1
|
Shettar SS, Bagewadi ZK, Yaraguppi DA, Das S, Mahanta N, Singh SP, Katti A, Saikia D. Gene expression and molecular characterization of recombinant subtilisin from Bacillus subtilis with antibacterial, antioxidant and anticancer properties. Int J Biol Macromol 2023; 249:125960. [PMID: 37517759 DOI: 10.1016/j.ijbiomac.2023.125960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
This study investigated the multifunctional attributes such as, antibacterial, antioxidant and anticancer potential of recombinant subtilisin. A codon-optimized subtilisin gene was synthesized from Bacillus subtilis and was successfully transformed into E. coli DH5α cells which was further induced for high level expression in E. coli BL21 (DE3). An affinity purified ~40 kDa recombinant subtilisin was obtained that revealed to be highly alkali-thermostable based on the thermodynamic parameters. The kinetic parameters were deduced that indicated higher affinity of N-Suc-F-A-A-F-pNA substrate towards subtilisin. Recombinant subtilisin demonstrated strong antibacterial activity against several pathogens and showed minimum inhibitory concentration of 0.06 μg/mL against B. licheniformis and also revealed high stability under the influence of several biochemical factors. It also displayed antioxidant potential in a dose dependent manner and exhibited cell cytotoxicity against A549 and MCF-7 cancerous cell lines with IC50 of 5 μM and 12 μM respectively. The identity of recombinant subtilisin was established by MALDI-TOF mass spectrum depicting desired mass peaks and N-terminal sequence as MRSK by MALDI-TOF-MS. The deduced N- terminal amino acid sequence by Edman degradation revealed high sequence similarity with subtilisins from Bacillus strains. The structural and functional analysis of recombinant antibacterial subtilisin was elucidated by Raman, circular dichroism and nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The results contribute to the development of highly efficient subtilisin with enhanced catalytic properties making it a promising candidate for therapeutic applications in healthcare industries.
Collapse
Affiliation(s)
- Shreya S Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India.
| | - Deepak A Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Simita Das
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Nilkamal Mahanta
- Department of Chemistry, Indian Institute of Technology, Dharwad, Karnataka 580011, India
| | - Surya P Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| | - Aditi Katti
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Dimple Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Karnataka 580011, India
| |
Collapse
|
2
|
Ummiti K, Kumar JVS. Evaluation of temperature, excipients impact on the primary structure of Ganirelix in an injectable formulation, and comparison with Orgalutran® using MALDI-TOF/TOF-MS. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4610. [PMID: 32786175 DOI: 10.1002/jms.4610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Ganirelix is a linear polypeptide consisting of covalently bonded 10 amino acid residues. The amino acid sequence in a peptide determines the properties of the molecule. The slightest change in the primary structure (amino acid sequence) of therapeutic peptides can significantly impact its safety, efficacy, and immunogenicity. Hence, the primary structure analysis of therapeutic peptides is regarded as a critical quality attribute (CQA). A vast array of analytical techniques can be used to capture the primary structure of the peptide. In this study, we applied matrix-assisted laser desorption ionization (MALDI)/tandem time of flight mass spectroscopic (TOF/TOF MS) method to demonstrate the primary structure of Ganirelix in an injectable formulation. The apparent monoisotopic molecular mass of Ganirelix is 1,568.9 Da. The attained primary amino acid sequence of Ganirelix in temperature-stressed generic product matched with the theoretical sequence and showed homology with those of the reference listed drug (RLD).
Collapse
Affiliation(s)
- Kumarswamy Ummiti
- Department of Chemistry, Koneru Lakshmaiah University, Guntur, India
| | | |
Collapse
|
3
|
Krause T, Röckendorf N, Meckelein B, Sinnecker H, Schwager C, Möckel S, Jappe U, Frey A. IgE Epitope Profiling for Allergy Diagnosis and Therapy - Parallel Analysis of a Multitude of Potential Linear Epitopes Using a High Throughput Screening Platform. Front Immunol 2020; 11:565243. [PMID: 33117349 PMCID: PMC7561404 DOI: 10.3389/fimmu.2020.565243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Immunoglobulin E (IgE) is pivotal for manifestation and persistence of most immediate-type allergies and some asthma phenotypes. Consequently, IgE represents a crucial target for both, diagnostic purposes as well as therapeutic approaches. In fact, allergen-specific immunotherapy – aiming to re-route an IgE-based inflammatory response into an innocuous immune reaction against the allergen – is the only curative approach for IgE-mediated allergic diseases known so far. However, this requires the cognate allergen to be known. Unfortunately, even in well-characterized allergics or asthmatics, often just a small fraction of total IgE can be assigned to specific target allergens. To overcome this knowledge gap, we have devised an analytical platform for unbiased IgE target epitope detection. The system relies on chemically produced random peptide libraries immobilized on polystyrene beads (“one-bead-one-compound (OBOC) libraries”) capable to present millions of different peptide motifs simultaneously to immunoglobulins from biological samples. Beads binding IgE are highlighted with a fluorophore-labeled anti-IgE antibody allowing fluorescence-based detection and isolation of positives, which then can be characterized by peptide sequencing. Setting-up this platform required an elaborate optimization process including proper choice of background suppressants, secondary antibody and fluorophore label as well as incubation conditions. For optimal performance our procedure involves a sophisticated pre-adsorption step to eliminate beads that react nonspecifically with anti-IgE secondary antibodies. This step turned out to be important for minimizing detection of “false positive” motifs that otherwise would erroneously be classified as IgE epitopes. In validation studies we were able to retrieve artificial test-peptide beads spiked into our library by using IgE directed against those test-peptides at physiological concentrations (≤20 IU/ml of specific IgE), and disease-relevant bead-bound epitopes of the major peanut allergen Ara h 2 by screening with sera from peanut allergics. Thus, we established a platform with which one can find and validate new immunoglobulin targets using patient material which displays a largely unknown immunoglobulin repertoire.
Collapse
Affiliation(s)
- Thorsten Krause
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Niels Röckendorf
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Barbara Meckelein
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Heike Sinnecker
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Christian Schwager
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Clinical Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Stefanie Möckel
- Flow Cytometry Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Uta Jappe
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Clinical Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|