1
|
Ördög B, De Coster T, Dekker SO, Bart CI, Zhang J, Boink GJJ, Bax WH, Deng S, den Ouden BL, de Vries AAF, Pijnappels DA. Opto-electronic feedback control of membrane potential for real-time control of action potentials. CELL REPORTS METHODS 2023; 3:100671. [PMID: 38086387 PMCID: PMC10753386 DOI: 10.1016/j.crmeth.2023.100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/09/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023]
Abstract
To unlock new research possibilities by acquiring control of action potential (AP) morphologies in excitable cells, we developed an opto-electronic feedback loop-based system integrating cellular electrophysiology, real-time computing, and optogenetic approaches and applied it to monolayers of heart muscle cells. This allowed accurate restoration and preservation of cardiac AP morphologies in the presence of electrical perturbations of different origin in an unsupervised, self-regulatory manner, without any prior knowledge of the disturbance. Moreover, arbitrary AP waveforms could be enforced onto these cells. Collectively, these results set the stage for the refinement and application of opto-electronic control systems to enable in-depth investigation into the regulatory role of membrane potential in health and disease.
Collapse
Affiliation(s)
- Balázs Ördög
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Tim De Coster
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Sven O Dekker
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Cindy I Bart
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Juan Zhang
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Gerard J J Boink
- Amsterdam Cardiovascular Sciences, Department of Cardiology, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Medical Biology, Amsterdam UMC, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Wilhelmina H Bax
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Shanliang Deng
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Microelectronics, Delft University of Technology, 2628 CD Delft, the Netherlands
| | - Bram L den Ouden
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Microelectronics, Delft University of Technology, 2628 CD Delft, the Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
2
|
Leemann S, Schneider-Warme F, Kleinlogel S. Cardiac optogenetics: shining light on signaling pathways. Pflugers Arch 2023; 475:1421-1437. [PMID: 38097805 PMCID: PMC10730638 DOI: 10.1007/s00424-023-02892-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
In the early 2000s, the field of neuroscience experienced a groundbreaking transformation with the advent of optogenetics. This innovative technique harnesses the properties of naturally occurring and genetically engineered rhodopsins to confer light sensitivity upon target cells. The remarkable spatiotemporal precision offered by optogenetics has provided researchers with unprecedented opportunities to dissect cellular physiology, leading to an entirely new level of investigation. Initially revolutionizing neuroscience, optogenetics quickly piqued the interest of the wider scientific community, and optogenetic applications were expanded to cardiovascular research. Over the past decade, researchers have employed various optical tools to observe, regulate, and steer the membrane potential of excitable cells in the heart. Despite these advancements, achieving control over specific signaling pathways within the heart has remained an elusive goal. Here, we review the optogenetic tools suitable to control cardiac signaling pathways with a focus on GPCR signaling, and delineate potential applications for studying these pathways, both in healthy and diseased hearts. By shedding light on these exciting developments, we hope to contribute to the ongoing progress in basic cardiac research to facilitate the discovery of novel therapeutic possibilities for treating cardiovascular pathologies.
Collapse
Affiliation(s)
- Siri Leemann
- Institute of Physiology, University of Bern, Bern, Switzerland.
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Medical Faculty, University of Freiburg, Freiburg, Germany.
