1
|
Sunvittayakul P, Wonnapinij P, Wannitikul P, Phanthanong P, Changwitchukarn K, Suttangkakul A, Utthiya S, Phraemuang A, Kongsil P, Prommarit K, Ceballos H, Gomez LD, Kittipadakul P, Vuttipongchaikij S. Genome-wide association studies unveils the genetic basis of cell wall composition and saccharification of cassava pulp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109312. [PMID: 39579720 DOI: 10.1016/j.plaphy.2024.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Cassava (Manihot esculenta Crantz) is a key crop for starch and biofuels production. This study focuses on the polysaccharide composition and saccharification efficiency in cassava pulp through genome-wide association studies (GWAS), targeting the improvement of root characteristics for industrial use. We analyzed 135 partially inbred lines population, performing monosaccharide composition and saccharification analyses to reveal substantial variability in storage root biomass. Among 33 traits examined, 128 significant SNPs were associated with 23 biomass traits, highlighting a complex genetic architecture. Saccharification potential varied from 39 to 95 nmol Glu mg-1 h-1, with high broad-sense heritability for saccharification and several monosaccharide traits, indicating a strong genetic control. Our findings revealed that cassava pulp comprises similar proportions of pectin, hemicellulose, and cellulose in all genotypes. Correlation analysis showed significant associations between cellulose content and saccharification, suggesting that enhancing these traits can improve bioconversion efficiency. Negative correlations with glucose and glucuronic acid in hemicellulose and pectin fractions imply these components may inhibit saccharification. We identified 118 candidate genes associated with 21 traits, with many involved in stress responses affecting cell wall composition. This study verified 12 key candidate genes through sequence and expression analysis, including MANES_07G081200, a YTH domain-containing protein associated with saccharification. Several stress-response genes, such as MANES_04G118600 and MANES_09G174600, were linked to monosaccharide traits, suggesting that adaptive stress pathways influence biomass characteristics. This study provides insights into the genetic determinants of cassava pulp's saccharification and polysaccharide composition, aiding breeding efforts to develop cassava varieties optimized for industrial applications.
Collapse
Affiliation(s)
- Pongsakorn Sunvittayakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Pitchaporn Wannitikul
- Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Phongnapha Phanthanong
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kanokpoo Changwitchukarn
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supanut Utthiya
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Apimon Phraemuang
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Pasajee Kongsil
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies of Agriculture and Food (CASAF), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Kamonchat Prommarit
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Hernan Ceballos
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Leonardo D Gomez
- Centre of Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| | - Piya Kittipadakul
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies of Agriculture and Food (CASAF), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand; Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
da Costa WG, Bandeira e Souza M, Azevedo CF, Nascimento M, Morgante CV, Borel JC, de Oliveira EJ. Optimizing drought tolerance in cassava through genomic selection. FRONTIERS IN PLANT SCIENCE 2024; 15:1483340. [PMID: 39737377 PMCID: PMC11683140 DOI: 10.3389/fpls.2024.1483340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025]
Abstract
The complexity of selecting for drought tolerance in cassava, influenced by multiple factors, demands innovative approaches to plant selection. This study aimed to identify cassava clones with tolerance to water stress by employing truncated selection and selection based on genomic values for population improvement and genotype evaluation per se. The Best Linear Unbiased Predictions (BLUPs), Genomic Estimated Breeding Values (GEBVs), and Genomic Estimated Genotypic Values (GETGVs) were obtained based on different prediction models via genomic selection. The selection intensity ranged from 10 to 30%. A wide range of BLUPs for agronomic traits indicate desirable genetic variability for initiating genomic selection cycles to improve cassava's drought tolerance. SNP-based heritability (h 2) and broad-sense heritabilities (H 2) under water deficit were low magnitude (<0.40) for 8 to 12 agronomic traits evaluated. Genomic predictive abilities were below the levels of phenotypic heritability, varying by trait and prediction model, with the lowest and highest predictive abilities observed for starch content (0.15 - 0.22) and root length (0.34 - 0.36). Some agronomic traits of greater importance, such as fresh root yield (0.29 - 0.31) and shoot yield (0.31 - 0.32), showed good predictive ability, while dry matter content had lower predictive ability (0.16 - 0.22). The G-BLUP and RKHS methods presented higher predictive abilities, suggesting that incorporating kinship effects can be beneficial, especially in challenging environments. The selection differential based on a 15% selection intensity (62 genotypes) was higher for economically significant traits, such as starch content, shoot yield, and fresh root yield, both for population improvement (GEBVs) and for evaluating genotype's performance per (GETGVs). The lower costs of genotyping offer advantages over conventional phenotyping, making genomic selection a promising approach to increasing genetic gains for drought tolerance in cassava and reducing the breeding cycle to at least half the conventional time.
Collapse
Affiliation(s)
- Weverton Gomes da Costa
- Laboratório de Inteligência Computacional e Aprendizado Estatístico - LICAE, Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Camila Ferreira Azevedo
- Laboratório de Inteligência Computacional e Aprendizado Estatístico - LICAE, Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Moyses Nascimento
- Laboratório de Inteligência Computacional e Aprendizado Estatístico - LICAE, Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
3
|
Ospina JA, Lopez-Alvarez D, Gimode W, Wenzl P, Carvajal-Yepes M. Genome-wide association study of cassava brown streak disease resistance in cassava germplasm conserved in South America. Sci Rep 2024; 14:23141. [PMID: 39367150 PMCID: PMC11452518 DOI: 10.1038/s41598-024-74161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Cassava (Manihot esculenta Crantz) is a vital carbohydrate source for over 800 million people globally, yet its production in East Africa is severely affected by cassava brown streak disease (CBSD). Genebanks, through ex-situ conservation, play a pivotal role in preserving crop diversity, providing crucial resources for breeding resilient and disease-resistant crops. This study genotyped 234 South American cassava accessions conserved at the CIAT genebank, previously phenotyped for CBSD resistance by an independent group, to perform a genome-wide association analysis (GWAS) to identify genetic variants associated with CBSD resistance. Our GWAS identified 35 single nucleotide polymorphism (SNP) markers distributed across various chromosomes, associated with disease severity or the presence/absence of viral infection. Markers were annotated within or near genes previously identified with functions related to pathogen recognition and immune response activation. Using the SNP candidates, we screened the world's largest cassava collection for accessions with a higher frequency of favorable genotypes, proposing 35 accessions with potential resistance to CBSD. Our results provide insights into the genetics of CBSD resistance and highlight the importance of genetic resources to equip breeders with the raw materials needed to develop new crop varieties resistant to pests and diseases.
Collapse
Affiliation(s)
- Jessica A Ospina
- International Center for Tropical Agriculture, CIAT, Palmira, 6713, Colombia
- Universidad Nacional de Colombia, Palmira, Colombia
| | | | - Winnie Gimode
- International Center for Tropical Agriculture, CIAT, Palmira, 6713, Colombia
| | - Peter Wenzl
- International Center for Tropical Agriculture, CIAT, Palmira, 6713, Colombia
| | | |
Collapse
|
4
|
Nandudu L, Strock C, Ogbonna A, Kawuki R, Jannink JL. Genetic analysis of cassava brown streak disease root necrosis using image analysis and genome-wide association studies. FRONTIERS IN PLANT SCIENCE 2024; 15:1360729. [PMID: 38562560 PMCID: PMC10982329 DOI: 10.3389/fpls.2024.1360729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/07/2024] [Indexed: 04/04/2024]
Abstract
Cassava brown streak disease (CBSD) poses a substantial threat to food security. To address this challenge, we used PlantCV to extract CBSD root necrosis image traits from 320 clones, with an aim of identifying genomic regions through genome-wide association studies (GWAS) and candidate genes. Results revealed strong correlations among certain root necrosis image traits, such as necrotic area fraction and necrotic width fraction, as well as between the convex hull area of root necrosis and the percentage of necrosis. Low correlations were observed between CBSD scores obtained from the 1-5 scoring method and all root necrosis traits. Broad-sense heritability estimates of root necrosis image traits ranged from low to moderate, with the highest estimate of 0.42 observed for the percentage of necrosis, while narrow-sense heritability consistently remained low, ranging from 0.03 to 0.22. Leveraging data from 30,750 SNPs obtained through DArT genotyping, eight SNPs on chromosomes 1, 7, and 11 were identified and associated with both the ellipse eccentricity of root necrosis and the percentage of necrosis through GWAS. Candidate gene analysis in the 172.2kb region on the chromosome 1 revealed 24 potential genes with diverse functions, including ubiquitin-protein ligase, DNA-binding transcription factors, and RNA metabolism protein, among others. Despite our initial expectation that image analysis objectivity would yield better heritability estimates and stronger genomic associations than the 1-5 scoring method, the results were unexpectedly lower. Further research is needed to comprehensively understand the genetic basis of these traits and their relevance to cassava breeding and disease management.
Collapse
Affiliation(s)
- Leah Nandudu
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
- Root Crops Department, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Christopher Strock
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Alex Ogbonna
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Robert Kawuki
- Root Crops Department, National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Jean-Luc Jannink
- School of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
- US Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, NY, United States
| |
Collapse
|
5
|
Baguma JK, Mukasa SB, Nuwamanya E, Alicai T, Omongo CA, Ochwo-Ssemakula M, Ozimati A, Esuma W, Kanaabi M, Wembabazi E, Baguma Y, Kawuki RS. Identification of Genomic Regions for Traits Associated with Flowering in Cassava ( Manihot esculenta Crantz). PLANTS (BASEL, SWITZERLAND) 2024; 13:796. [PMID: 38592820 PMCID: PMC10974989 DOI: 10.3390/plants13060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/11/2024]
Abstract
Flowering in cassava (Manihot esculenta Crantz) is crucial for the generation of botanical seed for breeding. However, genotypes preferred by most farmers are erect and poor at flowering or never flower. To elucidate the genetic basis of flowering, 293 diverse cassava accessions were evaluated for flowering-associated traits at two locations and seasons in Uganda. Genotyping using the Diversity Array Technology Pty Ltd. (DArTseq) platform identified 24,040 single-nucleotide polymorphisms (SNPs) distributed on the 18 cassava chromosomes. Population structure analysis using principal components (PCs) and kinships showed three clusters; the first five PCs accounted for 49.2% of the observed genetic variation. Linkage disequilibrium (LD) estimation averaged 0.32 at a distance of ~2850 kb (kilo base pairs). Polymorphism information content (PIC) and minor allele frequency (MAF) were 0.25 and 0.23, respectively. A genome-wide association study (GWAS) analysis uncovered 53 significant marker-trait associations (MTAs) with flowering-associated traits involving 27 loci. Two loci, SNPs S5_29309724 and S15_11747301, were associated with all the traits. Using five of the 27 SNPs with a Phenotype_Variance_Explained (PVE) ≥ 5%, 44 candidate genes were identified in the peak SNP sites located within 50 kb upstream or downstream, with most associated with branching traits. Eight of the genes, orthologous to Arabidopsis and other plant species, had known functional annotations related to flowering, e.g., eukaryotic translation initiation factor and myb family transcription factor. This study identified genomic regions associated with flowering-associated traits in cassava, and the identified SNPs can be useful in marker-assisted selection to overcome hybridization challenges, like unsynchronized flowering, and candidate gene validation.
Collapse
Affiliation(s)
- Julius K. Baguma
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Settumba B. Mukasa
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Titus Alicai
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Christopher Abu Omongo
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Mildred Ochwo-Ssemakula
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Alfred Ozimati
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- School of Biological Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Michael Kanaabi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Enoch Wembabazi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Yona Baguma
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Robert S. Kawuki
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| |
Collapse
|
6
|
Ntui VO, Tripathi JN, Kariuki SM, Tripathi L. Cassava molecular genetics and genomics for enhanced resistance to diseases and pests. MOLECULAR PLANT PATHOLOGY 2024; 25:e13402. [PMID: 37933591 PMCID: PMC10788594 DOI: 10.1111/mpp.13402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Cassava (Manihot esculenta) is one of the most important sources of dietary calories in the tropics, playing a central role in food and economic security for smallholder farmers. Cassava production is highly constrained by several pests and diseases, mostly cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). These diseases cause significant yield losses, affecting food security and the livelihoods of smallholder farmers. Developing resistant varieties is a good way of increasing cassava productivity. Although some levels of resistance have been developed for some of these diseases, there is observed breakdown in resistance for some diseases, such as CMD. A frequent re-evaluation of existing disease resistance traits is required to make sure they are still able to withstand the pressure associated with pest and pathogen evolution. Modern breeding approaches such as genomic-assisted selection in addition to biotechnology techniques like classical genetic engineering or genome editing can accelerate the development of pest- and disease-resistant cassava varieties. This article summarizes current developments and discusses the potential of using molecular genetics and genomics to produce cassava varieties resistant to diseases and pests.
