1
|
Sabulsky DO. Current controllers for optimizing laser cooling on cold atom experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:081401. [PMID: 39166909 DOI: 10.1063/5.0190625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
The design of a single chip current source based on a common power operational amplifier is presented and demonstrated for the purpose of controlling applied magnetic fields using bias/shim electromagnets in cold atom experiments. The efficacy of the design is realized via application to red-detuned polarization-gradient cooling of 87Rb down to 3 μK. Furthermore, we demonstrate Raman spectroscopy using these devices to apply current and so generate a precise, accurate, and reproducible magnetic field. This work is intended as a short tutorial for new graduate students and postdocs of laser cooling and trapping.
Collapse
Affiliation(s)
- D O Sabulsky
- LNE-SYRTE, Observatoire de Paris-Université PSL, CNRS, Sorbonne Université, 61 Avenue de l'Observatoire, Paris F-75014, France
| |
Collapse
|
2
|
Di Carli A, Parsonage C, La Rooij A, Koehn L, Ulm C, Duncan CW, Daley AJ, Haller E, Kuhr S. Commensurate and incommensurate 1D interacting quantum systems. Nat Commun 2024; 15:474. [PMID: 38212298 PMCID: PMC10784295 DOI: 10.1038/s41467-023-44610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Single-atom imaging resolution of many-body quantum systems in optical lattices is routinely achieved with quantum-gas microscopes. Key to their great versatility as quantum simulators is the ability to use engineered light potentials at the microscopic level. Here, we employ dynamically varying microscopic light potentials in a quantum-gas microscope to study commensurate and incommensurate 1D systems of interacting bosonic Rb atoms. Such incommensurate systems are analogous to doped insulating states that exhibit atom transport and compressibility. Initially, a commensurate system with unit filling and fixed atom number is prepared between two potential barriers. We deterministically create an incommensurate system by dynamically changing the position of the barriers such that the number of available lattice sites is reduced while retaining the atom number. Our systems are characterised by measuring the distribution of particles and holes as a function of the lattice filling, and interaction strength, and we probe the particle mobility by applying a bias potential. Our work provides the foundation for preparation of low-entropy states with controlled filling in optical-lattice experiments.
Collapse
Affiliation(s)
- Andrea Di Carli
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Christopher Parsonage
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Arthur La Rooij
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Lennart Koehn
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Clemens Ulm
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Callum W Duncan
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Andrew J Daley
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Elmar Haller
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom
| | - Stefan Kuhr
- Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, United Kingdom.
| |
Collapse
|
3
|
Evered SJ, Bluvstein D, Kalinowski M, Ebadi S, Manovitz T, Zhou H, Li SH, Geim AA, Wang TT, Maskara N, Levine H, Semeghini G, Greiner M, Vuletić V, Lukin MD. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 2023; 622:268-272. [PMID: 37821591 PMCID: PMC10567572 DOI: 10.1038/s41586-023-06481-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 10/13/2023]
Abstract
The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing1. Neutral-atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits2,3 and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture4. The main outstanding challenge has been to reduce errors in entangling operations mediated through Rydberg interactions5. Here we report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface-code threshold for error correction6,7. Our method uses fast, single-pulse gates based on optimal control8, atomic dark states to reduce scattering9 and improvements to Rydberg excitation and atom cooling. We benchmark fidelity using several methods based on repeated gate applications10,11, characterize the physical error sources and outline future improvements. Finally, we generalize our method to design entangling gates involving a higher number of qubits, which we demonstrate by realizing low-error three-qubit gates12,13. By enabling high-fidelity operation in a scalable, highly connected system, these advances lay the groundwork for large-scale implementation of quantum algorithms14, error-corrected circuits7 and digital simulations15.
Collapse
Affiliation(s)
- Simon J Evered
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Dolev Bluvstein
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Sepehr Ebadi
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Tom Manovitz
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA, USA
- QuEra Computing Inc., Boston, MA, USA
| | - Sophie H Li
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Tout T Wang
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Nishad Maskara
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Harry Levine
- Department of Physics, Harvard University, Cambridge, MA, USA
- AWS Center for Quantum Computing, Pasadena, CA, USA
| | - Giulia Semeghini
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Markus Greiner
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Vladan Vuletić
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Bregazzi A, Janin P, Dyer S, McGilligan JP, Burrow O, Riis E, Uttamchandani D, Bauer R, Griffin PF. Cold-atom shaping with MEMS scanning mirrors. OPTICS LETTERS 2023; 48:37-40. [PMID: 36563364 DOI: 10.1364/ol.475353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate the integration of micro-electro-mechanical-systems (MEMS) scanning mirrors as active elements for the local optical pumping of ultra-cold atoms in a magneto-optical trap. A pair of MEMS mirrors steer a focused resonant beam through a cloud of trapped atoms shelved in the F = 1 ground-state of 87Rb for spatially selective fluorescence of the atom cloud. Two-dimensional control is demonstrated by forming geometrical patterns along the imaging axis of the cold atom ensemble. Such control of the atomic ensemble with a microfabricated mirror pair could find applications in single atom selection, local optical pumping, and arbitrary cloud shaping. This approach has significant potential for miniaturization and in creating portable control systems for quantum optic experiments.