| | - Franziska Schneider-Warme
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Sonja Kleinlogel
- Institute of Physiology, University of Bern, Bern, Switzerland
- F. Hoffmann-La Roche, Translational Medicine Neuroscience, Basel, Switzerland
| |
Collapse
|
3
|
Bergs ACF, Liewald JF, Rodriguez-Rozada S, Liu Q, Wirt C, Bessel A, Zeitzschel N, Durmaz H, Nozownik A, Dill H, Jospin M, Vierock J, Bargmann CI, Hegemann P, Wiegert JS, Gottschalk A. All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nat Commun 2023; 14:1939. [PMID: 37024493 PMCID: PMC10079764 DOI: 10.1038/s41467-023-37622-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Excitable cells can be stimulated or inhibited by optogenetics. Since optogenetic actuation regimes are often static, neurons and circuits can quickly adapt, allowing perturbation, but not true control. Hence, we established an optogenetic voltage-clamp (OVC). The voltage-indicator QuasAr2 provides information for fast, closed-loop optical feedback to the bidirectional optogenetic actuator BiPOLES. Voltage-dependent fluorescence is held within tight margins, thus clamping the cell to distinct potentials. We established the OVC in muscles and neurons of Caenorhabditis elegans, and transferred it to rat hippocampal neurons in slice culture. Fluorescence signals were calibrated to electrically measured potentials, and wavelengths to currents, enabling to determine optical I/V-relationships. The OVC reports on homeostatically altered cellular physiology in mutants and on Ca2+-channel properties, and can dynamically clamp spiking in C. elegans. Combining non-invasive imaging with control capabilities of electrophysiology, the OVC facilitates high-throughput, contact-less electrophysiology in individual cells and paves the way for true optogenetic control in behaving animals.
Collapse
Affiliation(s)
- Amelie C F Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Jana F Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Silvia Rodriguez-Rozada
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Qiang Liu
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY, 10065, USA
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Christin Wirt
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Artur Bessel
- Independent Researcher, Melatener Strasse 93, 52074, Aachen, Germany
| | - Nadja Zeitzschel
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Hilal Durmaz
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Adrianna Nozownik
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Holger Dill
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Maëlle Jospin
- Université Claude Bernard Lyon 1, Institut NeuroMyoGène, 8 Avenue Rockefeller, 69008, Lyon, France
| | - Johannes Vierock
- Institute for Biology, Experimental Biophysics, Humboldt University, 10115, Berlin, Germany
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY, 10065, USA
- Chan Zuckerberg Initiative, Palo Alto, CA, USA
| | - Peter Hegemann
- Institute for Biology, Experimental Biophysics, Humboldt University, 10115, Berlin, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Strasse 13-17, 68167, Mannheim, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438, Frankfurt, Germany.
- Institute of Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany.
| |
Collapse
|
4
|
Uzelac I, Crowley CJ, Iravanian S, Kim TY, Cho HC, Fenton FH. Methodology for Cross-Talk Elimination in Simultaneous Voltage and Calcium Optical Mapping Measurements With Semasbestic Wavelengths. Front Physiol 2022; 13:812968. [PMID: 35222080 PMCID: PMC8874316 DOI: 10.3389/fphys.2022.812968] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Most cardiac arrhythmias at the whole heart level result from alteration of cell membrane ionic channels and intracellular calcium concentration ([Ca2+] i ) cycling with emerging spatiotemporal behavior through tissue-level coupling. For example, dynamically induced spatial dispersion of action potential duration, QT prolongation, and alternans are clinical markers for arrhythmia susceptibility in regular and heart-failure patients that originate due to changes of the transmembrane voltage (V m) and [Ca2+] i . We present an optical-mapping methodology that permits simultaneous measurements of the V m - [Ca2+] i signals using a single-camera without cross-talk, allowing quantitative characterization of favorable/adverse cell and tissue dynamical effects occurring from remodeling and/or drugs in heart failure. We demonstrate theoretically and experimentally in six different species the existence of a family of excitation wavelengths, we termed semasbestic, that give no change in signal for one dye, and thus can be used to record signals from another dye, guaranteeing zero cross-talk.
