genes with functional annotations strongly suggesting a role in adaptation to biotic or abiotic conditions. Despite relatively low genetic variation in cranberry, our results suggest that local adaptation to divergent environments is indeed present, and the identification of potentially adaptive genetic variation may enable a selective use of this germplasm for breeding more stress-tolerant cultivars.
Collapse
Affiliation(s)
- Jeffrey L Neyhart
- USDA, Agricultural Research Service, Genetic Improvement for Fruits & Vegetables Laboratory, Chatsworth, NJ 08019, USA
| | - Michael B Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Juan Zalapa
- USDA, Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706, USA
- Department of Horticulture, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Nicholi Vorsa
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Marsh JI, Hu H, Petereit J, Bayer PE, Valliyodan B, Batley J, Nguyen HT, Edwards D. Haplotype mapping uncovers unexplored variation in wild and domesticated soybean at the major protein locus cqProt-003. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1443-1455. [PMID: 35141762 PMCID: PMC9033719 DOI: 10.1007/s00122-022-04045-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE The major soy protein QTL, cqProt-003, was analysed for haplotype diversity and global distribution, and results indicate 304 bp deletion and variable tandem repeats in protein coding regions are likely causal candidates. Here, we present association and linkage analysis of 985 wild, landrace and cultivar soybean accessions in a pan genomic dataset to characterize the major high-protein/low-oil associated locus cqProt-003 located on chromosome 20. A significant trait-associated region within a 173 kb linkage block was identified, and variants in the region were characterized, identifying 34 high confidence SNPs, 4 insertions, 1 deletion and a larger 304 bp structural variant in the high-protein haplotype. Trinucleotide tandem repeats of variable length present in the second exon of gene Glyma.20G085100 are strongly correlated with the high-protein phenotype and likely represent causal variation. Structural variation has previously been found in the same gene, for which we report the global distribution of the 304 bp deletion and have identified additional nested variation present in high-protein individuals. Mapping variation at the cqProt-003 locus across demographic groups suggests that the high-protein haplotype is common in wild accessions (94.7%), rare in landraces (10.6%) and near absent in cultivated breeding pools (4.1%), suggesting its decrease in frequency primarily correlates with domestication and continued during subsequent improvement. However, the variation that has persisted in under-utilized wild and landrace populations holds high breeding potential for breeders willing to forego seed oil to maximize protein content. The results of this study include the identification of distinct haplotype structures within the high-protein population, and a broad characterization of the genomic context and linkage patterns of cqProt-003 across global populations, supporting future functional characterization and modification.
Collapse
Affiliation(s)
- Jacob I Marsh
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Jakob Petereit
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Babu Valliyodan
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO, 65101, USA
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
9
|
Lo S, Parker T, Muñoz-Amatriaín M, Berny-Mier Y Teran JC, Jernstedt J, Close TJ, Gepts P. Genetic, anatomical, and environmental patterns related to pod shattering resistance in domesticated cowpea [Vigna unguiculata (L.) Walp]. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6219-6229. [PMID: 34106233 DOI: 10.1093/jxb/erab259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/06/2021] [Indexed: 05/27/2023]
Abstract
Pod shattering, which causes the explosive release of seeds from the pod, is one of the main sources of yield losses in cowpea in arid and semi-arid areas. Reduction of shattering has therefore been a primary target for selection during domestication and improvement of cowpea, among other species. Using a mini-core diversity panel of 368 cowpea accessions, four regions with a statistically significant association with pod shattering were identified. Two genes (Vigun03g321100 and Vigun11g100600), involved in cell wall biosynthesis, were identified as strong candidates for pod shattering. Microscopic analysis was conducted on a subset of accessions representing the full spectrum of shattering phenotypes. This analysis indicated that the extent of wall fiber deposition was highly correlated with shattering. The results from this study also demonstrate that pod shattering in cowpea is exacerbated by arid environmental conditions. Finally, using a subset of West African landraces, patterns of historical selection for shattering resistance related to precipitation in the environment of origin were identified. Together, these results shed light on sources of resistance to pod shattering, which will, in turn, improve climate resilience of a major global nutritional staple.