Collapse
|
5
|
Templier S, Cheiney P, d’Armagnac de Castanet Q, Gouraud B, Porte H, Napolitano F, Bouyer P, Battelier B, Barrett B. Tracking the vector acceleration with a hybrid quantum accelerometer triad. SCIENCE ADVANCES 2022; 8:eadd3854. [PMID: 36351013 PMCID: PMC9645711 DOI: 10.1126/sciadv.add3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Robust and accurate acceleration tracking remains a challenge in many fields. For geophysics and economic geology, precise gravity mapping requires onboard sensors combined with accurate positioning and navigation systems. Cold atom-based quantum inertial sensors can potentially provide these high-precision instruments. However, current scalar instruments require precise alignment with vector quantities. Here, we present the first hybrid three-axis accelerometer exploiting the quantum advantage to measure the full acceleration vector by combining three orthogonal atom interferometer measurements with a classical navigation-grade accelerometer triad. Its ultralow bias permits tracking the acceleration vector over long time scales, yielding a 50-fold improvement in stability (6 × 10-8 g) over our classical accelerometers. We record the acceleration vector at a high data rate (1 kHz), with absolute magnitude accuracy below 10 μg, and pointing accuracy of 4 μrad. This paves the way toward future strapdown applications with quantum sensors and highlights their potential as future inertial navigation units.
Collapse
Affiliation(s)
- Simon Templier
- iXblue, 34 Rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
- Laboratoire Photonique, Numérique et Nanosciences (LP2N), Université Bordeaux-IOGS-CNRS: UMR 5298, 1 Rue François Mitterrand, 33400 Talence, France
| | - Pierrick Cheiney
- iXblue, 34 Rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
| | - Quentin d’Armagnac de Castanet
- iXblue, 34 Rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
- Laboratoire Photonique, Numérique et Nanosciences (LP2N), Université Bordeaux-IOGS-CNRS: UMR 5298, 1 Rue François Mitterrand, 33400 Talence, France
| | - Baptiste Gouraud
- iXblue, 34 Rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
| | - Henri Porte
- iXblue, 34 Rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
| | - Fabien Napolitano
- iXblue, 34 Rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
| | - Philippe Bouyer
- iXblue, 34 Rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, Netherlands
- QuSoft, Science Park 123, 1098XG Amsterdam, Netherlands
- Eindhoven University of Technology, Eindhoven, Netherlands
| | - Baptiste Battelier
- Laboratoire Photonique, Numérique et Nanosciences (LP2N), Université Bordeaux-IOGS-CNRS: UMR 5298, 1 Rue François Mitterrand, 33400 Talence, France
| | - Brynle Barrett
- iXblue, 34 Rue de la Croix de Fer, 78105 Saint-Germain-en-Laye, France
- Laboratoire Photonique, Numérique et Nanosciences (LP2N), Université Bordeaux-IOGS-CNRS: UMR 5298, 1 Rue François Mitterrand, 33400 Talence, France
- Department of Physics, University of New Brunswick, 8 Bailey Dr., Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
6
|
Barker DS, Norrgard EB, Klimov NN, Fedchak JA, Scherschligt J, Eckel S. Λ-enhanced gray molasses in a tetrahedral laser beam geometry. OPTICS EXPRESS 2022; 30:9959-9970. [PMID: 35299409 PMCID: PMC9843705 DOI: 10.1364/oe.444711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
We report the observation of sub-Doppler cooling of lithium using an irregular-tetrahedral laser beam arrangement, which is produced by a nanofabricated diffraction grating. We are able to capture 11(2)% of the lithium atoms from a grating magneto-optical trap into Λ-enhanced D1 gray molasses. The molasses cools the captured atoms to a radial temperature of 60(9) μK and an axial temperature of 23(3) μK. In contrast to results from conventional counterpropagating beam configurations, we do not observe cooling when our optical fields are detuned from Raman resonance. An optical Bloch equation simulation of the cooling dynamics agrees with our data. Our results show that grating magneto-optical traps can serve as a robust source of cold atoms for tweezer-array and atom-chip experiments, even when the atomic species is not amenable to sub-Doppler cooling in bright optical molasses.
