1
|
Bergevin C, Freeman DM, Coffin A. How Exceptional Is the Ear? J Assoc Res Otolaryngol 2025:10.1007/s10162-025-00988-z. [PMID: 40355684 DOI: 10.1007/s10162-025-00988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Studies of hearing often conclude that the ear is "remarkable" or that its performance is "exceptional." Some common examples include the following: ▹ the ears of mammals are encased in the hardest bone in the body; ▹ the ear contains the most vascularized tissue in body; ▹ the ear has the highest resting potential in the body; ▹ ears have a unique "fingerprint"; ▹ the ear can detect signals below the thermal noise floor; and ▹ the ear is highly nonlinear (or highly linear, depending upon who you ask). Some claims hold up to further scrutiny, while others do not. Additionally, several claims hold for animals in one taxon, while others are shared across taxa. Most frequently, our sense of wonder results from the differences between ears as products of natural selection (over eons) and artificial systems as products of engineering design. Our goal in analyzing claims of remarkable or exceptional performance is to deepen our appreciation of these differences.
Collapse
Affiliation(s)
| | - Dennis M Freeman
- Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
- Bellucci Translational Hearing Center and Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| |
Collapse
|
2
|
Faber J, Bozovic D. Review of chaos in hair-cell dynamics. Front Neurol 2024; 15:1444617. [PMID: 39050124 PMCID: PMC11266079 DOI: 10.3389/fneur.2024.1444617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The remarkable signal-detection capabilities of the auditory and vestibular systems have been studied for decades. Much of the conceptual framework that arose from this research has suggested that these sensory systems rest on the verge of instability, near a Hopf bifurcation, in order to explain the detection specifications. However, this paradigm contains several unresolved issues. Critical systems are not robust to stochastic fluctuations or imprecise tuning of the system parameters. Further, a system poised at criticality exhibits a phenomenon known in dynamical systems theory as critical slowing down, where the response time diverges as the system approaches the critical point. An alternative description of these sensory systems is based on the notion of chaotic dynamics, where the instabilities inherent to the dynamics produce high temporal acuity and sensitivity to weak signals, even in the presence of noise. This alternative description resolves the issues that arise in the criticality picture. We review the conceptual framework and experimental evidence that supports the use of chaos for signal detection by these systems, and propose future validation experiments.
Collapse
Affiliation(s)
- Justin Faber
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dolores Bozovic
- Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Faber J, Bozovic D. Criticality and chaos in auditory and vestibular sensing. Sci Rep 2024; 14:13073. [PMID: 38844524 PMCID: PMC11156970 DOI: 10.1038/s41598-024-63696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
The auditory and vestibular systems exhibit remarkable sensitivity of detection, responding to deflections on the order of angstroms, even in the presence of biological noise. The auditory system exhibits high temporal acuity and frequency selectivity, allowing us to make sense of the acoustic world around us. As the acoustic signals of interest span many orders of magnitude in both amplitude and frequency, this system relies heavily on nonlinearities and power-law scaling. The vestibular system, which detects ground-borne vibrations and creates the sense of balance, exhibits highly sensitive, broadband detection. It likewise requires high temporal acuity so as to allow us to maintain balance while in motion. The behavior of these sensory systems has been extensively studied in the context of dynamical systems theory, with many empirical phenomena described by critical dynamics. Other phenomena have been explained by systems in the chaotic regime, where weak perturbations drastically impact the future state of the system. Using a Hopf oscillator as a simple numerical model for a sensory element in these systems, we explore the intersection of the two types of dynamical phenomena. We identify the relative tradeoffs between different detection metrics, and propose that, for both types of sensory systems, the instabilities giving rise to chaotic dynamics improve signal detection.
Collapse
Affiliation(s)
- Justin Faber
- Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA.
| | - Dolores Bozovic
- Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
4
|
Santos DOC, Trindade MAS, da Silva AJ. Nonextensive realizations in interacting ion channels: Implications for mechano-electrical transducer mechanisms. Biosystems 2023; 232:105005. [PMID: 37611860 DOI: 10.1016/j.biosystems.2023.105005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
We propose a theoretical model to investigate the thermodynamics of single and coupled two-state ion channels, associated with mechanoelectrical transduction (MET) and hair cell biophysics. The modeling was based on the Tsallis nonextensive statistical mechanics. The choice for a nonextensive framework in modeling ion channels is encouraged on the fact that we take into account the presence of interactions or long-range correlations in the dynamics of single and coupled ion channels. However, the basic assumptions that support Boltzmann-Gibbs statistics, traditionally used to model ion channel dynamics, state that the system is formed by independent or weakly interacting elements. Despite being well studied in many biological systems, the literature has not yet addressed the study of both entropy and mutual information related to isolated or physically interacting pairs of MET channels. Inspired by hair cell biophysics, we show how the presence of nonextensivity, or subadditivity and superadditivity modulates the nonextensive entropy and mutual information as functions of stereocilia displacements. We also observe that the magnitude of the interaction between the two channels, given by a nonextensive parameter, influences the amplitude of the nonextensive joint entropy and mutual information as functions of the hair cell displacements. Finally, we show how nonextensivity regulates the current versus displacement curve for a single and a pair of interacting two-state channels. The present findings shed light on the thermodynamic process involved in the molecular mechanisms of the auditory system.