Collapse
Affiliation(s)
- Sassoum Lo
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521,USA
- Department of Plant Sciences/MS1, University of California, Davis, CA 95616-8780,USA
| | - Travis Parker
- Department of Plant Sciences/MS1, University of California, Davis, CA 95616-8780,USA
| | - María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521,USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523,USA
| | | | - Judy Jernstedt
- Department of Plant Sciences/MS1, University of California, Davis, CA 95616-8780,USA
| | - Timothy J Close
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521,USA
| | - Paul Gepts
- Department of Plant Sciences/MS1, University of California, Davis, CA 95616-8780,USA
| |
Collapse
|
10
|
A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north-central United States. Sci Rep 2021; 11:18769. [PMID: 34548572 PMCID: PMC8455673 DOI: 10.1038/s41598-021-98230-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Foliar fungicide usage in soybeans in the north-central United States increased steadily over the past two decades. An agronomically-interpretable machine learning framework was used to understand the importance of foliar fungicides relative to other factors associated with realized soybean yields, as reported by growers surveyed from 2014 to 2016. A database of 2738 spatially referenced fields (of which 30% had been sprayed with foliar fungicides) was fit to a random forest model explaining soybean yield. Latitude (a proxy for unmeasured agronomic factors) and sowing date were the two most important factors associated with yield. Foliar fungicides ranked 7th out of 20 factors in terms of relative importance. Pairwise interactions between latitude, sowing date and foliar fungicide use indicated more yield benefit to using foliar fungicides in late-planted fields and in lower latitudes. There was a greater yield response to foliar fungicides in higher-yield environments, but less than a 100 kg/ha yield penalty for not using foliar fungicides in such environments. Except in a few production environments, yield gains due to foliar fungicides sufficiently offset the associated costs of the intervention when soybean prices are near-to-above average but do not negate the importance of disease scouting and fungicide resistance management.
Collapse
|
11
|
Finding Needles in a Haystack: Using Geo-References to Enhance the Selection and Utilization of Landraces in Breeding for Climate-Resilient Cultivars of Upland Cotton ( Gossypium hirsutum L.). PLANTS 2021; 10:plants10071300. [PMID: 34206949 PMCID: PMC8309191 DOI: 10.3390/plants10071300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/25/2023]
Abstract
The genetic uniformity of cultivated cotton as a consequence of domestication and modern breeding makes it extremely vulnerable to abiotic challenges brought about by major climate shifts. To sustain productivity amidst worsening agro-environments, future breeding objectives need to seriously consider introducing new genetic variation from diverse resources into the current germplasm base of cotton. Landraces are genetically heterogeneous, population complexes that have been primarily selected for their adaptability to specific localized or regional environments. This makes them an invaluable genetic resource of novel allelic diversity that can be exploited to enhance the resilience of crops to marginal environments. The utilization of cotton landraces in breeding programs are constrained by the phenology of the plant and the lack of phenotypic information that can facilitate efficient selection of potential donor parents for breeding. In this review, the genetic value of cotton landraces and the major challenges in their utilization in breeding are discussed. Two strategies namely Focused Identification of Germplasm Strategy and Environmental Association Analysis that have been developed to effectively screen large germplasm collections for accessions with adaptive traits using geo-reference-based, mathematical modelling are highlighted. The potential applications of both approaches in mining available cotton landrace collections are also presented.
Collapse
|
12
|
Li C, Wang G, Li H, Wang G, Ma J, Zhao X, Huo L, Zhang L, Jiang Y, Zhang J, Liu G, Liu G, Cheng R, Wei J, Yao L. High-depth resequencing of 312 accessions reveals the local adaptation of foxtail millet. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1303-1317. [PMID: 33566123 DOI: 10.1007/s00122-020-03760-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 12/30/2020] [Indexed: 05/20/2023]
Abstract
Based on the high-density variation map, we identified genome-level evidence for local adaptation and demonstrated that Siprr37 with transposon insertion contributes to the fitness of foxtail millet in the northeastern ecoregion. Adaptation is a robust way through which plants are able to overcome environmental constraints. The mechanisms of adaptation in heterogeneous natural environments are largely unknown. Deciphering the genomic basis of local adaptation will contribute to further improvement in domesticated plants. To this end, we describe a high-depth (19.4 ×) haplotype map of 3.02 million single nucleotide polymorphisms in foxtail millet (Setaria italica) from whole-genome resequencing of 312 accessions. In the genome-wide scan, we identified a set of improvement signals (including the homologous gene of OsIPA1, a key gene controlling ideal plant architecture) related to the geographical adaptation to four ecoregions in China. In particular, based on the genome-wide association analysis results, we identified the contribution of a pseudo-response regulator gene, SiPRR37, to heading date adaptation in foxtail millet. We observed the expression changes of SiPRR37 resulted from a key Tc1-Mariner transposon insertion in the first intron. Positive selection analyses revealed that SiPRR37 mainly contributed to the adaptation of northeastern ecoregions. Taken together, foxtail millet adapted to the northeastern region by regulating the function of SiPRR37, which sheds lights on genome-level evidence for adaptive geographical divergence. Besides, our data provide a nearly complete catalog of genomic variation aiding the identification of functionally important variants.