Collapse
Affiliation(s)
| | | | | | - Leena Tripathi
- International Institute of Tropical AgricultureNairobiKenya
| |
Collapse
|
7
|
Ferguson ME, Eyles RP, Garcia-Oliveira AL, Kapinga F, Masumba EA, Amuge T, Bredeson JV, Rokhsar DS, Lyons JB, Shah T, Rounsley S, Mkamilo G. Candidate genes for field resistance to cassava brown streak disease revealed through the analysis of multiple data sources. FRONTIERS IN PLANT SCIENCE 2023; 14:1270963. [PMID: 38023930 PMCID: PMC10655247 DOI: 10.3389/fpls.2023.1270963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a food and industrial storage root crop with substantial potential to contribute to managing risk associated with climate change due to its inherent resilience and in providing a biodegradable option in manufacturing. In Africa, cassava production is challenged by two viral diseases, cassava brown streak disease (CBSD) and cassava mosaic disease. Here we detect quantitative trait loci (QTL) associated with CBSD in a biparental mapping population of a Tanzanian landrace, Nachinyaya and AR37-80, phenotyped in two locations over three years. The purpose was to use the information to ultimately facilitate either marker-assisted selection or adjust weightings in genomic selection to increase the efficiency of breeding. Results from this study were considered in relation to those from four other biparental populations, of similar genetic backgrounds, that were phenotyped and genotyped simultaneously. Further, we investigated the co-localization of QTL for CBSD resistance across populations and the genetic relationships of parents based on whole genome sequence information. Two QTL on chromosome 4 for resistance to CBSD foliar symptoms and one on each of chromosomes 11 and 18 for root necrosis were of interest. Of significance within the candidate genes underlying the QTL on chromosome 4 are Phenylalanine ammonia-lyase (PAL) and Cinnamoyl-CoA reductase (CCR) genes and three PEPR1-related kinases associated with the lignin pathway. In addition, a CCR gene was also underlying the root necrosis-resistant QTL on chromosome 11. Upregulation of key genes in the cassava lignification pathway from an earlier transcriptome study, including PAL and CCR, in a CBSD-resistant landrace compared to a susceptible landrace suggests a higher level of basal lignin deposition in the CBSD-resistant landrace. Earlier RNAscope® in situ hybridisation imaging experiments demonstrate that cassava brown streak virus (CBSV) is restricted to phloem vessels in CBSV-resistant varieties, and phloem unloading for replication in mesophyll cells is prevented. The results provide evidence for the involvement of the lignin pathway. In addition, five eukaryotic initiation factor (eIF) genes associated with plant virus resistance were found within the priority QTL regions.
Collapse
Affiliation(s)
- Morag E. Ferguson
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Rodney P. Eyles
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | | - Fortunus Kapinga
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Cassava Breeding, Naliendele Agricultural Research Institute, Mtwara, Tanzania
| | - Esther A. Masumba
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Cassava Breeding, Sugarcane Research Institute, Kibaha, Tanzania
| | - Teddy Amuge
- Cassava Breeding, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Cassava Breeding, National Crops Resources Research Institute (NaCRRI), Namulonge, Uganda
| | - Jessen V. Bredeson
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
| | - Daniel S. Rokhsar
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
| | - Jessica B. Lyons
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
| | - Trushar Shah
- Bioinformatics, International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | - Steve Rounsley
- Seeds & Traits R&D, Dow AgroSciences, Indianapolis, IN, United States
| | - Geoffrey Mkamilo
- Cassava Breeding, Naliendele Agricultural Research Institute, Mtwara, Tanzania
| |
Collapse
|
8
|
Nandudu L, Kawuki R, Ogbonna A, Kanaabi M, Jannink JL. Genetic dissection of cassava brown streak disease in a genomic selection population. FRONTIERS IN PLANT SCIENCE 2023; 13:1099409. [PMID: 36714759 PMCID: PMC9880483 DOI: 10.3389/fpls.2022.1099409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Introduction Cassava brown streak disease (CBSD) is a major threat to food security in East and central Africa. Breeding for resistance against CBSD is the most economical and sustainable way of addressing this challenge. Methods This study seeks to assess the (1) performance of CBSD incidence and severity; (2) identify genomic regions associated with CBSD traits and (3) candidate genes in the regions of interest, in the Cycle 2 population of the National Crops Resources Research Institute. Results A total of 302 diverse clones were screened, revealing that CBSD incidence across growing seasons was 44%. Severity scores for both foliar and root symptoms ranged from 1.28 to 1.99 and 1.75 to 2.28, respectively across seasons. Broad sense heritability ranged from low to high (0.15 - 0.96), while narrow sense heritability ranged from low to moderate (0.03 - 0.61). Five QTLs, explaining approximately 19% phenotypic variation were identified for CBSD severity at 3 months after planting on chromosomes 1, 13, and 18 in the univariate GWAS analysis. Multivariate GWAS analysis identified 17 QTLs that were consistent with the univariate analysis including additional QTLs on chromosome 6. Seventy-seven genes were identified in these regions with functions such as catalytic activity, ATP-dependent activity, binding, response to stimulus, translation regulator activity, transporter activity among others. Discussion These results suggest variation in virulence in the C2 population, largely due to genetics and annotated genes in these QTLs regions may play critical roles in virus initiation and replication, thus increasing susceptibility to CBSD.
Collapse
Affiliation(s)
- Leah Nandudu
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
- Root crops Department National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Robert Kawuki
- Root crops Department National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Alex Ogbonna
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
| | - Michael Kanaabi
- Root crops Department National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Jean-Luc Jannink
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
- US Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, NY, United States
| |
Collapse
|
9
|
Yin H, Yan Y, Hu W, Liu G, Zeng H, Wei Y, Shi H. Genome-wide association studies reveal genetic basis of ionomic variation in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1212-1223. [PMID: 36239073 DOI: 10.1111/tpj.16006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
As one of the most important food crops, cassava (Manihot esculenta) is the main dietary source of micronutrients for about 1 billion people. However, the ionomic variation in cassava and the underlying genetic mechanisms remain unclear so far. Herein, genome-wide association studies were performed to reveal the specific single nucleotide polymorphisms (SNPs) that affect the ionomic variation in cassava. We identified 164 SNPs with P-values lower than the threshold located in 88 loci associated with divergent ionomic variations. Among them, 13 SNPs are related to both calcium (Ca) and magnesium (Mg), and many loci for different ionomic traits seem to be clustered on specific chromosome regions. Moreover, we identified the peak SNPs in the promoter regions of Sc10g003170 (encoding methionyl-tRNA synthetase [MetRS]) and Sc18g015190 (encoding the transcriptional regulatory protein AlgP) for nitrogen (N) and phosphorus (P) accumulation, respectively. Notably, these two SNPs (chr10_32807962 and chr18_31343738) were directly correlated with the transcript levels of Sc10g003170 (MetRS) and Sc18g015190 (AlgP), which positively modulated N accumulation and P concentration in cassava, respectively. Taken together, this study provides important insight into the genetic basis of cassava natural ionomic variation, which will promote genetic breeding to improve nutrient use and accumulation of elements in cassava.
Collapse
Affiliation(s)
- Hongyan Yin
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
| | - Yu Yan
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101, Hainan Province, Haikou, Xueyuan Road 4, China
| | - Guoyin Liu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| |
Collapse
|
10
|
Esuma W, Eyoo O, Gwandu F, Mukasa S, Alicai T, Ozimati A, Nuwamanya E, Rabbi I, Kawuki R. Validation of KASP markers associated with cassava mosaic disease resistance, storage root dry matter and provitamin A carotenoid contents in Ugandan cassava germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:1017275. [PMID: 36507387 PMCID: PMC9727383 DOI: 10.3389/fpls.2022.1017275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The intrinsic high heterozygosity of cassava makes conventional breeding ineffective for rapid genetic improvement. However, recent advances in next generation sequencing technologies have enabled the use of high-density markers for genome-wide association studies, aimed at identifying single nucleotide polymorphisms (SNPs) linked to major traits such as cassava mosaic disease (CMD) resistance, dry matter content (DMC) and total carotenoids content (TCC). A number of these trait-linked SNPs have been converted to Kompetitive allele-specific polymerase chain reaction (KASP) markers for downstream application of marker assisted selection. METHODS We assayed 13 KASP markers to evaluate their effectiveness in selecting for CMD, DMC and TCC in 1,677 diverse cassava genotypes representing two independent breeding populations in Uganda. RESULTS Five KASP markers had significant co-segregation with phenotypes; CMD resistance (2), DMC (1) and TCC (2), with each marker accounting for at least 30% of the phenotypic variation. Markers located within the chromosomal regions for which strong marker-trait association loci have been characterised (chromosome 12 markers for CMD, chromosome 1 markers for DMC and TCC) had consistently superior ability to discriminate the respective phenotypes. DISCUSSION The results indicate varying discriminatory abilities of the KASP markers assayed and the need for their context-based use for MAS, with PSY2_572 particularly effective in selecting for high TCC. Availing the effective KASP markers on cost-effective genotyping platforms could facilitate practical implementation of marker-assisted cassava breeding for accelerated genetic gains for CMD, DMC and provitamin A carotenoids.
Collapse
Affiliation(s)
- Williams Esuma
- National Crops Resources Research Institute, Kampala, Uganda
| | - Oscar Eyoo
- National Crops Resources Research Institute, Kampala, Uganda
- College of Natural Sciences, Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, Kampala, Uganda
| | - Francisca Gwandu
- College of Natural Sciences, Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, Kampala, Uganda
| | - Settumba Mukasa
- College of Natural Sciences, Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, Kampala, Uganda
| | - Titus Alicai
- National Crops Resources Research Institute, Kampala, Uganda
| | - Alfred Ozimati
- National Crops Resources Research Institute, Kampala, Uganda
- College of Natural Sciences, Department of Plant Sciences, Microbiology and Biotechnology, Makerere University, Kampala, Uganda
| | | | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), Oyo, Nigeria
| | - Robert Kawuki
- National Crops Resources Research Institute, Kampala, Uganda
| |
Collapse
|
11
|
Ozimati AA, Esuma W, Manze F, Iragaba P, Kanaabi M, Ano CU, Egesi C, Kawuki RS. Utility of Ugandan genomic selection cassava breeding populations for prediction of cassava viral disease resistance and yield in West African clones. FRONTIERS IN PLANT SCIENCE 2022; 13:1018156. [PMID: 36507414 PMCID: PMC9728524 DOI: 10.3389/fpls.2022.1018156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a staple crop for ~800 million people in sub-Saharan Africa. Its production and productivity are being heavily affected by the two viral diseases: cassava brown streak disease (CBSD) and cassava mosaic disease (CMD), impacting greatly on edible root yield. CBSD is currently endemic to central, eastern and southern Africa, if not contained could spread to West Africa the largest cassava producer and consumer in the continent. Genomic selection (GS) has been implemented in Ugandan cassava breeding for accelerated development of virus resistant and high yielding clones. This study leveraged available GS training data in Uganda for pre-emptive CBSD breeding in W. Africa alongside CMD and fresh root yield (FRW). First, we tracked genetic gain through the current three cycles of GS in Uganda. The mean genomic estimated breeding values (GEBVs), indicated general progress from initial cycle zero (C0) to cycle one (C1) and cycle two (C2) for CBSD traits and yield except for CMD. Secondly, we used foliar data of both CBSD and CMD, as well as harvest root necrosis and yield data to perform cross-validation predictions. Cross-validation prediction accuracies of five GS models were tested for each of the three GS cycles and West African (WA) germplasm as a test set. In all cases, cross-validation prediction accuracies were low to moderate, ranging from -0.16 to 0.68 for CBSD traits, -0.27 to 0.57 for CMD and -0.22 to 0.41 for fresh root weight (FRW). Overall, the highest prediction accuracies were recorded in C0 for all traits tested across models and the best performing model in cross-validation was G-BLUP. Lastly, we tested the predictive ability of the Ugandan training sets to predict CBSD in W. African clones. In general, the Ugandan training sets had low prediction accuracies for all traits across models in West African germplasm, varying from -0.18 to 0.1. Based on the findings of this study, the cassava breeding program in Uganda has made progress through application of GS for most target traits, but the utility of the training population for pre-emptive breeding in WA is limiting. In this case, efforts should be devoted to sharing Ugandan germplasm that possess resistance with the W. African breeding programs for hybridization to fully enable deployment of genomic selection as a pre-emptive CBSD breeding strategy in W. Africa.