Collapse
Affiliation(s)
- D. S. Barker
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - E. B. Norrgard
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - N. N. Klimov
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - J. A. Fedchak
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - J. Scherschligt
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - S. Eckel
- Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
7
|
Langin TK, Jorapur V, Zhu Y, Wang Q, DeMille D. Polarization Enhanced Deep Optical Dipole Trapping of Λ-Cooled Polar Molecules. PHYSICAL REVIEW LETTERS 2021; 127:163201. [PMID: 34723596 DOI: 10.1103/physrevlett.127.163201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate loading of SrF molecules into an optical dipole trap (ODT) via in-trap Λ-enhanced gray molasses cooling. We find that this cooling can be optimized by a proper choice of relative ODT and cooling beam polarizations. In this optimized configuration, we observe molecules with temperatures as low as 14(1) μK in traps with depths up to 570 μK. With optimized parameters, we transfer ∼5% of molecules from our radio-frequency magneto-optical trap into the ODT, at a density of ∼2×10^{9} cm^{-3}, a phase space density of ∼2×10^{-7}, and with a trap lifetime of ∼1 s.
Collapse
Affiliation(s)
- Thomas K Langin
- Department of Physics, Yale University, New Haven, Connecticut, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Varun Jorapur
- Department of Physics, Yale University, New Haven, Connecticut, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Yuqi Zhu
- Department of Physics, Yale University, New Haven, Connecticut, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Qian Wang
- Department of Physics, Yale University, New Haven, Connecticut, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - David DeMille
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
8
|
Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, Hemmerich A. Quantum Degenerate Fermi Gas in an Orbital Optical Lattice. PHYSICAL REVIEW LETTERS 2021; 127:033201. [PMID: 34328765 DOI: 10.1103/physrevlett.127.033201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Spin-polarized samples and spin mixtures of quantum degenerate fermionic atoms are prepared in selected excited Bloch bands of an optical checkerboard square lattice. For the spin-polarized case, extreme band lifetimes above 10 s are observed, reflecting the suppression of collisions by Pauli's exclusion principle. For spin mixtures, lifetimes are reduced by an order of magnitude by two-body collisions between different spin components, but still remarkably large values of about 1 s are found. By analyzing momentum spectra, we can directly observe the orbital character of the optical lattice. The observations demonstrated here form the basis for exploring the physics of Fermi gases with two paired spin components in orbital optical lattices, including the regime of unitarity.
Collapse
Affiliation(s)
- M Hachmann
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - Y Kiefer
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - J Riebesehl
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
| | - R Eichberger
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
| | - A Hemmerich
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| |
Collapse
|
9
|
Ornelas-Huerta DP, Bienias P, Craddock AN, Gullans MJ, Hachtel AJ, Kalinowski M, Lyon ME, Gorshkov AV, Rolston SL, Porto JV. Tunable Three-Body Loss in a Nonlinear Rydberg Medium. PHYSICAL REVIEW LETTERS 2021; 126:173401. [PMID: 33988429 DOI: 10.1103/physrevlett.126.173401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Long-range Rydberg interactions, in combination with electromagnetically induced transparency (EIT), give rise to strongly interacting photons where the strength, sign, and form of the interactions are widely tunable and controllable. Such control can be applied to both coherent and dissipative interactions, which provides the potential for generating novel few-photon states. Recently it has been shown that Rydberg-EIT is a rare system in which three-body interactions can be as strong or stronger than two-body interactions. In this work, we study three-body scattering loss for Rydberg-EIT in a wide regime of single and two-photon detunings. Our numerical simulations of the full three-body wave function and analytical estimates based on Fermi's golden rule strongly suggest that the observed features in the outgoing photonic correlations are caused by the resonant enhancement of the three-body losses.