Collapse
Affiliation(s)
- Ilija Uzelac
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| | | | - Shahriar Iravanian
- Division of Cardiology, Section of Electrophysiology, Emory University Hospital, Atlanta, GA, United States
| | - Tae Yun Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Hee Cheol Cho
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA, United States
- The Sibley Heart Center, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Flavio H. Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
5
|
Gruber A, Edri O, Glatstein S, Goldfracht I, Huber I, Arbel G, Gepstein A, Chorna S, Gepstein L. Optogenetic Control of Human Induced Pluripotent Stem Cell-Derived Cardiac Tissue Models. J Am Heart Assoc 2022; 11:e021615. [PMID: 35112880 PMCID: PMC9245811 DOI: 10.1161/jaha.121.021615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Optogenetics, using light‐sensitive proteins, emerged as a unique experimental paradigm to modulate cardiac excitability. We aimed to develop high‐resolution optogenetic approaches to modulate electrical activity in 2‐ and 3‐dimensional cardiac tissue models derived from human induced pluripotent stem cell (hiPSC)‐derived cardiomyocytes. Methods and Results To establish light‐controllable cardiac tissue models, opsin‐carrying HEK293 cells, expressing the light‐sensitive cationic‐channel CoChR, were mixed with hiPSC‐cardiomyocytes to generate 2‐dimensional hiPSC‐derived cardiac cell‐sheets or 3‐dimensional engineered heart tissues. Complex illumination patterns were designed with a high‐resolution digital micro‐mirror device. Optical mapping and force measurements were used to evaluate the tissues' electromechanical properties. The ability to optogenetically pace and shape the tissue's conduction properties was demonstrated by using single or multiple illumination stimulation sites, complex illumination patterns, or diffuse illumination. This allowed to establish in vitro models for optogenetic‐based cardiac resynchronization therapy, where the electrical activation could be synchronized (hiPSC‐derived cardiac cell‐sheets and engineered heart tissue models) and contractile properties improved (engineered heart tissues). Next, reentrant activity (rotors) was induced in the hiPSC‐derived cardiac cell‐sheets and engineered heart tissue models through optogenetics programmed‐ or cross‐field stimulations. Diffuse illumination protocols were then used to terminate arrhythmias, demonstrating the potential to study optogenetics cardioversion mechanisms and to identify optimal illumination parameters for arrhythmia termination. Conclusions By combining optogenetics and hiPSC technologies, light‐controllable human cardiac tissue models could be established, in which tissue excitability can be modulated in a functional, reversible, and localized manner. This approach may bring a unique value for physiological/pathophysiological studies, for disease modeling, and for developing optogenetic‐based cardiac pacing, resynchronization, and defibrillation approaches.
Collapse
Affiliation(s)
- Amit Gruber
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Oded Edri
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Shany Glatstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Idit Goldfracht
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Irit Huber
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Gil Arbel
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Amira Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Snizhanna Chorna
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
| | - Lior Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative MedicineThe Rappaport Faculty of Medicine and Research InstituteTechnion‒Israel Institute of TechnologyHaifaIsrael
- Cardiology DepartmentRambam Health Care CampusHaifaIsrael
| |
Collapse
|
6
|
Potekhina ES, Bass DY, Kelmanson IV, Fetisova ES, Ivanenko AV, Belousov VV, Bilan DS. Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. Int J Mol Sci 2020; 22:E148. [PMID: 33375682 PMCID: PMC7794770 DOI: 10.3390/ijms22010148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Genetically-encoded fluorescent sensors have been actively developed over the last few decades and used in live imaging and drug screening. Real-time monitoring of drug action in a specific cellular compartment, organ, or tissue type; the ability to screen at the single-cell resolution; and the elimination of false-positive results caused by low drug bioavailability that is not detected by in vitro testing methods are a few of the obvious benefits of using genetically-encoded fluorescent sensors in drug screening. In combination with high-throughput screening (HTS), some genetically-encoded fluorescent sensors may provide high reproducibility and robustness to assays. We provide a brief overview of successful, perspective, and hopeful attempts at using genetically encoded fluorescent sensors in HTS of modulators of ion channels, Ca2+ homeostasis, GPCR activity, and for screening cytotoxic, anticancer, and anti-parasitic compounds. We discuss the advantages of sensors in whole organism drug screening models and the perspectives of the combination of human disease modeling by CRISPR techniques with genetically encoded fluorescent sensors for drug screening.