Collapse
Affiliation(s)
- Alfred A. Ozimati
- National Crops Resources Research Institute, Kampala, Uganda
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute, Kampala, Uganda
| | - Francis Manze
- National Crops Resources Research Institute, Kampala, Uganda
| | - Paula Iragaba
- National Crops Resources Research Institute, Kampala, Uganda
| | - Michael Kanaabi
- National Crops Resources Research Institute, Kampala, Uganda
| | - Chukwuka Ugochukwu Ano
- Plant Breeding and Genetics Section, College of Agricultare and Life Sciences, Cornell University, Ithaca NY, United States
| | - Chiedozie Egesi
- Plant Breeding and Genetics Section, College of Agricultare and Life Sciences, Cornell University, Ithaca NY, United States
- National Root Crops Research Institute, Umudike, Nigeria
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | |
Collapse
|
12
|
Ige AD, Olasanmi B, Bauchet GJ, Kayondo IS, Mbanjo EGN, Uwugiaren R, Motomura-Wages S, Norton J, Egesi C, Parkes EY, Kulakow P, Ceballos H, Dieng I, Rabbi IY. Validation of KASP-SNP markers in cassava germplasm for marker-assisted selection of increased carotenoid content and dry matter content. FRONTIERS IN PLANT SCIENCE 2022; 13:1016170. [PMID: 36311140 PMCID: PMC9597466 DOI: 10.3389/fpls.2022.1016170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Provitamin A biofortification and increased dry matter content are important breeding targets in cassava improvement programs worldwide. Biofortified varieties contribute to the alleviation of provitamin A deficiency, a leading cause of preventable blindness common among pre-school children and pregnant women in developing countries particularly Africa. Dry matter content is a major component of dry yield and thus underlies overall variety performance and acceptability by growers, processors, and consumers. Single nucleotide polymorphism (SNP) markers linked to these traits have recently been discovered through several genome-wide association studies but have not been deployed for routine marker-assisted selection (MAS). This is due to the lack of useful information on markers' performances in diverse genetic backgrounds. To overcome this bottleneck, technical and biological validation of the loci associated with increased carotenoid content and dry matter content were carried out using populations independent of the marker discovery population. In the present study, seven previously identified markers for these traits were converted to a robust set of uniplex allele-specific polymerase chain reaction (PCR) assays and validated in two independent pre-breeding and breeding populations. These assays were efficient in discriminating marker genotypic classes and had an average call rate greater than 98%. A high correlation was observed between the predicted and observed carotenoid content as inferred by root yellowness intensity in the breeding (r = 0.92) and pre-breeding (r = 0.95) populations. On the other hand, dry matter content-markers had moderately low predictive accuracy in both populations (r< 0.40) due to the more quantitative nature of the trait. This work confirmed the markers' effectiveness in multiple backgrounds, therefore, further strengthening their value in cassava biofortification to ensure nutritional security as well as dry matter content productivity. Our study provides a framework to guide future marker validation, thus leading to the more routine use of markers in MAS in cassava improvement programs.
Collapse
Affiliation(s)
- Adenike D. Ige
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
- Pan African University Life and Earth Sciences Institute (including Health and Agriculture), University of Ibadan, Ibadan, Nigeria
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Sciences, University of Ibadan, Ibadan, Nigeria
| | | | - Ismail S. Kayondo
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | | | - Ruth Uwugiaren
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
- Molecular Plant Sciences program, Washington State University, Pullman, WA, United States
| | - Sharon Motomura-Wages
- College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Hilo, HI, United States
| | - Joanna Norton
- College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Hilo, HI, United States
| | - Chiedozie Egesi
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
- Cornell University, Ithaca, NY, United States
| | - Elizabeth Y. Parkes
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Hernán Ceballos
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Ibnou Dieng
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Ismail Y. Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| |
Collapse
|
13
|
Bai Y, Wei Y, Yin H, Hu W, Cheng X, Guo J, Dong Y, Zheng L, Xie H, Zeng H, Reiter RJ, Shi H. PP2C1 fine-tunes melatonin biosynthesis and phytomelatonin receptor PMTR1 binding to melatonin in cassava. J Pineal Res 2022; 73:e12804. [PMID: 35488179 DOI: 10.1111/jpi.12804] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
Melatonin is an important molecule in both animals and plants, regulating circadian rhythms and stress responses. Therefore, the improvement of melatonin accumulation not only strengthens the function of melatonin but also improves stress resistance in crops. Although melatonin biosynthetic enzymes have been identified through reverse genetics previously, an investigation of melatonin level-related genes through forward genetics in plants has yet to be performed. In this study, a genome-wide association study using cassava natural population of 298 genetic resources identified melatonin accumulation 1 (MA1), which regulates the natural variation of melatonin levels in cassava. We found that MA1 encodes type 2C protein phosphatase 1 (PP2C1), which serves as a negative regulator of melatonin levels in cassava. MePP2C1 physically interacts with MeRAV1/2 and MeWRKY20 and dephosphorylates them at serine (S) 35 residue, S34 residue, and S176 residue, respectively, thereby hindering their transcriptional activation on downstream melatonin biosynthetic genes. Notably, MePP2C1 interacts with phytomelatonin receptor MePMTR1 and dephosphorylates it at S11 residue, repressing its binding to melatonin. In summary, this study demonstrates that MePP2C1 as MA1 plays dual roles in negatively regulating both melatonin accumulation and signaling, extending the understanding of the molecular mechanism underlying melatonin accumulation and signaling through forward genetics in plants.
Collapse
Affiliation(s)
- Yujing Bai
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Hongyan Yin
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan province, China
| | - Xiao Cheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Jingru Guo
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Yabin Dong
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Liyan Zheng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Haoqi Xie
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, Long School of Medicine, San Antonio, Texas, USA
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building National Key Laboratory Breeding Base), College of Tropical Crops, Hainan University, Haikou, Hainan province, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan province, China
| |
Collapse
|
14
|
Amelework AB, Bairu MW. Advances in Genetic Analysis and Breeding of Cassava ( Manihot esculenta Crantz): A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121617. [PMID: 35736768 PMCID: PMC9228751 DOI: 10.3390/plants11121617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 05/30/2023]
Abstract
Cassava (Manihot esculenta Crantz) is the sixth most important food crop and consumed by 800 million people worldwide. In Africa, cassava is the second most important food crop after maize and Africa is the worlds' largest producer. Though cassava is not one of the main commodity crops in South Africa, it is becoming a popular crop among farming communities in frost-free areas, due to its climate-resilient nature. This necessitated the establishment of a multi-disciplinary research program at the Agricultural Research Council of South Africa. The objective of this review is to highlight progress made in cassava breeding and genetic analysis. This review highlights the progress of cassava research worldwide and discusses research findings on yield, quality, and adaptability traits in cassava. It also discusses the limitations and the prospects of the cassava R&D program towards development of the cassava industry in South Africa.
Collapse
Affiliation(s)
- Assefa B. Amelework
- Agricultural Research Council, Vegetable and Ornamental Plants, Private Bag X293, Pretoria 0001, South Africa;
| | - Michael W. Bairu
- Agricultural Research Council, Vegetable and Ornamental Plants, Private Bag X293, Pretoria 0001, South Africa;
- Faculty of Natural & Agricultural Sciences, School of Agricultural Sciences, Food Security and Safety Focus Area, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
15
|
Lyons JB, Bredeson JV, Mansfeld BN, Bauchet GJ, Berry J, Boyher A, Mueller LA, Rokhsar DS, Bart RS. Current status and impending progress for cassava structural genomics. PLANT MOLECULAR BIOLOGY 2022; 109:177-191. [PMID: 33604743 PMCID: PMC9162999 DOI: 10.1007/s11103-020-01104-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 12/08/2020] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE We demystify recent advances in genome assemblies for the heterozygous staple crop cassava (Manihot esculenta), and highlight key cassava genomic resources. Cassava, Manihot esculenta Crantz, is a crop of societal and agricultural importance in tropical regions around the world. Genomics provides a platform for accelerated improvement of cassava's nutritional and agronomic traits, as well as for illuminating aspects of cassava's history including its path towards domestication. The highly heterozygous nature of the cassava genome is widely recognized. However, the full extent and context of this heterozygosity has been difficult to reveal because of technological limitations within genome sequencing. Only recently, with several new long-read sequencing technologies coming online, has the genomics community been able to tackle some similarly difficult genomes. In light of these recent advances, we provide this review to document the current status of the cassava genome and genomic resources and provide a perspective on what to look forward to in the coming years.
Collapse
Affiliation(s)
- Jessica B. Lyons
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720 USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720 USA
| | - Jessen V. Bredeson
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Ben N. Mansfeld
- Donald Danforth Plant Science Center (DDPSC), St. Louis, MO 63132 USA
| | | | - Jeffrey Berry
- Donald Danforth Plant Science Center (DDPSC), St. Louis, MO 63132 USA
| | - Adam Boyher
- Donald Danforth Plant Science Center (DDPSC), St. Louis, MO 63132 USA
| | | | - Daniel S. Rokhsar
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720 USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720 USA
- DOE Joint Genome Institute, Walnut Creek, CA USA
- Chan-Zuckerberg BioHub, 499 Illinois, San Francisco, CA 94158 USA
| | - Rebecca S. Bart
- Donald Danforth Plant Science Center (DDPSC), St. Louis, MO 63132 USA
| |
Collapse
|
16
|
Rabbi IY, Kayondo SI, Bauchet G, Yusuf M, Aghogho CI, Ogunpaimo K, Uwugiaren R, Smith IA, Peteti P, Agbona A, Parkes E, Lydia E, Wolfe M, Jannink JL, Egesi C, Kulakow P. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. PLANT MOLECULAR BIOLOGY 2022; 109:195-213. [PMID: 32734418 PMCID: PMC9162993 DOI: 10.1007/s11103-020-01038-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/20/2020] [Indexed: 05/05/2023]
Abstract
More than 40 QTLs associated with 14 stress-related, quality and agro-morphological traits were identified. A catalogue of favourable SNP markers for MAS and a list of candidate genes are provided. Cassava (Manihot esculenta) is one of the most important starchy root crops in the tropics due to its adaptation to marginal environments. Genetic progress in this clonally propagated crop can be accelerated through the discovery of markers and candidate genes that could be used in cassava breeding programs. We carried out a genome-wide association study (GWAS) using a panel of 5130 clones developed at the International Institute of Tropical Agriculture-Nigeria. The population was genotyped at more than 100,000 SNP markers via genotyping-by-sequencing (GBS). Genomic regions underlying genetic variation for 14 traits classified broadly into four categories: biotic stress (cassava mosaic disease and cassava green mite severity); quality (dry matter content and carotenoid content) and plant agronomy (harvest index and plant type) were investigated. We also included several agro-morphological traits related to leaves, stems and roots with high heritability. In total, 41 significant associations were uncovered. While some of the identified loci matched with those previously reported, we present additional association signals for the traits. We provide a catalogue of favourable alleles at the most significant SNP for each trait-locus combination and candidate genes occurring within the GWAS hits. These resources provide a foundation for the development of markers that could be used in cassava breeding programs and candidate genes for functional validation.