Collapse
Affiliation(s)
- D P Ornelas-Huerta
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Przemyslaw Bienias
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexander N Craddock
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Michael J Gullans
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Andrew J Hachtel
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Marcin Kalinowski
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Mary E Lyon
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - S L Rolston
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - J V Porto
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
10
|
Richardson L, Hines A, Schaffer A, Anderson BP, Guzman F. Quantum hybrid optomechanical inertial sensing. APPLIED OPTICS 2020; 59:G160-G166. [PMID: 32749329 DOI: 10.1364/ao.393060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
We discuss the design of quantum hybrid inertial sensor that combines an optomechanical inertial sensor with the retroreflector of a cold atom interferometer. This sensor fusion approach provides absolute and high-accuracy measurements with cold atom interferometers, while utilizing the optomechanical inertial sensor at frequencies above the repetition rate of the atom interferometer. This improves the overall measurement bandwidth as well as the robustness and field deployment capabilities of these systems. We evaluate which parameters yield an optimal acceleration sensitivity, from which we anticipate a noise floor at nano-g levels from DC to 1 kHz.
Collapse
|
11
|
Chen X, Fan B. The emergence of picokelvin physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:076401. [PMID: 32303019 DOI: 10.1088/1361-6633/ab8ab6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The frontier of low-temperature physics has advanced to the mid-picokelvin (pK) regime but progress has come to a halt because of the problem of gravity. Ultracold atoms must be confined in some type of potential energy well: if the depth of the well is less than the energy an atom gains by falling through it, the atom escapes. This article reviews ultracold atom research, emphasizing the advances that carried the low-temperature frontier to 450 pK. We review microgravity methods for overcoming the gravitational limit to achieving lower temperatures using free-fall techniques such as a drop tower, sounding rocket, parabolic flight plane and the International Space Station. We describe two techniques that promise further advancement-an atom chip and an all-optical trap-and present recent experimental results. Basic research in new regimes of observation has generally led to scientific discoveries and new technologies that benefit society. We expect this to be the case as the low-temperature frontier advances and we propose some new opportunities for research.
Collapse
Affiliation(s)
- Xuzong Chen
- Institute of Quantum Electronics, Department of Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, People's Republic of China
| | | |
Collapse
|
12
|
Ding S, Wu Y, Finneran IA, Burau JJ, Ye J. Sub-Doppler Cooling and Compressed Trapping of YO Molecules at μK Temperatures. PHYSICAL REVIEW. X 2020; 10:10.1103/physrevx.10.021049. [PMID: 33643688 PMCID: PMC7909871 DOI: 10.1103/physrevx.10.021049] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Complex molecular structure demands customized solutions to laser cooling by extending its general set of principles and practices. Compared with other laser-cooled molecules, yttrium monoxide (YO) exhibits a large electron-nucleus interaction, resulting in a dominant hyperfine interaction over the electron spin-rotation coupling. The YO ground state is thus comprised of two manifolds of closely spaced states, with one of them possessing a negligible Landé g factor. This unique energy level structure favors dual-frequency dc magneto-optical trapping (MOT) and gray molasses cooling (GMC). We report exceptionally robust cooling of YO at 4 μK over a wide range of laser intensity, detunings (one- and two-photon), and magnetic field. The magnetic insensitivity enables the spatial compression of the molecular cloud by alternating GMC and MOT under the continuous operation of the quadrupole magnetic field. A combination of these techniques produces a laser-cooled molecular sample with the highest phase space density in free space.
Collapse
Affiliation(s)
- Shiqian Ding
- JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309-0440, USA; Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| | - Yewei Wu
- JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309-0440, USA; Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| | - Ian A. Finneran
- JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309-0440, USA; Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| | - Justin J. Burau
- JILA, National Institute of Standards and Technology and the University of Colorado, Boulder, Colorado 80309-0440, USA; Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
| | | |
Collapse
|
13
|
Liu Y, Grimes DD, Hu MG, Ni KK. Probing ultracold chemistry using ion spectrometry. Phys Chem Chem Phys 2020; 22:4861-4874. [DOI: 10.1039/c9cp07015j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions between KRb molecules at sub-microkelvin temperatures were probed using ion spectrometry.
Collapse
Affiliation(s)
- Yu Liu
- Department of Physics
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - David D. Grimes
- Department of Physics
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - Ming-Guang Hu
- Department of Physics
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| | - Kang-Kuen Ni
- Department of Physics
- Harvard University
- Cambridge
- USA
- Department of Chemistry and Chemical Biology
| |
Collapse
|
14
|
Condon G, Rabault M, Barrett B, Chichet L, Arguel R, Eneriz-Imaz H, Naik D, Bertoldi A, Battelier B, Bouyer P, Landragin A. All-Optical Bose-Einstein Condensates in Microgravity. PHYSICAL REVIEW LETTERS 2019; 123:240402. [PMID: 31922832 DOI: 10.1103/physrevlett.123.240402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 06/10/2023]
Abstract
We report on the all-optical production of Bose-Einstein condensates in microgravity using a combination of grey molasses cooling, light-shift engineering and optical trapping in a painted potential. Forced evaporative cooling in a 3-m high Einstein elevator results in 4×10^{4} condensed atoms every 13.5 s, with a temperature as low as 35 nK. In this system, the atomic cloud can expand in weightlessness for up to 400 ms, paving the way for atom interferometry experiments with extended interrogation times and studies of ultracold matter physics at low energies on ground or in Space.