Collapse
Affiliation(s)
- Congcong Li
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Genping Wang
- Institute of Millet Crops, Key Laboratory of Minor Crops in Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Haiquan Li
- Institute of Millet Crops, Key Laboratory of Minor Crops in Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Guoliang Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Ma
- Beijing Vegetable Research Center, Beijing Key Laboratory of Vegetable Germplasms Improvement, National Engineering Research Center for Vegetables, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xin Zhao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Linhe Huo
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Liquan Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yanmiao Jiang
- Institute of Millet Crops, Key Laboratory of Minor Crops in Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Jiewei Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guiming Liu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoqing Liu
- Institute of Millet Crops, Key Laboratory of Minor Crops in Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Ruhong Cheng
- Institute of Millet Crops, Key Laboratory of Minor Crops in Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Jianhua Wei
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Lei Yao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
13
|
Parker TA, Lo S, Gepts P. Pod shattering in grain legumes: emerging genetic and environment-related patterns. THE PLANT CELL 2021; 33:179-199. [PMID: 33793864 PMCID: PMC8136915 DOI: 10.1093/plcell/koaa025] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/26/2020] [Indexed: 05/25/2023]
Abstract
A reduction in pod shattering is one of the main components of grain legume domestication. Despite this, many domesticated legumes suffer serious yield losses due to shattering, particularly under arid conditions. Mutations related to pod shattering modify the twisting force of pod walls or the structural strength of the dehiscence zone in pod sutures. At a molecular level, a growing body of evidence indicates that these changes are controlled by a relatively small number of key genes that have been selected in parallel across grain legume species, supporting partial molecular convergence. Legume homologs of Arabidopsis thaliana silique shattering genes play only minor roles in legume pod shattering. Most domesticated grain legume species contain multiple shattering-resistance genes, with mutants of each gene typically showing only partial shattering resistance. Hence, crosses between varieties with different genes lead to transgressive segregation of shattering alleles, producing plants with either enhanced shattering resistance or atavistic susceptibility to the trait. The frequency of these resistance pod-shattering alleles is often positively correlated with environmental aridity. The continued development of pod-shattering-related functional information will be vital for breeding crops that are suited to the increasingly arid conditions expected in the coming decades.
Collapse
Affiliation(s)
- Travis A Parker
- Department of Plant Sciences/MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA 95616-8780
| | - Sassoum Lo
- Department of Plant Sciences/MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA 95616-8780
| | - Paul Gepts
- Department of Plant Sciences/MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA 95616-8780
| |
Collapse
|
14
|
Hübner S, Kantar MB. Tapping Diversity From the Wild: From Sampling to Implementation. FRONTIERS IN PLANT SCIENCE 2021; 12:626565. [PMID: 33584776 PMCID: PMC7873362 DOI: 10.3389/fpls.2021.626565] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/07/2021] [Indexed: 05/05/2023]
Abstract
The diversity observed among crop wild relatives (CWRs) and their ability to flourish in unfavorable and harsh environments have drawn the attention of plant scientists and breeders for many decades. However, it is also recognized that the benefit gained from using CWRs in breeding is a potential rose between thorns of detrimental genetic variation that is linked to the trait of interest. Despite the increased interest in CWRs, little attention was given so far to the statistical, analytical, and technical considerations that should guide the sampling design, the germplasm characterization, and later its implementation in breeding. Here, we review the entire process of sampling and identifying beneficial genetic variation in CWRs and the challenge of using it in breeding. The ability to detect beneficial genetic variation in CWRs is strongly affected by the sampling design which should be adjusted to the spatial and temporal variation of the target species, the trait of interest, and the analytical approach used. Moreover, linkage disequilibrium is a key factor that constrains the resolution of searching for beneficial alleles along the genome, and later, the ability to deplete linked deleterious genetic variation as a consequence of genetic drag. We also discuss how technological advances in genomics, phenomics, biotechnology, and data science can improve the ability to identify beneficial genetic variation in CWRs and to exploit it in strive for higher-yielding and sustainable crops.