Collapse
Affiliation(s)
- Ismail Yusuf Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria.
| | - Siraj Ismail Kayondo
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | | | - Muyideen Yusuf
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Cynthia Idhigu Aghogho
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Kayode Ogunpaimo
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Ruth Uwugiaren
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Ikpan Andrew Smith
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Prasad Peteti
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Afolabi Agbona
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Elizabeth Parkes
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Ezenwaka Lydia
- National Root Crops Research Institute (NRCRI), PMB 7006, Umudike, 440221, Nigeria
| | - Marnin Wolfe
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Jean-Luc Jannink
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14850, USA
- United States Department of Agriculture - Agriculture Research Service, Ithaca, NY, 14850, USA
| | - Chiedozie Egesi
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
- National Root Crops Research Institute (NRCRI), PMB 7006, Umudike, 440221, Nigeria
- Global Development Department, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| |
Collapse
|
17
|
Fathima AA, Sanitha M, Tripathi L, Muiruri S. Cassava (
Manihot esculenta
) dual use for food and bioenergy: A review. Food Energy Secur 2022. [DOI: 10.1002/fes3.380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Anwar Aliya Fathima
- Department of Bioinformatics Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
| | - Mary Sanitha
- Department of Bioinformatics Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
| | - Samwel Muiruri
- International Institute of Tropical Agriculture (IITA) Nairobi Kenya
- Department of Plant Sciences Kenyatta University Nairobi Kenya
| |
Collapse
|
18
|
Talabi AO, Vikram P, Thushar S, Rahman H, Ahmadzai H, Nhamo N, Shahid M, Singh RK. Orphan Crops: A Best Fit for Dietary Enrichment and Diversification in Highly Deteriorated Marginal Environments. FRONTIERS IN PLANT SCIENCE 2022; 13:839704. [PMID: 35283935 PMCID: PMC8908242 DOI: 10.3389/fpls.2022.839704] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 05/23/2023]
Abstract
Orphan crops are indigenous and invariably grown by small and marginal farmers under subsistence farming systems. These crops, which are common and widely accepted by local farmers, are highly rich in nutritional profile, good for medicinal purposes, and well adapted to suboptimal growing conditions. However, these crops have suffered neglect and abandonment from the scientific community because of very low or no investments in research and genetic improvement. A plausible reason for this is that these crops are not traded internationally at a rate comparable to that of the major food crops such as wheat, rice, and maize. Furthermore, marginal environments have poor soils and are characterized by extreme weather conditions such as heat, erratic rainfall, water deficit, and soil and water salinity, among others. With more frequent extreme climatic events and continued land degradation, orphan crops are beginning to receive renewed attention as alternative crops for dietary diversification in marginal environments and, by extension, across the globe. Increased awareness of good health is also a major contributor to the revived attention accorded to orphan crops. Thus, the introduction, evaluation, and adaptation of outstanding varieties of orphan crops for dietary diversification will contribute not only to sustained food production but also to improved nutrition in marginal environments. In this review article, the concept of orphan crops vis-à-vis marginality and food and nutritional security is defined for a few orphan crops. We also examined recent advances in research involving orphan crops and the potential of these crops for dietary diversification within the context of harsh marginal environments. Recent advances in genomics coupled with molecular breeding will play a pivotal role in improving the genetic potential of orphan crops and help in developing sustainable food systems. We concluded by presenting a potential roadmap to future research engagement and a policy framework with recommendations aimed at facilitating and enhancing the adoption and sustainable production of orphan crops under agriculturally marginal conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rakesh Kumar Singh
- International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| |
Collapse
|
19
|
Zhang H, Ye Z, Liu Z, Sun Y, Li X, Wu J, Zhou G, Wan Y. The Cassava NBS-LRR Genes Confer Resistance to Cassava Bacterial Blight. FRONTIERS IN PLANT SCIENCE 2022; 13:790140. [PMID: 35178059 PMCID: PMC8844379 DOI: 10.3389/fpls.2022.790140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/07/2022] [Indexed: 05/25/2023]
Abstract
Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) seriously affects cassava yield. Genes encoding nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains are among the most important disease resistance genes in plants that are specifically involved in the response to diverse pathogens. However, the in vivo roles of NBS-LRR remain unclear in cassava (Manihot esculenta). In this study, we isolated four MeLRR genes and assessed their expression under salicylic acid (SA) treatment and Xam inoculation. Four MeLRR genes positively regulate cassava disease general resistance against Xam via virus-induced gene silencing (VIGS) and transient overexpression. During cassava-Xam interaction, MeLRRs positively regulated endogenous SA and reactive oxygen species (ROS) accumulation and pathogenesis-related gene 1 (PR1) transcripts. Additionally, we revealed that MeLRRs positively regulated disease resistance in Arabidopsis. These pathogenic microorganisms include Pseudomonas syringae pv. tomato, Alternaria brassicicola, and Botrytis cinerea. Our findings shed light on the molecular mechanism underlying the regulation of cassava resistance against Xam inoculation.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zi Ye
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhixin Liu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yu Sun
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xinyu Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Jiao Wu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
20
|
Phumichai C, Aiemnaka P, Nathaisong P, Hunsawattanakul S, Fungfoo P, Rojanaridpiched C, Vichukit V, Kongsil P, Kittipadakul P, Wannarat W, Chunwongse J, Tongyoo P, Kijkhunasatian C, Chotineeranat S, Piyachomkwan K, Wolfe MD, Jannink JL, Sorrells ME. Genome-wide association mapping and genomic prediction of yield-related traits and starch pasting properties in cassava. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:145-171. [PMID: 34661695 DOI: 10.1007/s00122-021-03956-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE GWAS identified eight yield-related, peak starch type of waxy and wild-type starch and 21 starch pasting property-related traits (QTLs). Prediction ability of eight GS models resulted in low to high predictability, depending on trait, heritability, and genetic architecture. Cassava is both a food and an industrial crop in Africa, South America, and Asia, but knowledge of the genes that control yield and starch pasting properties remains limited. We carried out a genome-wide association study to clarify the molecular mechanisms underlying these traits and to explore marker-based breeding approaches. We estimated the predictive ability of genomic selection (GS) using parametric, semi-parametric, and nonparametric GS models with a panel of 276 cassava genotypes from Thai Tapioca Development Institute, International Center for Tropical Agriculture, International Institute of Tropical Agriculture, and other breeding programs. The cassava panel was genotyped via genotyping-by-sequencing, and 89,934 single-nucleotide polymorphism (SNP) markers were identified. A total of 31 SNPs associated with yield, starch type, and starch properties traits were detected by the fixed and random model circulating probability unification (FarmCPU), Bayesian-information and linkage-disequilibrium iteratively nested keyway and compressed mixed linear model, respectively. GS models were developed, and forward predictabilities using all the prediction methods resulted in values of - 0.001-0.71 for the four yield-related traits and 0.33-0.82 for the seven starch pasting property traits. This study provides additional insight into the genetic architecture of these important traits for the development of markers that could be used in cassava breeding programs.
Collapse
Affiliation(s)
- Chalermpol Phumichai
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900, Thailand.
| | - Pornsak Aiemnaka
- Thai Tapioca Development Institute, Lumpini Tower, 1168/26 Rama IV Road, Bangkok, 10120, Thailand
| | - Piyaporn Nathaisong
- Thai Tapioca Development Institute, Lumpini Tower, 1168/26 Rama IV Road, Bangkok, 10120, Thailand
| | - Sirikan Hunsawattanakul
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900, Thailand
| | - Phasakorn Fungfoo
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Vichan Vichukit
- Thai Tapioca Development Institute, Lumpini Tower, 1168/26 Rama IV Road, Bangkok, 10120, Thailand
| | - Pasajee Kongsil
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Piya Kittipadakul
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Wannasiri Wannarat
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Julapark Chunwongse
- Department of Horticulture, Faculty of Agriculture Kamphaeng Saen, Kasetsart University, Nakhon Pathom, 73140, Thailand
| | - Pumipat Tongyoo
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Chookiat Kijkhunasatian
- Cassava and Starch Technology Research Team, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand
| | - Sunee Chotineeranat
- Cassava and Starch Technology Research Team, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand
| | - Kuakoon Piyachomkwan
- Cassava and Starch Technology Research Team, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand
| | - Marnin D Wolfe
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, 14850, USA
| | - Jean-Luc Jannink
- United States Department of Agriculture - Agriculture Research Service, Ithaca, NY, 14850, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
21
|
Uchendu K, Njoku DN, Paterne A, Rabbi IY, Dzidzienyo D, Tongoona P, Offei S, Egesi C. Genome-Wide Association Study of Root Mealiness and Other Texture-Associated Traits in Cassava. FRONTIERS IN PLANT SCIENCE 2021; 12:770434. [PMID: 34975953 PMCID: PMC8719520 DOI: 10.3389/fpls.2021.770434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Cassava breeders have made significant progress in developing new genotypes with improved agronomic characteristics such as improved root yield and resistance against biotic and abiotic stresses. However, these new and improved cassava (Manihot esculenta Crantz) varieties in cultivation in Nigeria have undergone little or no improvement in their culinary qualities; hence, there is a paucity of genetic information regarding the texture of boiled cassava, particularly with respect to its mealiness, the principal sensory quality attribute of boiled cassava roots. The current study aimed at identifying genomic regions and polymorphisms associated with natural variation for root mealiness and other texture-related attributes of boiled cassava roots, which includes fibre, adhesiveness (ADH), taste, aroma, colour, and firmness. We performed a genome-wide association (GWAS) analysis using phenotypic data from a panel of 142 accessions obtained from the National Root Crops Research Institute (NRCRI), Umudike, Nigeria, and a set of 59,792 high-quality single nucleotide polymorphisms (SNPs) distributed across the cassava genome. Through genome-wide association mapping, we identified 80 SNPs that were significantly associated with root mealiness, fibre, adhesiveness, taste, aroma, colour and firmness on chromosomes 1, 4, 5, 6, 10, 13, 17 and 18. We also identified relevant candidate genes that are co-located with peak SNPs linked to these traits in M. esculenta. A survey of the cassava reference genome v6.1 positioned the SNPs on chromosome 13 in the vicinity of Manes.13G026900, a gene recognized as being responsible for cell adhesion and for the mealiness or crispness of vegetables and fruits, and also known to play an important role in cooked potato texture. This study provides the first insights into understanding the underlying genetic basis of boiled cassava root texture. After validation, the markers and candidate genes identified in this novel work could provide important genomic resources for use in marker-assisted selection (MAS) and genomic selection (GS) to accelerate genetic improvement of root mealiness and other culinary qualities in cassava breeding programmes in West Africa, especially in Nigeria, where the consumption of boiled and pounded cassava is low.
Collapse
Affiliation(s)
- Kelechi Uchendu
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, Accra, Ghana
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | | | - Agre Paterne
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | - Daniel Dzidzienyo
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, Accra, Ghana
| | - Pangirayi Tongoona
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, Accra, Ghana
| | - Samuel Offei
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, Accra, Ghana
| | - Chiedozie Egesi
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
22
|
Torres LG, de Oliveira EJ, Ogbonna AC, Bauchet GJ, Mueller LA, Azevedo CF, Fonseca e Silva F, Simiqueli GF, de Resende MDV. Can Cross-Country Genomic Predictions Be a Reasonable Strategy to Support Germplasm Exchange? - A Case Study With Hydrogen Cyanide in Cassava. FRONTIERS IN PLANT SCIENCE 2021; 12:742638. [PMID: 34956254 PMCID: PMC8692580 DOI: 10.3389/fpls.2021.742638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Genomic prediction (GP) offers great opportunities for accelerated genetic gains by optimizing the breeding pipeline. One of the key factors to be considered is how the training populations (TP) are composed in terms of genetic improvement, kinship/origin, and their impacts on GP. Hydrogen cyanide content (HCN) is a determinant trait to guide cassava's products usage and processing. This work aimed to achieve the following objectives: (i) evaluate the feasibility of using cross-country (CC) GP between germplasm's of Embrapa Mandioca e Fruticultura (Embrapa, Brazil) and The International Institute of Tropical Agriculture (IITA, Nigeria) for HCN; (ii) provide an assessment of population structure for the joint dataset; (iii) estimate the genetic parameters based on single nucleotide polymorphisms (SNPs) and a haplotype-approach. Datasets of HCN from Embrapa and IITA breeding programs were analyzed, separately and jointly, with 1,230, 590, and 1,820 clones, respectively. After quality control, ∼14K SNPs were used for GP. The genomic estimated breeding values (GEBVs) were predicted based on SNP effects from analyses with TP composed of the following: (i) Embrapa genotypic and phenotypic data, (ii) IITA genotypic and phenotypic data, and (iii) the joint datasets. Comparisons on GEBVs' estimation were made considering the hypothetical situation of not having the phenotypic characterization for a set of clones for a certain research institute/country and might need to use the markers' effects that were trained with data from other research institutes/country's germplasm to estimate their clones' GEBV. Fixation index (FST) among the genetic groups identified within the joint dataset ranged from 0.002 to 0.091. The joint dataset provided an improved accuracy (0.8-0.85) compared to the prediction accuracy of either germplasm's sources individually (0.51-0.67). CC GP proved to have potential use under the present study's scenario, the correlation between GEBVs predicted with TP from Embrapa and IITA was 0.55 for Embrapa's germplasm, whereas for IITA's it was 0.1. This seems to be among the first attempts to evaluate the CC GP in plants. As such, a lot of useful new information was provided on the subject, which can guide new research on this very important and emerging field.