Collapse
Affiliation(s)
- Ekaterina S. Potekhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dina Y. Bass
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Elena S. Fetisova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
| | - Alexander V. Ivanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency, 117997 Moscow, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (D.Y.B.); (I.V.K.); (E.S.F.); (A.V.I.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
7
|
Abstract
The electromechanical function of the heart involves complex, coordinated activity over time and space. Life-threatening cardiac arrhythmias arise from asynchrony in these space-time events; therefore, therapies for prevention and treatment require fundamental understanding and the ability to visualize, perturb and control cardiac activity. Optogenetics combines optical and molecular biology (genetic) approaches for light-enabled sensing and actuation of electrical activity with unprecedented spatiotemporal resolution and parallelism. The year 2020 marks a decade of developments in cardiac optogenetics since this technology was adopted from neuroscience and applied to the heart. In this Review, we appraise a decade of advances that define near-term (immediate) translation based on all-optical electrophysiology, including high-throughput screening, cardiotoxicity testing and personalized medicine assays, and long-term (aspirational) prospects for clinical translation of cardiac optogenetics, including new optical therapies for rhythm control. The main translational opportunities and challenges for optogenetics to be fully embraced in cardiology are also discussed.
Collapse
|
8
|
Acker CD, Yan P, Loew LM. Recent progress in optical voltage-sensor technology and applications to cardiac research: from single cells to whole hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 154:3-10. [PMID: 31474387 PMCID: PMC7048644 DOI: 10.1016/j.pbiomolbio.2019.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/25/2022]
Abstract
The first workshop on Novel Optics-based approaches for Cardiac Electrophysiology (NOtiCE) was held in Florence Italy in 2018. Here, we learned how optical approaches have shaped our basic understanding of cardiac electrophysiology and how new technologies and approaches are being developed and validated to advance the field. Several technologies are being developed that may one day allow for new clinical approaches for diagnosing cardiac disorders and possibly intervening to treat human patients. In this review, we discuss several technologies and approaches to optical voltage imaging with voltage-sensitive dyes. We highlight the development and application of fluorinated and long wavelength voltage-sensitive dyes. These optical voltage sensors have now been applied and well validated in several different assays from cultured human stem cell-derived cardiomyocytes to whole hearts in-vivo. Imaging concepts such as dual wavelength ratiometric techniques, which are crucial to maximizing the information from optical sensors by increasing the useful signal and eliminating noise and artifacts, are presented. Finally, novel voltage sensors including photoacoustic voltage-sensitive dyes, their current capabilities and potential advantages, are introduced.
Collapse
Affiliation(s)
- Corey D Acker
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA.
| | - Ping Yan
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| | - Leslie M Loew
- R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, 400 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
9
|
Abstract
Membrane potential is a fundamental biophysical property maintained by every cell on earth. In specialized cells like neurons, rapid changes in membrane potential drive the release of chemical neurotransmitters. Coordinated, rapid changes in neuronal membrane potential across large numbers of interconnected neurons form the basis for all of human cognition, sensory perception, and memory. Despite the importance of this highly orchestrated and distributed activity, the traditional method for recording membrane potential is through the use of highly invasive single-cell electrodes that offer only a small glimpse of the total activity within a system. Fluorescent dyes that change their optical properties in response to changes in biological voltage have the potential to provide a powerful complement to traditional electrode-based methods of inquiry. Voltage-sensitive fluorescent indicators would allow the direct observation of membrane potential changes, significantly expanding our ability to monitor membrane potential dynamics in living systems. Toward this end, we have initiated a program to design, synthesize, and apply voltage-sensitive fluorophores that report on membrane potential dynamics with high sensitivity and speed. The basis for this optical voltage sensing