Collapse
Affiliation(s)
- Sariel Hübner
- Galilee Research Institute (MIGAL), Tel-Hai College, Qiryat Shemona, Israel
- *Correspondence: Sariel Hübner,
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Mânoa, Honolulu, HI, United States
| |
Collapse
|
15
|
Parker TA, de Sousa LL, de Oliveira Floriani T, Palkovic A, Gepts P. Toward the introgression of PvPdh1 for increased resistance to pod shattering in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:313-325. [PMID: 33130953 DOI: 10.1007/s00122-020-03698-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
A common bean shattering-resistance allele of PvPdh1 reduces pod twists during dehiscence, shows dominance that varies by phenotyping method, is part of a selective sweep, and can be introgressed using CAPS markers. Some varieties of common bean (Phaseolus vulgaris L.) suffer from pod shattering, which can severely reduce yields, especially in arid conditions. The PvPdh1 locus on chromosome Pv03 has recently been described as a major locus controlling pod shattering in common bean and could be used to mitigate pod shattering in the future. Despite this, the role of a possible second locus on chromosome Pv08 remains unclear and patterns of dominance and epistasis between alleles of these genes have not been resolved. This information will be vital for efficient selection to decrease pod shattering. Further, the genetic diversity around the PvPdh1 gene has not yet been thoroughly explored, and there are not yet genetic screens that can be used to evaluate pod shattering in segregating populations. Here, we have developed a recombinant inbred population to determine the roles of genes implicated in pod shattering and evaluate the patterns of dominance among the relevant alleles. Our results suggest that a PvPdh1 allele reduces pod valve twisting, and its dominance varies by phenotyping method. This allele is the only genetic variant that provides environmentally stable and widespread resistance to pod shattering in Middle American common beans grown for grain. Further analyses identified a selective sweep around PvPdh1 with greater nucleotide diversity in individuals with the ancestral, shattering-susceptible allele. Finally, we developed simple, effective CAPS markers to facilitate the introgression of PvPdh1 into new varieties of common bean. These genetic resources will be critical for improving the aridity resilience of a major global staple.
Collapse
Affiliation(s)
- Travis A Parker
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Lorenna Lopes de Sousa
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Talissa de Oliveira Floriani
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Antonia Palkovic
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Paul Gepts
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, 1 Shields Avenue, Davis, CA, 95616-8780, USA.
| |
Collapse
|
16
|
QTL Mapping and Candidate Gene Analysis for Pod Shattering Tolerance in Soybean ( Glycine max). PLANTS 2020; 9:plants9091163. [PMID: 32911865 PMCID: PMC7569788 DOI: 10.3390/plants9091163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
Pod shattering is an important reproductive process in many wild species. However, pod shattering at the maturing stage can result in severe yield loss. The objectives of this study were to discover quantitative trait loci (QTLs) for pod shattering using two recombinant inbred line (RIL) populations derived from an elite cultivar having pod shattering tolerance, namely "Daewonkong", and to predict novel candidate QTL/genes involved in pod shattering based on their allele patterns. We found several QTLs with more than 10% phenotypic variance explained (PVE) on seven different chromosomes and found a novel candidate QTL on chromosome 16 (qPS-DS16-1) from the allele patterns in the QTL region. Out of the 41 annotated genes in the QTL region, six were found to contain SNP (single-nucleotide polymorphism)/indel variations in the coding sequence of the parents compared to the soybean reference genome. Among the six potential candidate genes, Glyma.16g076600, one of the genes with known function, showed a highly differential expression levels between the tolerant and susceptible parents in the growth stages R3 to R6. Further, Glyma.16g076600 is a homolog of AT4G19230 in Arabidopsis, whose function is related to abscisic acid catabolism. The results provide useful information to understand the genetic mechanism of pod shattering and could be used for improving the efficiency of marker-assisted selection for developing varieties of soybeans tolerant to pod shattering.
Collapse
|
17
|
Steketee CJ, Schapaugh WT, Carter TE, Li Z. Genome-Wide Association Analyses Reveal Genomic Regions Controlling Canopy Wilting in Soybean. G3 (BETHESDA, MD.) 2020; 10:1413-1425. [PMID: 32111650 PMCID: PMC7144087 DOI: 10.1534/g3.119.401016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/20/2020] [Indexed: 12/27/2022]
Abstract
Drought stress causes the greatest soybean [Glycine max (L.) Merr.] yield losses among the abiotic stresses in rain-fed U.S. growing areas. Because less than 10% of U.S. soybean hectares are irrigated, combating this stress requires soybean plants which possess physiological mechanisms to tolerate drought for a period of time. Phenotyping for these mechanisms is challenging, and the genetic architecture for these traits is poorly understood. A morphological trait, slow or delayed canopy wilting, has been observed in a few exotic plant introductions (PIs), and may lead to yield improvement in drought stressed fields. In this study, we visually scored wilting during stress for a panel of 162 genetically diverse maturity group VI-VIII soybean lines genotyped with the SoySNP50K iSelect BeadChip. Field evaluation of canopy wilting was conducted under rain-fed conditions at two locations (Athens, GA and Salina, KS) in 2015 and 2016. Substantial variation in canopy wilting was observed among the genotypes. Using a genome-wide association mapping approach, 45 unique SNPs that tagged 44 loci were associated with canopy wilting in at least one environment with one region identified in a single environment and data from across all environments. Several new soybean accessions were identified with canopy wilting superior to those of check genotypes. The germplasm and genomic regions identified can be used to better understand the slow canopy wilting trait and be incorporated into elite germplasm to improve drought tolerance in soybean.