Collapse
Affiliation(s)
- Lívia Gomes Torres
- Department of Plant Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Alex C. Ogbonna
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
- Boyce Thompson Institute, Ithaca, NY, United States
| | | | - Lukas A. Mueller
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
- Boyce Thompson Institute, Ithaca, NY, United States
| | | | | | | | - Marcos Deon Vilela de Resende
- Department of Forestry Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
- Embrapa Café, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
23
|
A population based expression atlas provides insights into disease resistance and other physiological traits in cassava (Manihot esculenta Crantz). Sci Rep 2021; 11:23520. [PMID: 34876620 PMCID: PMC8651776 DOI: 10.1038/s41598-021-02794-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Cassava, a food security crop in Africa, is grown throughout the tropics and subtropics. Although cassava can provide high productivity in suboptimal conditions, the yield in Africa is substantially lower than in other geographies. The yield gap is attributable to many challenges faced by cassava in Africa, including susceptibility to diseases and poor soil conditions. In this study, we carried out 3’RNA sequencing on 150 accessions from the National Crops Resources Research Institute, Uganda for 5 tissue types, providing population-based transcriptomics resources to the research community in a web-based queryable cassava expression atlas. Differential expression and weighted gene co-expression network analysis were performed to detect 8820 significantly differentially expressed genes (DEGs), revealing similarity in expression patterns between tissue types and the clustering of detected DEGs into 18 gene modules. As a confirmation of data quality, differential expression and pathway analysis targeting cassava mosaic disease (CMD) identified 27 genes observed in the plant–pathogen interaction pathway, several previously identified CMD resistance genes, and two peroxidase family proteins different from the CMD2 gene. Present research work represents a novel resource towards understanding complex traits at expression and molecular levels for the development of resistant and high-yielding cassava varieties, as exemplified with CMD.
Collapse
|
24
|
Monnot S, Desaint H, Mary-Huard T, Moreau L, Schurdi-Levraud V, Boissot N. Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells 2021; 10:3080. [PMID: 34831303 PMCID: PMC8625838 DOI: 10.3390/cells10113080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/04/2023] Open
Abstract
Growing virus resistant varieties is a highly effective means to avoid yield loss due to infection by many types of virus. The challenge is to be able to detect resistance donors within plant species diversity and then quickly introduce alleles conferring resistance into elite genetic backgrounds. Until now, mainly monogenic forms of resistance with major effects have been introduced in crops. Polygenic resistance is harder to map and introduce in susceptible genetic backgrounds, but it is likely more durable. Genome wide association studies (GWAS) offer an opportunity to accelerate mapping of both monogenic and polygenic resistance, but have seldom been implemented and described in the plant-virus interaction context. Yet, all of the 48 plant-virus GWAS published so far have successfully mapped QTLs involved in plant virus resistance. In this review, we analyzed general and specific GWAS issues regarding plant virus resistance. We have identified and described several key steps throughout the GWAS pipeline, from diversity panel assembly to GWAS result analyses. Based on the 48 published articles, we analyzed the impact of each key step on the GWAS power and showcase several GWAS methods tailored to all types of viruses.
Collapse
Affiliation(s)
- Severine Monnot
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143 Montfavet, France
- Bayer Crop Science, Chemin de Roque Martine, 13670 Saint-Andiol, France
| | - Henri Desaint
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143 Montfavet, France
| | - Tristan Mary-Huard
- INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, Ferme du Moulon, 91190 Gif-sur-Yvette, France
- Mathématiques et Informatique Appliquées (MIA)-Paris, INRAE, AgroParisTech, Université Paris-Saclay, 75231 Paris, France
| | - Laurence Moreau
- INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, Université Paris-Saclay, Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | | | - Nathalie Boissot
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143 Montfavet, France
| |
Collapse
|
25
|
Amas J, Anderson R, Edwards D, Cowling W, Batley J. Status and advances in mining for blackleg (Leptosphaeria maculans) quantitative resistance (QR) in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3123-3145. [PMID: 34104999 PMCID: PMC8440254 DOI: 10.1007/s00122-021-03877-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/29/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Quantitative resistance (QR) loci discovered through genetic and genomic analyses are abundant in the Brassica napus genome, providing an opportunity for their utilization in enhancing blackleg resistance. Quantitative resistance (QR) has long been utilized to manage blackleg in Brassica napus (canola, oilseed rape), even before major resistance genes (R-genes) were extensively explored in breeding programmes. In contrast to R-gene-mediated qualitative resistance, QR reduces blackleg symptoms rather than completely eliminating the disease. As a polygenic trait, QR is controlled by numerous genes with modest effects, which exerts less pressure on the pathogen to evolve; hence, its effectiveness is more durable compared to R-gene-mediated resistance. Furthermore, combining QR with major R-genes has been shown to enhance resistance against diseases in important crops, including oilseed rape. For these reasons, there has been a renewed interest among breeders in utilizing QR in crop improvement. However, the mechanisms governing QR are largely unknown, limiting its deployment. Advances in genomics are facilitating the dissection of the genetic and molecular underpinnings of QR, resulting in the discovery of several loci and genes that can be potentially deployed to enhance blackleg resistance. Here, we summarize the efforts undertaken to identify blackleg QR loci in oilseed rape using linkage and association analysis. We update the knowledge on the possible mechanisms governing QR and the advances in searching for the underlying genes. Lastly, we lay out strategies to accelerate the genetic improvement of blackleg QR in oilseed rape using improved phenotyping approaches and genomic prediction tools.
Collapse
Affiliation(s)
- Junrey Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Robyn Anderson
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Wallace Cowling
- School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| |
Collapse
|
26
|
Esuma W, Ozimati A, Kulakow P, Gore MA, Wolfe MD, Nuwamanya E, Egesi C, Kawuki RS. Effectiveness of genomic selection for improving provitamin A carotenoid content and associated traits in cassava. G3 (BETHESDA, MD.) 2021; 11:jkab160. [PMID: 33963852 PMCID: PMC8496257 DOI: 10.1093/g3journal/jkab160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 11/14/2022]
Abstract
Global efforts are underway to develop cassava with enhanced levels of provitamin A carotenoids to sustainably meet increasing demands for food and nutrition where the crop is a major staple. Herein, we tested the effectiveness of genomic selection (GS) for rapid improvement of cassava for total carotenoids content and associated traits. We evaluated 632 clones from Uganda's provitamin A cassava breeding pipeline and 648 West African introductions. At harvest, each clone was assessed for level of total carotenoids, dry matter content, and resistance to cassava brown streak disease (CBSD). All clones were genotyped with diversity array technology and imputed to a set of 23,431 single nucleotide polymorphic markers. We assessed predictive ability of four genomic prediction methods in scenarios of cross-validation, across population prediction, and inclusion of quantitative trait loci markers. Cross-validations produced the highest mean prediction ability for total carotenoids content (0.52) and the lowest for CBSD resistance (0.20), with G-BLUP outperforming other models tested. Across population, predictions showed low ability of Ugandan population to predict the performance of West African clones, with the highest predictive ability recorded for total carotenoids content (0.34) and the lowest for CBSD resistance (0.12) using G-BLUP. By incorporating chromosome 1 markers associated with carotenoids content as independent kernel in the G-BLUP model of a cross-validation scenario, prediction ability slightly improved from 0.52 to 0.58. These results reinforce ongoing efforts aimed at integrating GS into cassava breeding and demonstrate the utility of this tool for rapid genetic improvement.
Collapse
Affiliation(s)
- Williams Esuma
- National Crops Resources Research Institute, Kampala, Uganda
| | - Alfred Ozimati
- National Crops Resources Research Institute, Kampala, Uganda
| | - Peter Kulakow
- International Institute for Tropical Agriculture, Ibadan, Nigeria
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Marnin D Wolfe
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Chiedozie Egesi
- International Institute for Tropical Agriculture, Ibadan, Nigeria
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Robert S Kawuki
- National Crops Resources Research Institute, Kampala, Uganda
| |
Collapse
|
27
|
Mero HR, Lyantagaye SL, Bongcam-Rudloff E. Why has permanent control of cassava brown streak disease in Sub-Saharan Africa remained a dream since the 1930s? INFECTION GENETICS AND EVOLUTION 2021; 94:105001. [PMID: 34271188 DOI: 10.1016/j.meegid.2021.105001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Effective control of ipomoviruses that cause cassava brown streak disease (CBSD) in Africa has remained problematic despite eight remarkable decades (1930-2021) of research efforts. Molecular mechanisms underlying resistance breakdown in genetically improved cassava are still unknown. The vast genetic diversity of cassava brown streak viruses, which is crucial for the improvement of routine reverse transcription polymerase chain reaction (RT-qPCR) assays in CBSD-endemic regions of Africa, is controversial and underrepresented. From a molecular epidemiology viewpoint, this review discusses the reasons for why permanent control of CBSD is difficult in the modern era, even with the presence of diverse in silico and omics tools, recombinant DNA, and high throughput next-generation sequencing technologies. Following an extensive nucleotide data search in the National Centre for Biotechnology Information (NCBI) database and a literature review in PubMed and Scopus, we report that genomic data of 87.62% (474/541) strains of cassava brown streak virus are missing due to poor sequencing capacity in Africa. The evolution dynamics of viral virulence and pathogenicity has not yet been fully explored from the available 67 (12.38%) genomic sequences, owing to poor bioinformatics capacity. Tanzania and Zambia have the highest and lowest disease inoculum pressure, correspondingly. Knowledge gaps in molecular biology and the overall molecular pathogenesis of CBSD viruses impede effective disease control in Africa. Recommendations for possible solutions to the research questions, controversies, and hypotheses raised in this study serve as a roadmap for the invention of more effective CBSD control methods.
Collapse
Affiliation(s)
- Herieth Rhodes Mero
- University of Dar es Salaam, Mkwawa University College of Education (MUCE), Department of Biological Sciences, P. O. BOX 2513, Iringa, Tanzania.; Swedish University of Agricultural Sciences (SLU), SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, PO Box 7054 750 07, Uppsala, Sweden.
| | | | - Erik Bongcam-Rudloff
- Swedish University of Agricultural Sciences (SLU), SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, PO Box 7054 750 07, Uppsala, Sweden
| |
Collapse
|
28
|
Mbanjo EGN, Rabbi IY, Ferguson ME, Kayondo SI, Eng NH, Tripathi L, Kulakow P, Egesi C. Technological Innovations for Improving Cassava Production in Sub-Saharan Africa. Front Genet 2021; 11:623736. [PMID: 33552138 PMCID: PMC7859516 DOI: 10.3389/fgene.2020.623736] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 11/17/2022] Open
Abstract
Cassava is crucial for food security of millions of people in sub-Saharan Africa. The crop has great potential to contribute to African development and is increasing its income-earning potential for small-scale farmers and related value chains on the continent. Therefore, it is critical to increase cassava production, as well as its quality attributes. Technological innovations offer great potential to drive this envisioned change. This paper highlights genomic tools and resources available in cassava. The paper also provides a glimpse of how these resources have been used to screen and understand the pattern of cassava genetic diversity on the continent. Here, we reviewed the approaches currently used for phenotyping cassava traits, highlighting the methodologies used to link genotypic and phenotypic information, dissect the genetics architecture of key cassava traits, and identify quantitative trait loci/markers significantly associated with those traits. Additionally, we examined how knowledge acquired is utilized to contribute to crop improvement. We explored major approaches applied in the field of molecular breeding for cassava, their promises, and limitations. We also examined the role of national agricultural research systems as key partners for sustainable cassava production.