is membrane potential-dependent photoinduced electron transfer (PeT). Voltage-sensitive fluorophores, or VoltageFluors, possess a fluorophore, a conjugated molecular wire, and an aniline donor. At resting potentials, in which the cell has a hyperpolarized or negative potential relative to the outside of the cell, PeT from the aniline donor is enhanced and fluorescence is diminished. At depolarized potentials, the membrane potential decreases the rate of PeT, allowing an increase in fluorescence. We show that a number of different fluorophores, molecular wires, and aniline donors can be employed to generate fast and sensitive VoltageFluor dyes. Multiple lines of evidence point to a PeT-based mechanism for voltage sensing, delivering fast response kinetics (∼25 ns), good sensitivity (>60% ΔF/F), compatibility with two-photon illumination, excellent signal-to-noise, and the ability to detect neuronal and cardiac action potentials in single trials. In this Account, we provide an overview of the challenges facing the design of fluorescent voltage indicators. We trace the development of molecular wire-based fluorescent voltage indicators within our group, beginning from fluorescein-based VoltageFluor to long-wavelength indicators that use modern fluorophores like silicon rhodamine and carbofluorescein. We examine design principles for PeT-based voltage indicators, showcase the use of our recent indicators for two-photon voltage imaging in intact brains, and explore the development of hybrid indicators that can localize to genetically defined cells. Finally, we highlight outstanding challenges to and opportunities for voltage imaging.
Collapse
Affiliation(s)
- Pei Liu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Lee SN, Choi JH, Cho HY, Choi JW. Metallic Nanoparticle-Based Optical Cell Chip for Nondestructive Monitoring of Intra/Extracellular Signals. Pharmaceutics 2020; 12:pharmaceutics12010050. [PMID: 31936079 PMCID: PMC7022866 DOI: 10.3390/pharmaceutics12010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
The biosensing platform is noteworthy for high sensitivity and precise detection of target analytes, which are related to the status of cells or specific diseases. The modification of the transducers with metallic nanoparticles (MNPs) has attracted attention owing to excellent features such as improved sensitivity and selectivity. Moreover, the incorporation of MNPs into biosensing systems may increase the speed and the capability of the biosensors. In this review, we introduce the current progress of the developed cell-based biosensors, cell chip, based on the unique physiochemical features of MNPs. Mainly, we focus on optical intra/extracellular biosensing methods, including fluorescence, localized surface plasmon resonance (LSPR), and surface-enhanced Raman spectroscopy (SERS) based on the coupling of MNPs. We believe that the topics discussed here are useful and able to provide a guideline in the development of new MNP-based cell chip platforms for pharmaceutical applications such as drug screening and toxicological tests in the near future.
Collapse
Affiliation(s)
- Sang-Nam Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea; (S.-N.L.); (J.-H.C.)
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jin-Ha Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea; (S.-N.L.); (J.-H.C.)
| | - Hyeon-Yeol Cho
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea; (S.-N.L.); (J.-H.C.)
- Correspondence: (H.-Y.C.); (J.-W.C.); Tel.: +82-2-705-8480 (J.-W.C.)
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea; (S.-N.L.); (J.-H.C.)
- Correspondence: (H.-Y.C.); (J.-W.C.); Tel.: +82-2-705-8480 (J.-W.C.)
| |
Collapse
|
11
|
Agus V, Janovjak H. All-Optical Miniaturized Co-culture Assay of Voltage-Gated Ca 2+ Channels. Methods Mol Biol 2020; 2173:247-260. [PMID: 32651923 DOI: 10.1007/978-1-0716-0755-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-activated proteins enable the reversible and spatiotemporal control of cellular events in optogenetics. Optogenetics is also rapidly expanding into the field of drug discovery where it provides cost-effective and noninvasive approaches for cell manipulation in high-throughput screens. Here, we present a prototypical cell-based assay that applies Channelrhodopsin2 (ChR2) to recapitulate physiological membrane potential changes and test for voltage-gated ion channel (VGIC) blockade. ChR2 and the voltage-gated Ca2+ channel 1.2 (CaV1.2) are expressed in individual HEK293 cell lines that are then co-cultured for formation of gap junctions and an electrical syncytium. This co-culture allows identification of blockers using parallel fluorescence plate readers in the 384-well plate format in an all-optical mode of operation. The assay is transferable to other VGICs by modularly combining new and existing cell lines and potentially also to other drug targets.