Collapse
Affiliation(s)
- Clinton J Steketee
- Institute of Plant Breeding, Genetics, and Genomics and Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, 30602
| | | | - Thomas E Carter
- Department of Crop and Soil Sciences, North Carolina State University, USDA-ARS, Raleigh, NC, 27607
| | - Zenglu Li
- Institute of Plant Breeding, Genetics, and Genomics and Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, 30602
| |
Collapse
|
18
|
Beche E, Gillman JD, Song Q, Nelson R, Beissinger T, Decker J, Shannon G, Scaboo AM. Nested association mapping of important agronomic traits in three interspecific soybean populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1039-1054. [PMID: 31974666 DOI: 10.1007/s00122-019-03529-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE Glycine soja germplasm can be used to successfully introduce new alleles with the potential to add valuable new genetic diversity to the current elite soybean gene pool. Given the demonstrated narrow genetic base of the US soybean production, it is essential to identify beneficial alleles from exotic germplasm, such as wild soybean, to enhance genetic gain for favorable traits. Nested association mapping (NAM) is an approach to population development that permits the comparison of allelic effects of the same QTL in multiple parents. Seed yield, plant maturity, plant height and plant lodging were evaluated in a NAM panel consisting of 392 recombinant inbred lines derived from three biparental interspecific soybean populations in eight environments during 2016 and 2017. Nested association mapping, combined with linkage mapping, identified three major QTL for plant maturity in chromosomes 6, 11 and 12 associated with alleles from wild soybean resulting in significant increases in days to maturity. A significant QTL for plant height was identified on chromosome 13 with the allele increasing plant height derived from wild soybean. A significant grain yield QTL was detected on chromosome 17, and the allele from Glycine soja had a positive effect of 166 kg ha-1; RIL's with the wild soybean allele yielded on average 6% more than the lines carrying the Glycine max allele. These findings demonstrate the usefulness and potential of alleles from wild soybean germplasm to enhance important agronomic traits in a soybean breeding program.
Collapse
Affiliation(s)
- Eduardo Beche
- Division of Plant Science, University of Missouri, Columbia, MO, USA
| | | | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Randall Nelson
- Department of Crop Sciences, University of Illinois, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
- USDA-Agricultural Research Service, 1101 W. Peabody Dr, Urbana, IL, 61801, USA
| | - Tim Beissinger
- Center for Integrated Breeding Research, Georg-August-Universität, Göttingen, Germany
| | - Jared Decker
- Division of Animal Science, University of Missouri, Columbia, MO, USA
| | - Grover Shannon
- Division of Plant Science, University of Missouri, Columbia, MO, USA
| | - Andrew M Scaboo
- Division of Plant Science, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
19
|
Miranda C, Scaboo A, Cober E, Denwar N, Bilyeu K. The effects and interaction of soybean maturity gene alleles controlling flowering time, maturity, and adaptation in tropical environments. BMC PLANT BIOLOGY 2020; 20:65. [PMID: 32033536 PMCID: PMC7006184 DOI: 10.1186/s12870-020-2276-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Soybean is native to the temperate zones of East Asia. Poor yields of soybean in West African countries may be partially attributed to inadequate adaptation of soybean to tropical environments. Adaptation will require knowledge of the effects of allelic combinations of major maturity genes (E1, E2, and E3) and stem architecture. The long juvenile trait (J) influences soybean flowering time in short, ~ 12 h days, which characterize tropical latitudes. Soybean plant architecture includes determinate or indeterminate stem phenotypes controlled by the Dt1 gene. Understanding the influence of these genetic components on plant development and adaptation is key to optimize phenology and improve soybean yield potential in tropical environments. RESULTS Soybean lines from five recombinant inbred populations were developed that varied in their combinations of targeted genes. The soybean lines were field tested in multiple environments and characterized for days to flowering (DTF), days to maturity (DTM), and plant height in locations throughout northern Ghana, and allelic combinations were determined for each line for associating genotype with phenotype. The results revealed significant differences based on genotype for DTF and DTM and allowed the comparison of different variant alleles of those genes. The mutant alleles of J and E1 had significant impact on DTF and DTM, and alleles of those genes interacted with each other for DTF but not DTM. The Dt1 gene significantly influenced plant height but not DTF or DTM. CONCLUSIONS This research identified major and minor effect alleles of soybean genes that can be combined to control DTF, DTM, and plant height in short day tropical environments in Ghana. These phenotypes contribute to adaptation to a low latitude environment that can be optimized in a soybean breeding program with targeted selection of desired allele combinations. The knowledge of the genetic control of these traits will enhance molecular breeding to produce optimally adapted soybean varieties targeted to tropical environments.