Collapse
Affiliation(s)
| | | | | | | | - Ng Hwa Eng
- CGIAR Excellence in Breeding Platform, El Batan, Mexico
| | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Peter Kulakow
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Chiedozie Egesi
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- National Root Crops Research Institute, Umudike, Nigeria
- Department of Global Development, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
29
|
Ye CY, Fan L. Orphan Crops and their Wild Relatives in the Genomic Era. MOLECULAR PLANT 2021; 14:27-39. [PMID: 33346062 DOI: 10.1016/j.molp.2020.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 05/06/2023]
Abstract
More than half of the calories consumed by humans are provided by three major cereal crops (rice, maize, and wheat). Orphan crops are usually well adapted to low-input agricultural conditions, and they not only play vital roles in local areas but can also contribute to food and nutritional needs worldwide. Interestingly, many wild relatives of orphan crops are important weeds of major crops. Although orphan crops and their wild relatives have received little attentions from researchers for many years, genomic studies have recently been performed on these plants. Here, we provide an overview of genomic studies on orphan crops, with a focus on orphan cereals and their wild relatives. The genomes of at least 12 orphan cereals and/or their wild relatives have been sequenced. In addition to genomic benefits for orphan crop breeding, we discuss the potential ways for mutual utilization of genomic data from major crops, orphan crops, and their wild relatives (including weeds) and provide perspectives on genetic improvement of both orphan and major crops (including de novo domestication of orphan crops) in the coming genomic era.
Collapse
Affiliation(s)
- Chu-Yu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572024, China.
| |
Collapse
|
30
|
Ano CU, Ochwo-Ssemakula M, Ibanda A, Ozimati A, Gibson P, Onyeka J, Njoku D, Egesi C, S. Kawuki R. Cassava Brown Streak Disease Response and Association With Agronomic Traits in Elite Nigerian Cassava Cultivars. FRONTIERS IN PLANT SCIENCE 2021; 12:720532. [PMID: 34880882 PMCID: PMC8646096 DOI: 10.3389/fpls.2021.720532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/18/2021] [Indexed: 05/04/2023]
Abstract
Cassava mosaic geminiviruses (CMGs) and cassava brown streak viruses (CBSVs) cause the highest yield losses in cassava production in Africa. In particular, cassava brown streak disease (CBSD) is and continues to be a significant constraint to optimal cassava production in Eastern and Southern Africa. While CBSD has not been reported in West Africa, its recent rapid spread and damage to cassava productivity in Eastern, and Southern Africa is alarming. The aim of this study was to evaluate Nigerian cassava genotypes in order to determine their responses to CBSD, in the event that it invades Nigeria, the world's largest cassava producer. The study gathered information on whether useful CBSD resistance alleles are present in the elite Nigerian cassava accessions. A total of 1,980 full-sib cassava seedlings from 106 families were assessed in the field at the seedling stage for a year. A subset of 569 clones were selected and assessed for another year at the clonal stage in Namulonge, central Uganda, a known hotspot for CBSD screening. Results indicated that foliar and root incidences and severities varied significantly (p ≤ 0.01, p ≤ 0.001) except for CBSD foliar incidence at 6 months (CBSD6i ). Highest and lowest plot-based heritability estimates for CBSD were registered for CBSD root severity (CBSD rs ) (0.71) and CBSD6i (0.5). Positive and highly significant correlations were noted between CBSD root incidence (CBSD ri ) and CBSD rs (r = 0.90***). Significant positive correlations were also noted between CBSD foliar severity at 3 months (CBSD3s ) and CBSD foliar incidence at 6 months (CBSD6i ) (r = 0.77***), CBSD3s and CBSD rs (r = 0.35***). Fresh root weight (Fresh RW ) negatively correlated with CBSD ri and CBSD rs , respectively (r = -0.21*** and r = -0.22***). Similarly, CBSD3s correlated negatively with cassava mosaic disease severity at 3 (CMD3s ) and 6 months (CMD6s ), respectively (r = -0.25*** and r = -0.21***). Fifteen clones were selected using a non-weighted summation selection index for further screening. In conclusion, results revealed that the elite Nigerian accessions exhibited significant susceptibility to CBSD within 2 years of evaluation period. It is expected that this information will aid future breeding decisions for the improvement of CBSD resistance among the Nigerian cassava varieties.
Collapse
Affiliation(s)
- Chukwuka Ugochukwu Ano
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- National Root Crops Research Institute, Umudike, Nigeria
| | | | - Angele Ibanda
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- National Crops Resources Research Institute, Kampala, Uganda
| | - Alfred Ozimati
- National Crops Resources Research Institute, Kampala, Uganda
| | - Paul Gibson
- College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- Makerere University Regional Center for Crop Improvement, Kampala, Uganda
| | - Joseph Onyeka
- National Root Crops Research Institute, Umudike, Nigeria
| | - Damian Njoku
- National Root Crops Research Institute, Umudike, Nigeria
| | - Chiedozie Egesi
- National Root Crops Research Institute, Umudike, Nigeria
- International Institute of Tropical Agriculture, Ibadan, Nigeria
- Cornell University Root Crops Research Institute, Ithaca, NY, United States
| | - Robert S. Kawuki
- National Crops Resources Research Institute, Kampala, Uganda
- *Correspondence: Robert S. Kawuki,
| |
Collapse
|
31
|
Gatarira C, Agre P, Matsumoto R, Edemodu A, Adetimirin V, Bhattacharjee R, Asiedu R, Asfaw A. Genome-Wide Association Analysis for Tuber Dry Matter and Oxidative Browning in Water Yam ( Dioscorea alata L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:E969. [PMID: 32751829 PMCID: PMC7464735 DOI: 10.3390/plants9080969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022]
Abstract
Yam (Dioscorea spp.) is a nutritional and medicinal staple tuber crop grown in the tropics and sub-tropics. Among the food yam species, water yam (Dioscorea alata L.) is the most widely distributed and cultivated species worldwide. Tuber dry matter content (DMC) and oxidative browning (OxB) are important quality attributes that determine cultivar acceptability in water yam. This study used a single nucleotide polymorphism (SNP) assay from a diversity arrays technology (DArT) platform for a genome-wide association study (GWAS) of the two quality traits in a panel of 100 water yam clones grown in three environments. The marker-trait association analysis identified significant SNPs associated with tuber DMC on chromosomes 6 and 19 and with OxB on chromosome 5. The significant SNPs cumulatively explained 45.87 and 12.74% of the total phenotypic variation for the tuber DMC and OxB, respectively. Gene annotation for the significant SNP loci identified important genes associated in the process of the proteolytic modification of carbohydrates in the dry matter accumulation pathway as well as fatty acid β-oxidation in peroxisome for enzymatic oxidation. Additional putative genes were also identified in the peak SNP sites for both tuber dry matter and enzymatic oxidation with unknown functions. The results of this study provide valuable insight for further dissection of the genetic architecture of tuber dry matter and enzymatic oxidation in water yam. They also highlight SNP variants and genes useful for genomics-informed selection decisions in the breeding process for improving food quality traits in water yam.
Collapse
Affiliation(s)
- Cobes Gatarira
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (C.G.); (R.M.); (A.E.); (R.B.); (R.A.); (A.A.)
- Pan African University, Institute of Life and Earth Sciences, University of Ibadan, Ibadan 200001, Nigeria
| | - Paterne Agre
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (C.G.); (R.M.); (A.E.); (R.B.); (R.A.); (A.A.)
| | - Ryo Matsumoto
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (C.G.); (R.M.); (A.E.); (R.B.); (R.A.); (A.A.)
| | - Alex Edemodu
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (C.G.); (R.M.); (A.E.); (R.B.); (R.A.); (A.A.)
| | - Victor Adetimirin
- Department of Agronomy, University of Ibadan, Ibadan 200001, Nigeria;
| | - Ranjana Bhattacharjee
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (C.G.); (R.M.); (A.E.); (R.B.); (R.A.); (A.A.)
| | - Robert Asiedu
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (C.G.); (R.M.); (A.E.); (R.B.); (R.A.); (A.A.)
| | - Asrat Asfaw
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria; (C.G.); (R.M.); (A.E.); (R.B.); (R.A.); (A.A.)
| |
Collapse
|
32
|
Yonis BO, Pino Del Carpio D, Wolfe M, Jannink JL, Kulakow P, Rabbi I. Improving root characterisation for genomic prediction in cassava. Sci Rep 2020; 10:8003. [PMID: 32409788 PMCID: PMC7224197 DOI: 10.1038/s41598-020-64963-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/23/2020] [Indexed: 11/08/2022] Open
Abstract
Cassava is cultivated due to its drought tolerance and high carbohydrate-containing storage roots. The lack of uniformity and irregular shape of storage roots poses constraints on harvesting and post-harvest processing. Here, we phenotyped the Genetic gain and offspring (C1) populations from the International Institute of Tropical Agriculture (IITA) breeding program using image analysis of storage root photographs taken in the field. In the genome-wide association analysis (GWAS), we detected for most shape and size-related traits, QTL on chromosomes 1 and 12. In a previous study, we found the QTL on chromosome 12 to be associated with cassava mosaic disease (CMD) resistance. Because the root uniformity is important for breeding, we calculated the standard deviation (SD) of individual root measurements per clone. With SD measurements we identified new significant QTL for Perimeter, Feret and Aspect Ratio on chromosomes 6, 9 and 16. Predictive accuracies of root size and shape image-extracted traits were mostly higher than yield trait prediction accuracies. This study aimed to evaluate the feasibility of the image phenotyping protocol and assess GWAS and genomic prediction for size and shape image-extracted traits. The methodology described and the results are promising and open up the opportunity to apply high-throughput methods in cassava.
Collapse
Affiliation(s)
| | - Dunia Pino Del Carpio
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14850, USA
- Department of Jobs, Precincts and Regions, AgriBio, Centre for AgriBioscience, Bundoora, Australia
| | - Marnin Wolfe
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Jean-Luc Jannink
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, 14850, USA
- US Department of Agriculture - Agricultural Research Service (USDA-ARS), Ithaca, NY, USA
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria.
| |
Collapse
|
33
|
Iragaba P, Kawuki RS, Bauchet G, Ramu P, Tufan HA, Earle ED, Gore MA, Wolfe M. Genomic characterization of Ugandan smallholder farmer-preferred cassava varieties. CROP SCIENCE 2020; 60:1450-1461. [PMID: 32742003 PMCID: PMC7386927 DOI: 10.1002/csc2.20152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 06/08/2023]
Abstract
Understanding the genetic relationships among farmer-preferred cassava (Manihot esculenta Crantz) varieties is indispensable to genetic improvement efforts. In this study, we present a genetic analysis of 547 samples of cassava grown by 192 smallholder farmers, which were sampled at random within four districts in Uganda. We genotyped these samples at 287,952 single nucleotide polymorphisms using genotyping-by-sequencing and co-analyzed them with 349 cassava samples from the national breeding program in Uganda. The samples collected from smallholders consisted of 86 genetically unique varieties, as assessed using a genetic distance-based approach. Of these varieties, most were cultivated in only one district (30 in Kibaale, 19 in Masindi, 14 in Arua, and three in Apac), and only three were cultivated across all districts. The genetic differentiation we observed among farming districts in Uganda (mean fixation index [F ST] = .003) is similar to divergence observed within other countries. Despite the fact that none of the breeding lines were directly observed in farmer fields, genetic divergence between the populations was low (F ST = .020). Interestingly, we detected the presence of introgressions from the wild relative M. glaziovii Müll. Arg. on chromosomes 1 and 4, which implies ancestry with cassava breeding lines. Given the apparently similar pool of alleles in the breeding germplasm, it is likely that breeders have the raw genetic material they require to match the farmer-preferred trait combinations necessary for adoption. Our study highlights the importance of understanding the genetic makeup of cassava currently grown by smallholder farmers and relative to that of plant breeding germplasm.