Collapse
Affiliation(s)
- G Condon
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - M Rabault
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - B Barrett
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - L Chichet
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - R Arguel
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - H Eneriz-Imaz
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - D Naik
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - A Bertoldi
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - B Battelier
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - P Bouyer
- LP2N, Laboratoire Photonique, Numérique et Nanosciences, Université Bordeaux-IOGS-CNRS:UMR 5298, 1 rue François Mitterrand, 33400 Talence, France
| | - A Landragin
- LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, 75014 Paris, France
| |
Collapse
|
15
|
Zelevinsky T. Ultracold and unreactive fermionic molecules. Science 2019; 363:820. [DOI: 10.1126/science.aav9149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Suppressed density fluctuations of
40
K
87
Rb gases inhibit molecular collisions and reactions
Collapse
|
16
|
Kim H, Kim M, Lee W, Ahn J. Gerchberg-Saxton algorithm for fast and efficient atom rearrangement in optical tweezer traps. OPTICS EXPRESS 2019; 27:2184-2196. [PMID: 30732259 DOI: 10.1364/oe.27.002184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/29/2018] [Indexed: 06/09/2023]
Abstract
We demonstrate fast and efficient neutral atom rearrangements in an optical tweezer-trap array, using an enhanced hologram generation algorithm. The conventional Gerchberg-Saxton (GS) algorithm is modified to include zero-padding hologram expansion for optical tweezer sharpness, weighted iteration feedback for reduced crosstalk, and phase induction for successive phase continuity. With the new GS algorithm, we experimentally demonstrate defect-free formation of 2D atom arrays with various geometries, achieving a high loading probability of 0.98 for up to N ∼ 30 atoms. Furthermore, the hologram movie calculation speed is enhanced to cover a computational scalability up to 𝒪(103).
Collapse
|
17
|
De Marco L, Valtolina G, Matsuda K, Tobias WG, Covey JP, Ye J. A degenerate Fermi gas of polar molecules. Science 2019; 363:853-856. [PMID: 30655445 DOI: 10.1126/science.aau7230] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/04/2019] [Indexed: 11/02/2022]
Abstract
Experimental realization of a quantum degenerate gas of molecules would provide access to a wide range of phenomena in molecular and quantum sciences. However, the very complexity that makes ultracold molecules so enticing has made reaching degeneracy an outstanding experimental challenge over the past decade. We now report the production of a degenerate Fermi gas of ultracold polar molecules of potassium-rubidium. Through coherent adiabatic association in a deeply degenerate mixture of a rubidium Bose-Einstein condensate and a potassium Fermi gas, we produce molecules at temperatures below 0.3 times the Fermi temperature. We explore the properties of this reactive gas and demonstrate how degeneracy suppresses chemical reactions, making a long-lived degenerate gas of polar molecules a reality.
Collapse
Affiliation(s)
- Luigi De Marco
- JILA, National Institute of Standards and Technology (NIST) and University of Colorado, Boulder, CO 80309, USA.,Department of Physics, University of Colorado, 440 UCB, Boulder, CO 80309, USA
| | - Giacomo Valtolina
- JILA, National Institute of Standards and Technology (NIST) and University of Colorado, Boulder, CO 80309, USA.,Department of Physics, University of Colorado, 440 UCB, Boulder, CO 80309, USA
| | - Kyle Matsuda
- JILA, National Institute of Standards and Technology (NIST) and University of Colorado, Boulder, CO 80309, USA.,Department of Physics, University of Colorado, 440 UCB, Boulder, CO 80309, USA
| | - William G Tobias
- JILA, National Institute of Standards and Technology (NIST) and University of Colorado, Boulder, CO 80309, USA.,Department of Physics, University of Colorado, 440 UCB, Boulder, CO 80309, USA
| | - Jacob P Covey
- JILA, National Institute of Standards and Technology (NIST) and University of Colorado, Boulder, CO 80309, USA.,Department of Physics, University of Colorado, 440 UCB, Boulder, CO 80309, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology (NIST) and University of Colorado, Boulder, CO 80309, USA. .,Department of Physics, University of Colorado, 440 UCB, Boulder, CO 80309, USA
| |
Collapse
|