Collapse
Affiliation(s)
- Carrie Miranda
- USDA/ARS Plant Genetics Research Unit, 110 Waters Hall, University of Missouri, Columbia, MO 65211 USA
| | - Andrew Scaboo
- Division of Plant Sciences, 110 Waters Hall, University of Missouri, Columbia, MO 65211 USA
| | - Elroy Cober
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, Ontario K1A 0C6 Canada
| | - Nicholas Denwar
- CSIR-Savanna Agricultural Research Institute, P. O. Box 52, Tamale, Ghana
| | - Kristin Bilyeu
- USDA/ARS Plant Genetics Research Unit, 110 Waters Hall, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
20
|
Li Y, Li D, Jiao Y, Schnable JC, Li Y, Li H, Chen H, Hong H, Zhang T, Liu B, Liu Z, You Q, Tian Y, Guo Y, Guan R, Zhang L, Chang R, Zhang Z, Reif J, Zhou X, Schnable PS, Qiu L. Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:389-401. [PMID: 31278885 PMCID: PMC6953199 DOI: 10.1111/pbi.13206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 05/22/2023]
Abstract
Landraces often contain genetic diversity that has been lost in modern cultivars, including alleles that confer enhanced local adaptation. To comprehensively identify loci associated with adaptive traits in soya bean landraces, for example flowering time, a population of 1938 diverse landraces and 97 accessions of the wild progenitor of cultivated soya bean, Glycine soja was genotyped using tGBS® . Based on 99 085 high-quality SNPs, landraces were classified into three sub-populations which exhibit geographical genetic differentiation. Clustering was inferred from STRUCTURE, principal component analyses and neighbour-joining tree analyses. Using phenotypic data collected at two locations separated by 10 degrees of latitude, 17 trait-associated SNPs (TASs) for flowering time were identified, including a stable locus Chr12:5914898 and previously undetected candidate QTL/genes for flowering time in the vicinity of the previously cloned flowering genes, E1 and E2. Using passport data associated with the collection sites of the landraces, 27 SNPs associated with adaptation to three bioclimatic variables (temperature, daylength, and precipitation) were identified. A series of candidate flowering genes were detected within linkage disequilibrium (LD) blocks surrounding 12 bioclimatic TASs. Nine of these TASs exhibit significant differences in flowering time between alleles within one or more of the three individual sub-populations. Signals of selection during domestication and/or subsequent landrace diversification and adaptation were detected at 38 of the 44 flowering and bioclimatic TASs. Hence, this study lays the groundwork to begin breeding for novel environments predicted to arise following global climate change.
Collapse
Affiliation(s)
- Ying‐hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Delin Li
- Data Biotech (Beijing) Co., Ltd.BeijingChina
- Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Yong‐qing Jiao
- Key Laboratory of Oil Crop Biology (MOA)Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhanChina
| | - James C. Schnable
- Data Biotech (Beijing) Co., Ltd.BeijingChina
- Departmentof Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNEUSA
- Data2Bio LLCAmesIAUSA
| | - Yan‐fei Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Hui‐hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Huai‐zhu Chen
- Guangxi Academy of Agricultural SciencesNanningChina
| | - Hui‐long Hong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ting Zhang
- Data Biotech (Beijing) Co., Ltd.BeijingChina
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhang‐xiong Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Qing‐bo You
- Key Laboratory of Oil Crop Biology (MOA)Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhanChina
| | - Yu Tian
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Yong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Rong‐xia Guan
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Li‐juan Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Ru‐zhen Chang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Zhiwu Zhang
- Department of Crop and Soil SciencesWashington State UniversityPullmanWAUSA
| | - Jochen Reif
- Department of Breeding ResearchLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | - Xin‐an Zhou
- Key Laboratory of Oil Crop Biology (MOA)Oil Crops Research Institute of Chinese Academy of Agriculture SciencesWuhanChina
| | - Patrick S. Schnable
- Data Biotech (Beijing) Co., Ltd.BeijingChina
- Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
- Data2Bio LLCAmesIAUSA
- Department of AgronomyIowa State UniversityAmesIAUSA
| | - Li‐juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA)Institute of Crop SciencesChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
21
|
Parker TA, Berny Mier Y Teran JC, Palkovic A, Jernstedt J, Gepts P. Pod indehiscence is a domestication and aridity resilience trait in common bean. THE NEW PHYTOLOGIST 2020; 225:558-570. [PMID: 31486530 DOI: 10.1111/nph.16164] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/14/2019] [Indexed: 05/05/2023]
Abstract
Plant domestication has strongly modified crop morphology and development. Nevertheless, many crops continue to display atavistic characteristics that were advantageous to their wild ancestors but are deleterious under cultivation, such as pod dehiscence (PD). Here, we provide the first comprehensive assessment of the inheritance of PD in the common bean (Phaseolus vulgaris), a major domesticated grain legume. Using three methods to evaluate the PD phenotype, we identified multiple, unlinked genetic regions controlling PD in a biparental population and two diversity panels. Subsequently, we assessed patterns of orthology among these loci and those controlling the trait in other species. Our results show that different genes were selected in each domestication and ecogeographic race. A chromosome Pv03 dirigent-like gene, involved in lignin biosynthesis, showed a base-pair substitution that is associated with decreased PD. This haplotype may underlie the expansion of Mesoamerican domesticates into northern Mexico, where arid conditions promote PD. The rise in frequency of the decreased-PD haplotype may be a consequence of the markedly different fitness landscape imposed by domestication. Environmental dependency and genetic redundancy can explain the maintenance of atavistic traits under domestication.