Collapse
Affiliation(s)
- Paula Iragaba
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell Univ.IthacaNY14853USA
| | - Robert S. Kawuki
- National Crops Resources Research Institute (NaCRRI)PO Box 7084KampalaUganda
| | | | - Punna Ramu
- Cornell University, Institute for Genomic Diversity175 Biotechnology BuildingIthacaNY14853USA
| | - Hale A. Tufan
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell Univ.IthacaNY14853USA
- International Programs/College of Agriculture and Life ScienceB75 Mann LibraryIthacaNY14853USA
| | - Elizabeth D. Earle
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell Univ.IthacaNY14853USA
| | - Michael A. Gore
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell Univ.IthacaNY14853USA
| | - Marnin Wolfe
- Plant Breeding and Genetics Section, School of Integrative Plant ScienceCornell Univ.IthacaNY14853USA
| |
Collapse
|
34
|
Wolfe MD, Bauchet GJ, Chan AW, Lozano R, Ramu P, Egesi C, Kawuki R, Kulakow P, Rabbi I, Jannink JL. Historical Introgressions from a Wild Relative of Modern Cassava Improved Important Traits and May Be Under Balancing Selection. Genetics 2019; 213:1237-1253. [PMID: 31624088 PMCID: PMC6893375 DOI: 10.1534/genetics.119.302757] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
Introgression of alleles from wild relatives has often been adaptive in plant breeding. However, the significance of historical hybridization events in modern breeding is often not clear. Cassava (Manihot esculenta) is among the most important staple foods in the world, sustaining hundreds of millions of people in the tropics, especially in sub-Saharan Africa. Widespread genotyping makes cassava a model for clonally propagated root and tuber crops in the developing world, and provides an opportunity to study the modern benefits and consequences of historical introgression. We detected large introgressed Manihot glaziovii genome-segments in a collection of 2742 modern cassava landraces and elite germplasm, the legacy of a 1930s era breeding to combat disease epidemics. African landraces and improved varieties were, on average, 3.8% (max 13.6%) introgressed. Introgressions accounted for a significant (mean 20%, max 56%) portion of the heritability of tested traits. M. glaziovii alleles on the distal 10 Mb of chr. 1 increased dry matter and root number. On chr. 4, introgressions in a 20 Mb region improved harvest index and brown streak disease tolerance. We observed the introgression frequency on chr. 1 double over three cycles of selection, and that later stage trials selectively excluded homozygotes from consideration as varieties. This indicates a heterozygous advantage of introgressions. However, we also found that maintaining large recombination-suppressed introgressions in the heterozygous state allowed the accumulation of deleterious mutations. We conclude that targeted recombination of introgressions would increase the efficiency of cassava breeding by allowing simultaneous fixation of beneficial alleles and purging of genetic load.
Collapse
Affiliation(s)
- Marnin D Wolfe
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14850
| | | | - Ariel W Chan
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14850
| | - Roberto Lozano
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14850
| | - Punna Ramu
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14850
| | - Chiedozie Egesi
- International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14850
- National Root Crops Research Institute (NRCRI), Umudike, Umuahia, 440221, Nigeria
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Robert Kawuki
- National Root Crops Resources Research Institute, Namulonge, Uganda
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan 200001, Nigeria
| | - Jean-Luc Jannink
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, New York 14850
- United States Department of Agriculture - Agriculture Research Service, Ithaca, New York 14850
| |
Collapse
|
35
|
de Andrade LRB, Sousa MBE, Oliveira EJ, de Resende MDV, Azevedo CF. Cassava yield traits predicted by genomic selection methods. PLoS One 2019; 14:e0224920. [PMID: 31725759 PMCID: PMC6855463 DOI: 10.1371/journal.pone.0224920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023] Open
Abstract
Genomic selection (GS) has been used to optimize genetic gains when phenotypic selection is considered costly and difficult to measure. The objective of this work was to evaluate the efficiency and consistency of GS prediction for cassava yield traits (Manihot esculenta Crantz) using different methods, taking into account the effect of population structure. BLUPs and deregressed BLUPs were obtained for 888 cassava accessions and evaluated for fresh root yield, dry root yield and dry matter content in roots in 21 trials conducted from 2011 to 2016. The deregressed BLUPs obtained for the accessions from a 48K single nucleotide polymorphism dataset were used for genomic predictions based on the BayesB, BLASSO, RR-BLUP, G-BLUP and RKHS methods. The accessions’ BLUPs were used in the validation step using four cross-validation strategies, taking into account population structure and different GS methods. Similar estimates of predictive ability and bias were identified for the different genomic selection methods in the first cross-validation strategy. Lower predictive ability was observed for fresh root yield (0.4569 –RR-BLUP to 0.4756—RKHS) and dry root yield (0.4689 –G-BLUP to 0.4818—RKHS) in comparison with dry matter content (0.5655 –BLASSO to 0.5670 –RKHS). However, the RKHS method exhibited higher efficiency and consistency in most of the validation scenarios in terms of prediction ability for fresh root yield and dry root yield. The correlations of the genomic estimated breeding values between the genomic selection methods were quite high (0.99–1.00), resulting in high coincidence of clone selection regardless of the genomic selection method. The deviance analyses within and between the validation clusters formed by the discriminant analysis of principal components were significant for all traits. Therefore, this study indicated that i) the prediction of dry matter content was more accurate compared to that of yield traits, possibly as a result of the smaller influence of non-additive genetic effects; ii) the RKHS method resulted in high and stable prediction ability in most of the validation scenarios; and iii) some kinship between the validation and training populations is desirable in order for genomic selection to succeed due to the significant effect of population structure on genomic selection predictions.
Collapse
Affiliation(s)
| | - Massaine Bandeira e Sousa
- Center of Agrarian, Environmental and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil
| | | | - Marcos Deon Vilela de Resende
- Department of Forestry Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Embrapa Florestas, Colombo, Paraná, Brazil
- Department of Statistics, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
36
|
Kuon JE, Qi W, Schläpfer P, Hirsch-Hoffmann M, von Bieberstein PR, Patrignani A, Poveda L, Grob S, Keller M, Shimizu-Inatsugi R, Grossniklaus U, Vanderschuren H, Gruissem W. Haplotype-resolved genomes of geminivirus-resistant and geminivirus-susceptible African cassava cultivars. BMC Biol 2019; 17:75. [PMID: 31533702 PMCID: PMC6749633 DOI: 10.1186/s12915-019-0697-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Background Cassava is an important food crop in tropical and sub-tropical regions worldwide. In Africa, cassava production is widely affected by cassava mosaic disease (CMD), which is caused by the African cassava mosaic geminivirus that is transmitted by whiteflies. Cassava breeders often use a single locus, CMD2, for introducing CMD resistance into susceptible cultivars. The CMD2 locus has been genetically mapped to a 10-Mbp region, but its organization and genes as well as their functions are unknown. Results We report haplotype-resolved de novo assemblies and annotations of the genomes for the African cassava cultivar TME (tropical Manihot esculenta), which is the origin of CMD2, and the CMD-susceptible cultivar 60444. The assemblies provide phased haplotype information for over 80% of the genomes. Haplotype comparison identified novel features previously hidden in collapsed and fragmented cassava genomes, including thousands of allelic variants, inter-haplotype diversity in coding regions, and patterns of diversification through allele-specific expression. Reconstruction of the CMD2 locus revealed a highly complex region with nearly identical gene sets but limited microsynteny between the two cultivars. Conclusions The genome maps of the CMD2 locus in both 60444 and TME3, together with the newly annotated genes, will help the identification of the causal genetic basis of CMD2 resistance to geminiviruses. Our de novo cassava genome assemblies will also facilitate genetic mapping approaches to narrow the large CMD2 region to a few candidate genes for better informed strategies to develop robust geminivirus resistance in susceptible cassava cultivars. Electronic supplementary material The online version of this article (10.1186/s12915-019-0697-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joel-E Kuon
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland.
| | - Weihong Qi
- Functional Genomics Center Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Pascal Schläpfer
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Matthias Hirsch-Hoffmann
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | | | - Andrea Patrignani
- Functional Genomics Center Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Lucy Poveda
- Functional Genomics Center Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stefan Grob
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Miyako Keller
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ueli Grossniklaus
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Hervé Vanderschuren
- AgroBioChem Department, University of Liège, Passage des Déportés 2, Gembloux, Belgium
| | - Wilhelm Gruissem
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, Universitätstrasse 2, 8092, Zurich, Switzerland. .,Advanced Plant Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
37
|
Aubry S. The Future of Digital Sequence Information for Plant Genetic Resources for Food and Agriculture. FRONTIERS IN PLANT SCIENCE 2019; 10:1046. [PMID: 31543884 PMCID: PMC6728410 DOI: 10.3389/fpls.2019.01046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 05/27/2023]
Abstract
The recent debates on the legal status of "digital sequence information" (DSI) at the international level could have extensive consequences for the future of agriculture and food security. A large majority of recent advances in biology, medicine, or agriculture were achieved by sharing and mining of freely accessible sequencing data. It is most probably because of the tremendous success of modern genomics and advances of synthetic biology that concerns were raised about possible fair and equitable ways of sharing data. The DSI concept is relatively new, and all concerned parties agreed upon the need for a clear definition. For example, the extent to which DSI understanding is limited only to genetic sequence data has to be clarified. In this paper, I focus on a subset of DSI essential to humankind: the DSI originating from plant genetic resources for food and agriculture (PGRFA). Two international agreements shape the conservation and use of plant genetic resources: the Convention on Biodiversity and the International Treaty for Plant Genetic Resources for Food and Agriculture. In an attempt to mobilize DSI users and producers involved in research, breeding, and conservation, I describe here how the increasing amount of genomic data, information, and studies interact with the existing legal framework at the global level. Using possible scenarios, I will emphasize the complexity of the issues surrounding DSI for PGRFA and propose potential ways forward for developing an inclusive governance and fair use of these genetic resources.
Collapse
Affiliation(s)
- Sylvain Aubry
- Department of Plant and Microbial Science, University of Zurich, Zurich, Switzerland
- Section Genetic Resources and Technology, Swiss Federal Office for Agriculture, Bern, Switzerland
| |
Collapse
|
38
|
Genomic selection for productive traits in biparental cassava breeding populations. PLoS One 2019; 14:e0220245. [PMID: 31344109 PMCID: PMC6658084 DOI: 10.1371/journal.pone.0220245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/11/2019] [Indexed: 11/19/2022] Open
Abstract
Cassava improvement using traditional breeding strategies is slow due to the species’ long breeding cycle. However, the use of genomic selection can lead to a shorter breeding cycle. This study aimed to estimate genetic parameters for productive traits based on pedigree (pedigree and phenotypic information) and genomic (markers and phenotypic information) analyses using biparental crosses at different stages of selection. A total of 290 clones were genotyped and phenotyped for fresh root yield (FRY), dry matter content (DMC), dry yield (DY), fresh shoot yield (FSY) and harvest index (HI). The clones were evaluated in clonal evaluation trials (CET), preliminary yield trials (PYT), advanced yield trials (AYT) and uniform yield trials (UYT), from 2013 to 2018 in ten locations. The breeding stages were analyzed as follows: one stage (CET), two stages (CET and PYT), three stages (CET, PYT and AYT) and four stages (CET, PYT, AYT and UYT). The genomic predictions were analyzed via k-fold cross-validation based on the genomic best linear unbiased prediction (GBLUP) considering a model with genetic additive effects and genotype × location interactions. Genomic and pedigree accuracies were moderate to high (0.56–0.72 and 0.62–0.78, respectively) for important starch-related traits such as DY and FRY; when considering one breeding stage (CET) with the aim of early selection, the genomic accuracies ranged from 0.60 (DMC) to 0.71 (HI). Moreover, the correlations between the genomic estimation breeding values of one-stage genomic analysis and the estimated breeding values of the four-stage (full data set) pedigree analysis were high for all traits as well as for a selection index including all traits. The results indicate great possibilities for genomic selection in cassava, especially for selection early in the breeding cycle (saving time and effort).