Collapse
Affiliation(s)
- Viviana Agus
- Department of Cell Biology, AXXAM S.p.A, Milan, Italy.
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
O’Shea C, Holmes AP, Winter J, Correia J, Ou X, Dong R, He S, Kirchhof P, Fabritz L, Rajpoot K, Pavlovic D. Cardiac Optogenetics and Optical Mapping - Overcoming Spectral Congestion in All-Optical Cardiac Electrophysiology. Front Physiol 2019; 10:182. [PMID: 30899227 PMCID: PMC6416196 DOI: 10.3389/fphys.2019.00182] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Optogenetic control of the heart is an emergent technology that offers unparalleled spatio-temporal control of cardiac dynamics via light-sensitive ion pumps and channels (opsins). This fast-evolving technique holds broad scope in both clinical and basic research setting. Combination of optogenetics with optical mapping of voltage or calcium fluorescent probes facilitates 'all-optical' electrophysiology, allowing precise optogenetic actuation of cardiac tissue with high spatio-temporal resolution imaging of action potential and calcium transient morphology and conduction patterns. In this review, we provide a synopsis of optogenetics and discuss in detail its use and compatibility with optical interrogation of cardiac electrophysiology. We briefly discuss the benefits of all-optical cardiac control and electrophysiological interrogation compared to traditional techniques, and describe mechanisms, unique features and limitations of optically induced cardiac control. In particular, we focus on state-of-the-art setup design, challenges in light delivery and filtering, and compatibility of opsins with fluorescent reporters used in optical mapping. The interaction of cardiac tissue with light, and physical and computational approaches to overcome the 'spectral congestion' that arises from the combination of optogenetics and optical mapping are discussed. Finally, we summarize recent preclinical work applications of combined cardiac optogenetics and optical mapping approach.
Collapse
Affiliation(s)
- Christopher O’Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
- EPSRC Centre for Doctoral Training in Physical Sciences for Health, School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P. Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James Winter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joao Correia
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Ruirui Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Shicheng He
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, UHB NHS Trust, Birmingham, United Kingdom
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, UHB NHS Trust, Birmingham, United Kingdom
| | - Kashif Rajpoot
- School of Computer Science, University of Birmingham, Birmingham, United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Broyles CN, Robinson P, Daniels MJ. Fluorescent, Bioluminescent, and Optogenetic Approaches to Study Excitable Physiology in the Single Cardiomyocyte. Cells 2018; 7:cells7060051. [PMID: 29857560 PMCID: PMC6028913 DOI: 10.3390/cells7060051] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
This review briefly summarizes the single cell application of classical chemical dyes used to visualize cardiomyocyte physiology and their undesirable toxicities which have the potential to confound experimental observations. We will discuss, in detail, the more recent iterative development of fluorescent and bioluminescent protein-based indicators and their emerging application to cardiomyocytes. We will discuss the integration of optical control strategies (optogenetics) to augment the standard imaging approach. This will be done in the context of potential applications, and barriers, of these technologies to disease modelling, drug toxicity, and drug discovery efforts at the single-cell scale.
Collapse
Affiliation(s)
- Connor N Broyles
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.
- BHF Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK.
| | - Paul Robinson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.
- BHF Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK.
| | - Matthew J Daniels
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.
- BHF Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK.
- Department of Cardiology, Oxford University NHS Hospitals Trust, Oxford OX3 9DU, UK.
- BHF Centre of Regenerative Medicine, University of Oxford, Oxford OX3 9DU, UK.
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Mihogaoka 8-1, Ibaraki, 567-0047 Osaka, Japan.
| |
Collapse
|