Collapse
Affiliation(s)
- Travis A Parker
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Jorge C Berny Mier Y Teran
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Antonia Palkovic
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Judy Jernstedt
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| | - Paul Gepts
- Department of Plant Sciences / MS1, Section of Crop & Ecosystem Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA
| |
Collapse
|
22
|
Kim JY, Jeong S, Kim KH, Lim WJ, Lee HY, Jeong N, Moon JK, Kim N. Dissection of soybean populations according to selection signatures based on whole-genome sequences. Gigascience 2019; 8:giz151. [PMID: 31869408 PMCID: PMC6927394 DOI: 10.1093/gigascience/giz151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/21/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Domestication and improvement processes, accompanied by selections and adaptations, have generated genome-wide divergence and stratification in soybean populations. Simultaneously, soybean populations, which comprise diverse subpopulations, have developed their own adaptive characteristics enhancing fitness, resistance, agronomic traits, and morphological features. The genetic traits underlying these characteristics play a fundamental role in improving other soybean populations. RESULTS This study focused on identifying the selection signatures and adaptive characteristics in soybean populations. A core set of 245 accessions (112 wild-type, 79 landrace, and 54 improvement soybeans) selected from 4,234 soybean accessions was re-sequenced. Their genomic architectures were examined according to the domestication and improvement, and accessions were then classified into 3 wild-type, 2 landrace, and 2 improvement subgroups based on various population analyses. Selection and gene set enrichment analyses revealed that the landrace subgroups have selection signals for soybean-cyst nematode HG type 0 and seed development with germination, and that the improvement subgroups have selection signals for plant development with viability and seed development with embryo development, respectively. The adaptive characteristic for soybean-cyst nematode was partially underpinned by multiple resistance accessions, and the characteristics related to seed development were supported by our phenotypic findings for seed weights. Furthermore, their adaptive characteristics were also confirmed as genome-based evidence, and unique genomic regions that exhibit distinct selection and selective sweep patterns were revealed for 13 candidate genes. CONCLUSIONS Although our findings require further biological validation, they provide valuable information about soybean breeding strategies and present new options for breeders seeking donor lines to improve soybean populations.
Collapse
Affiliation(s)
- Jae-Yoon Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seongmun Jeong
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung Hyoun Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Won-Jun Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ho-Yeon Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Namhee Jeong
- National Institute of Crop Science, Rural Development Administration, Nongsaengmyeong-ro 370, Deokjin-gu, Jeon-Ju 54874, Republic of Korea
| | - Jung-Kyung Moon
- National Institute of Crop Science, Rural Development Administration, Nongsaengmyeong-ro 370, Deokjin-gu, Jeon-Ju 54874, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
23
|
Terés J, Busoms S, Martín LP, Luís-Villarroya A, Flis P, Álvarez-Fernández A, Tolrà R, Salt DE, Poschenrieder C. Soil carbonate drives local adaptation in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2019; 42:2384-2398. [PMID: 31018012 PMCID: PMC6663613 DOI: 10.1111/pce.13567] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 05/22/2023]
Abstract
High soil carbonate limits crop performance especially in semiarid or arid climates. To understand how plants adapt to such soils, we explored natural variation in tolerance to soil carbonate in small local populations (demes) of Arabidopsis thaliana growing on soils differing in carbonate content. Reciprocal field-based transplants on soils with elevated carbonate (+C) and without carbonate (-C) over several years revealed that demes native to (+C) soils showed higher fitness than those native to (-C) soils when both were grown together on carbonate-rich soil. This supports the role of soil carbonate as a driving factor for local adaptation. Analyses of contrasting demes revealed key mechanisms associated with these fitness differences. Under controlled conditions, plants from the tolerant deme A1(+C) native to (+C) soil were more resistant to both elevated carbonate and iron deficiency than plants from the sensitive T6(-C) deme native to (-C) soil. Resistance of A1(+C) to elevated carbonate was associated with higher root extrusion of both protons and coumarin-type phenolics. Tolerant A1(+C) also had better Ca-exclusion than sensitive T6(-C) . We conclude that Arabidopsis demes are locally adapted in their native habitat to soils with moderately elevated carbonate. This adaptation is associated with both enhanced iron acquisition and calcium exclusion.