Collapse
|
39
|
Sheat S, Fuerholzner B, Stein B, Winter S. Resistance Against Cassava Brown Streak Viruses From Africa in Cassava Germplasm From South America. FRONTIERS IN PLANT SCIENCE 2019; 10:567. [PMID: 31134114 PMCID: PMC6523400 DOI: 10.3389/fpls.2019.00567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/15/2019] [Indexed: 05/13/2023]
Abstract
Cassava brown streak disease (CBSD) is a severe virus disease of cassava and prevalent in the eastern regions of Africa. The disease is characterized by distinct vein chlorosis and streak symptoms on leaves and stems and necrosis of storage roots. This necrosis can encompass large areas of the root, rendering it inedible so that the entire cassava harvest can be lost. African cassava varieties are susceptible to either of the two viruses causing the disease, cassava brown streak virus (CBSV) and Uganda cassava brown streak virus, and while there are less sensitive varieties, all cassava eventually succumb to the disease. The lack of CBSD resistance in African cassava varieties prompted this search for new sources of virus resistance in the diversity of South American cassava germplasm held in the collection at International Center for Tropical Agriculture, Columbia. Our search for CBSD resistance in South American cassava germplasm accessions revealed that most of the 238 South American cassava lines infected with CBSV established systemic virus infections with moderate to severe disease symptoms on leaves and stems. Fifteen cassava accessions did not become virus infected, remained free of symptoms, and CBSV was undetected by qRT-PCR. When tuberous roots of those lines were examined, necrotic tissue was found in eight lines and CBSV was detected. The remaining seven cassava accessions remained clear of symptoms on all tissues and organs and were virus free. A broad spectrum of virus resistance also including other virus isolates was confirmed for the breeding lines DSC167 and DSC118. While detailed infection experiments with other cassava lines selected for resistance are still ongoing, this indicates that the resistance identified may also hold against a broader diversity of CBSVs. Taken together, we present the results of a comprehensive study on CBSV resistance and susceptibility in cassava germplasm accessions from South America. The virus resistance in cassava germplasm identified provides compelling evidence for the invaluable contribution of germplasm collections to supply the genetic resources for the improvement of our crops.
Collapse
Affiliation(s)
| | | | | | - Stephan Winter
- Plant Virus Department, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
40
|
Ozimati A, Kawuki R, Esuma W, Kayondo SI, Pariyo A, Wolfe M, Jannink JL. Genetic Variation and Trait Correlations in an East African Cassava Breeding Population for Genomic Selection. CROP SCIENCE 2019; 59:460-473. [PMID: 33343017 PMCID: PMC7680944 DOI: 10.2135/cropsci2018.01.0060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/27/2018] [Indexed: 05/14/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a major source of dietary carbohydrates for >700 million people globally. However, its long breeding cycle has slowed the rate of genetic gain for target traits. This study aimed to asses genetic variation, the level of inbreeding, and trait correlations in genomic selection breeding cycles. We used phenotypic and genotypic data from the National Crops Resources Research Institute (NaCRRI) foundation population (Cycle 0, C0) and the progeny (Cycle 1, C1) derived from crosses of 100 selected C0 clones as progenitors, both to evaluate and optimize genomic selection. The highest broad-sense heritability (H 2 = 0.95) and narrow-sense heritability (h 2 = 0.81) were recorded for cassava mosaic disease severity and the lowest for root weight per plot (H 2 = 0.06 and h 2 = 0.00). We observed the highest genetic correlation (r g= 0.80) between cassava brown streak disease root incidence measured at seedling and clonal stages of evaluation, suggesting the usefulness of seedling data in predicting clonal performance for cassava brown streak root necrosis. Similarly, high genetic correlations were observed between cassava brown streak disease severity (r g= 0.83) scored at 3 and 6 mo after planting (MAP) and cassava mosaic disease, scored at 3 and 6 MAP (r g= 0.95), indicating that data obtained on these two diseases at 6 MAP would suffice. Population differentiation between C0 and C1 was not well defined, implying that the 100 selected progenitors of C1 captured the diversity in the C0. Overall, genetic gain for most traits were observed from C0 to C1.
Collapse
Affiliation(s)
- Alfred Ozimati
- A. Ozimati, R. Kawuki, W. Esuma, S.I. Kayondo, and A. Pariyo, National Crops Resources Research Institute (NaCRRI), PO Box, 7084 Kampala, Uganda
- A. Ozimati, M. Wolfe, and J.-L. Jannink, School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853
- Corresponding author (). Assigned to Associate Editor Manjit Kang
| | - Robert Kawuki
- A. Ozimati, R. Kawuki, W. Esuma, S.I. Kayondo, and A. Pariyo, National Crops Resources Research Institute (NaCRRI), PO Box, 7084 Kampala, Uganda
| | - Williams Esuma
- A. Ozimati, R. Kawuki, W. Esuma, S.I. Kayondo, and A. Pariyo, National Crops Resources Research Institute (NaCRRI), PO Box, 7084 Kampala, Uganda
| | - Siraj I Kayondo
- A. Ozimati, R. Kawuki, W. Esuma, S.I. Kayondo, and A. Pariyo, National Crops Resources Research Institute (NaCRRI), PO Box, 7084 Kampala, Uganda
| | - Anthony Pariyo
- A. Ozimati, R. Kawuki, W. Esuma, S.I. Kayondo, and A. Pariyo, National Crops Resources Research Institute (NaCRRI), PO Box, 7084 Kampala, Uganda
| | - Marnin Wolfe
- A. Ozimati, M. Wolfe, and J.-L. Jannink, School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853
- M. Wolfe and J.-L. Jannink, USDA-ARS, R.W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| | - Jean-Luc Jannink
- A. Ozimati, M. Wolfe, and J.-L. Jannink, School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853
- M. Wolfe and J.-L. Jannink, USDA-ARS, R.W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| |
Collapse
|
41
|
He L, Xiao J, Rashid KY, Jia G, Li P, Yao Z, Wang X, Cloutier S, You FM. Evaluation of Genomic Prediction for Pasmo Resistance in Flax. Int J Mol Sci 2019; 20:E359. [PMID: 30654497 PMCID: PMC6359301 DOI: 10.3390/ijms20020359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Pasmo (Septoria linicola) is a fungal disease causing major losses in seed yield and quality and stem fibre quality in flax. Pasmo resistance (PR) is quantitative and has low heritability. To improve PR breeding efficiency, the accuracy of genomic prediction (GP) was evaluated using a diverse worldwide core collection of 370 accessions. Four marker sets, including three defined by 500, 134 and 67 previously identified quantitative trait loci (QTL) and one of 52,347 PR-correlated genome-wide single nucleotide polymorphisms, were used to build ridge regression best linear unbiased prediction (RR-BLUP) models using pasmo severity (PS) data collected from field experiments performed during five consecutive years. With five-fold random cross-validation, GP accuracy as high as 0.92 was obtained from the models using the 500 QTL when the average PS was used as the training dataset. GP accuracy increased with training population size, reaching values >0.9 with training population size greater than 185. Linear regression of the observed PS with the number of positive-effect QTL in accessions provided an alternative GP approach with an accuracy of 0.86. The results demonstrate the GP models based on marker information from all identified QTL and the 5-year PS average is highly effective for PR prediction.
Collapse
Affiliation(s)
- Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China.
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China.
| | - Khalid Y Rashid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Gaofeng Jia
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Pingchuan Li
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China.
| |
Collapse
|
42
|
Zaidem ML, Groen SC, Purugganan MD. Evolutionary and ecological functional genomics, from lab to the wild. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:40-55. [PMID: 30444573 DOI: 10.1111/tpj.14167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
Plant phenotypes are the result of both genetic and environmental forces that act to modulate trait expression. Over the last few years, numerous approaches in functional genomics and systems biology have led to a greater understanding of plant phenotypic variation and plant responses to the environment. These approaches, and the questions that they can address, have been loosely termed evolutionary and ecological functional genomics (EEFG), and have been providing key insights on how plants adapt and evolve. In particular, by bringing these studies from the laboratory to the field, EEFG studies allow us to gain greater knowledge of how plants function in their natural contexts.
Collapse
Affiliation(s)
- Maricris L Zaidem
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Simon C Groen
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY, 10003, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
43
|
Ozimati A, Kawuki R, Esuma W, Kayondo IS, Wolfe M, Lozano R, Rabbi I, Kulakow P, Jannink JL. Training Population Optimization for Prediction of Cassava Brown Streak Disease Resistance in West African Clones. G3 (BETHESDA, MD.) 2018; 8:3903-3913. [PMID: 30373913 PMCID: PMC6288821 DOI: 10.1534/g3.118.200710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
Abstract
Cassava production in the central, southern and eastern parts of Africa is under threat by cassava brown streak virus (CBSV). Yield losses of up to 100% occur in cases of severe infections of edible roots. Easy illegal movement of planting materials across African countries, and long-range movement of the virus vector (Bemisia tabaci) may facilitate spread of CBSV to West Africa. Thus, effort to pre-emptively breed for CBSD resistance in W. Africa is critical. Genomic selection (GS) has become the main approach for cassava breeding, as costs of genotyping per sample have declined. Using phenotypic and genotypic data (genotyping-by-sequencing), followed by imputation to whole genome sequence (WGS) for 922 clones from National Crops Resources Research Institute, Namulonge, Uganda as a training population (TP), we predicted CBSD symptoms for 35 genotyped W. African clones, evaluated in Uganda. The highest prediction accuracy (r = 0.44) was observed for cassava brown streak disease severity scored at three months (CBSD3s) in the W. African clones using WGS-imputed markers. Optimized TPs gave higher prediction accuracies for CBSD3s and CBSD6s than random TPs of the same size. Inclusion of CBSD QTL chromosome markers as kernels, increased prediction accuracies for CBSD3s and CBSD6s. Similarly, WGS imputation of markers increased prediction accuracies for CBSD3s and for cassava brown streak disease root severity (CBSDRs), but not for CBSD6s. Based on these results we recommend TP optimization, inclusion of CBSD QTL markers in genomic prediction models, and the use of high-density (WGS-imputed) markers for CBSD predictions across population.
Collapse
Affiliation(s)
- Alfred Ozimati
- National Crops Resources Research Institute (NaCRRI), P.O. Box, 7084 Kampala, Uganda
- School of Integrative Plant Science, Plant breeding and Genetics Section, Cornell University, Ithaca, New York
| | - Robert Kawuki
- National Crops Resources Research Institute (NaCRRI), P.O. Box, 7084 Kampala, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute (NaCRRI), P.O. Box, 7084 Kampala, Uganda
| | - Ismail Siraj Kayondo
- National Crops Resources Research Institute (NaCRRI), P.O. Box, 7084 Kampala, Uganda
| | - Marnin Wolfe
- School of Integrative Plant Science, Plant breeding and Genetics Section, Cornell University, Ithaca, New York
| | - Roberto Lozano
- School of Integrative Plant Science, Plant breeding and Genetics Section, Cornell University, Ithaca, New York
| | - Ismail Rabbi
- International Institute for Tropical Agriculture (IITA), Ibadan, Oyo, Nigeria
| | - Peter Kulakow
- International Institute for Tropical Agriculture (IITA), Ibadan, Oyo, Nigeria
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Plant breeding and Genetics Section, Cornell University, Ithaca, New York
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R.W. Holley Center for Agriculture and Health, Ithaca 14853, NY
| |
Collapse
|
44
|
Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, Zhao K, Rahman M, Islam T. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges. FRONTIERS IN PLANT SCIENCE 2018; 9:617. [PMID: 29868073 PMCID: PMC5952327 DOI: 10.3389/fpls.2018.00617] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/18/2018] [Indexed: 05/19/2023]
Abstract
The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest outbreak and increased abiotic stresses due to climate change pose a high risk to tropical crop production. Although conventional breeding techniques have significantly increased crop production and yield, new approaches are required to further improve crop production in order to meet the global growing demand for food. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein9) genome editing technology has shown great promise for quickly addressing emerging challenges in agriculture. It can be used to precisely modify genome sequence of any organism including plants to achieve the desired trait. Compared to other genome editing tools such as zinc finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), CRISPR/Cas9 is faster, cheaper, precise and highly efficient in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a user-friendly tool for development of non-transgenic genome edited crop plants to counteract harmful effects from climate change and ensure future food security of increasing population in tropical countries. This review updates current knowledge and potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to gain resiliency against emerging pests and abiotic stresses.
Collapse
Affiliation(s)
- Effi Haque
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Md. Mahmudul Hassan
- Division of Genetics, Genomics and Development School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Pankaj Bhowmik
- National Research Council of Canada, Saskatoon, SK, Canada
| | - M. Rezaul Karim
- Department of Biotechnology and Genetic Engineering Jahangirnagar University Savar, Dhaka, Bangladesh
| | - Magdalena Śmiech
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mahfuzur Rahman
- Extension Service, West Virginia University, Morgantown, WV, United States
| | - Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Extension Service, West Virginia University, Morgantown, WV, United States
- *Correspondence: Tofazzal Islam
| |
Collapse
|