Collapse
Affiliation(s)
- Joana Terés
- Plant Physiology Lab, Bioscience Faculty, Universidad Autónoma de Barcelona
| | | | - Laura Perez Martín
- Plant Physiology Lab, Bioscience Faculty, Universidad Autónoma de Barcelona
| | | | - Paulina Flis
- Future Food Beacon of Excellence & the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | | - Roser Tolrà
- Plant Physiology Lab, Bioscience Faculty, Universidad Autónoma de Barcelona
| | - David E Salt
- Future Food Beacon of Excellence & the School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | | |
Collapse
|
24
|
Genomic signatures of seed mass adaptation to global precipitation gradients in sorghum. Heredity (Edinb) 2019; 124:108-121. [PMID: 31316156 PMCID: PMC6906510 DOI: 10.1038/s41437-019-0249-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Seed mass is a key component of adaptation in plants and a determinant of yield in crops. The climatic drivers and genomic basis of seed mass variation remain poorly understood. In the cereal crop Sorghum bicolor, globally-distributed landraces harbor abundant variation in seed mass, which is associated with precipitation in their agroclimatic zones of origin. This study aimed to test the hypothesis that diversifying selection across precipitation gradients, acting on ancestral cereal grain size regulators, underlies seed mass variation in global sorghum germplasm. We tested this hypothesis in a set of 1901 georeferenced and genotyped sorghum landraces, 100-seed mass from common gardens, and bioclimatic precipitation variables. As predicted, 100-seed mass in global germplasm varies significantly among botanical races and is correlated to proxies of the precipitation gradients. With general and mixed linear model genome-wide associations, we identified 29 and 56 of 100 a priori candidate seed size genes with polymorphisms in the top 1% of seed mass association, respectively. Eleven of these genes harbor polymorphisms associated with the precipitation gradient, including orthologs of genes that regulate seed size in other cereals. With FarmCPU, 13 significant SNPs were identified, including one at an a priori candidate gene. Finally, we identified eleven colocalized outlier SNPs associated with seed mass and precipitation that also carry signatures of selection based on FST scans and PCAdapt, which represents a significant enrichment. Our findings suggest that seed mass in sorghum was shaped by diversifying selection on drought stress, and can inform genomics-enabled breeding for climate-resilient cereals.
Collapse
|
25
|
Wang X, Chen L, Ma J. Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication. Genome Biol 2019; 20:22. [PMID: 30700312 PMCID: PMC6354408 DOI: 10.1186/s13059-019-1631-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 01/16/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Evidence of introgression, the transfer of genetic material, between crops and their wild relatives through spontaneous hybridization and subsequent backcrossing has been documented; however, the evolutionary patterns and consequences of introgression and its influence on the processes of crop domestication and varietal diversification are poorly understood. RESULTS We investigate the genomic landscape and evolution of putative crop-wild-relative introgression by analyzing the nuclear and chloroplast genomes from a panel of wild (Glycine soja) and domesticated (Glycine max) soybeans. Our data suggest that naturally occurring introgression between wild and domesticated soybeans was widespread and that introgressed variation in both wild and domesticated soybeans was selected against throughout the genomes and preferentially removed from the genomic regions underlying selective sweeps and domestication quantitative trait locus (QTL). In both taxa, putative introgression was preferentially retained in recombination-repressed pericentromeric regions that exhibit lower gene densities, reflecting potential roles of recombination in purging introgression. Despite extensive removal of introgressed variation by recurrent selection for domestication-related QTL and associated genomic regions, spontaneous interspecific hybridization during soybean domestication appear to have contributed to a rapid varietal diversification with high levels of genetic diversity and asymmetric evolution between the nuclear and chloroplast genomes. CONCLUSIONS This work reveals the evolutionary forces, patterns, and consequences of putative genomic introgression between crops and their wild relatives, and the effects of introgression on the processes of crop domestication and varietal diversification. We envision that interspecific introgression serves as an important mechanism for counteracting the reduction of genetic diversity in domesticated crops, particularly the ones under single domestication.
Collapse
Affiliation(s)
- Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|