Collapse
Affiliation(s)
- D O C Santos
- Universidade Federal do Sul da Bahia, CEP 45600-923, Itabuna, Bahia, Brazil
| | - M A S Trindade
- Colegiado de Física, Departamento de Ciências Exatas e da Terra, Universidade do Estado da Bahia, CEP 41150-000, Salvador, Bahia, Brazil
| | - A J da Silva
- Universidade Federal do Sul da Bahia, CEP 45600-923, Itabuna, Bahia, Brazil.
| |
Collapse
|
5
|
Faber J, Bozovic D. Chimera states and frequency clustering in systems of coupled inner-ear hair cells. CHAOS (WOODBURY, N.Y.) 2021; 31:073142. [PMID: 34340330 DOI: 10.1063/5.0056848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Coupled hair cells of the auditory and vestibular systems perform the crucial task of converting the energy of sound waves and ground-borne vibrations into ionic currents. We mechanically couple groups of living, active hair cells with artificial membranes, thus mimicking in vitro the coupled dynamical system. We identify chimera states and frequency clustering in the dynamics of these coupled nonlinear, autonomous oscillators. We find that these dynamical states can be reproduced by our numerical model with heterogeneity of the parameters. Furthermore, we find that this model is most sensitive to external signals when poised at the onset of synchronization, where chimera and cluster states are likely to form. We, therefore, propose that the partial synchronization in our experimental system is a manifestation of a system poised at the verge of synchronization with optimal sensitivity.
Collapse
Affiliation(s)
- Justin Faber
- Department of Physics & Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Dolores Bozovic
- Department of Physics & Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Belousov R, Berger F, Hudspeth AJ. Volterra-series approach to stochastic nonlinear dynamics: Linear response of the Van der Pol oscillator driven by white noise. Phys Rev E 2020; 102:032209. [PMID: 33075951 DOI: 10.1103/physreve.102.032209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/16/2020] [Indexed: 11/07/2022]
Abstract
The Van der Pol equation is a paradigmatic model of relaxation oscillations. This remarkable nonlinear phenomenon of self-sustained oscillatory motion underlies important rhythmic processes in nature and electrical engineering. Relaxation oscillations in a real system are usually coupled to environmental noise, which further enriches their dynamics, but makes theoretical analysis of such systems and determination of the equation parameter values a difficult task. In a companion paper we have proposed an analytic approach to a similar problem for another classical nonlinear model-the bistable Duffing oscillator. Here we extend our techniques to the case of the Van der Pol equation driven by white noise. We analyze the statistics of solutions and propose a method to estimate parameter values from the oscillator's time series. We use experimental data of active oscillations in a biophysical system to demonstrate how our method applies to real observations and can be generalized for more complex models.
Collapse
Affiliation(s)
- Roman Belousov
- Abdus Salam International Centre for Theoretical Physics Strada Costiera 11, 34151, Trieste, Italy
| | - Florian Berger
- Howard Hughes Medical Institute, Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065, USA
| | - A J Hudspeth
- Howard Hughes Medical Institute, Laboratory of Sensory Neuroscience, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
7
|
Chaotic Dynamics Enhance the Sensitivity of Inner Ear Hair Cells. Sci Rep 2019; 9:18394. [PMID: 31804578 PMCID: PMC6895040 DOI: 10.1038/s41598-019-54952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 11/21/2019] [Indexed: 12/03/2022] Open
Abstract
Hair cells of the auditory and vestibular systems are capable of detecting sounds that induce sub-nanometer vibrations of the hair bundle, below the stochastic noise levels of the surrounding fluid. Furthermore, the auditory system exhibits a highly rapid response time, in the sub-millisecond regime. We propose that chaotic dynamics enhance the sensitivity and temporal resolution of the hair bundle response, and we provide experimental and theoretical evidence for this effect. We use the Kolmogorov entropy to measure the degree of chaos in the system and the transfer entropy to quantify the amount of stimulus information captured by the detector. By varying the viscosity and ionic composition of the surrounding fluid, we are able to experimentally modulate the degree of chaos observed in the hair bundle dynamics in vitro. We consistently find that the hair bundle is most sensitive to a stimulus of small amplitude when it is poised in the weakly chaotic regime. Further, we show that the response time to a force step decreases with increasing levels of chaos. These results agree well with our numerical simulations of a chaotic Hopf oscillator and suggest that chaos may be responsible for the high sensitivity and rapid temporal response of hair cells.
Collapse
|
8
|
Abstract
During the detection of sound, hair bundles perform a crucial step by responding to mechanical deflections and converting them into changes in electrical potential that subsequently lead to the release of neurotransmitter. The sensory hair bundle response is characterized by an essential nonlinearity and an energy-consuming amplification of the incoming sound. The active response has been shown to enhance the hair bundle's sensitivity and frequency selectivity of detection. The biological phenomena shown by the bundle have been extensively studied in vitro, allowing comparisons to behaviors observed in vivo. The experimental observations have been well explained by numerical simulations, which describe the cellular mechanisms operant within the bundle, as well as by more sparse theoretical models, based on dynamical systems theory.
Collapse
Affiliation(s)
- Dolores Bozovic
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095-1547.,California NanoSystems Institute, University of California, Los Angeles, California 90095-1547
| |
Collapse
|
9
|
Yar A, Ullah Khan S. Chaotic transport of electron wave packet in Weyl semimetal slab. Phys Rev E 2019; 99:052213. [PMID: 31212456 DOI: 10.1103/physreve.99.052213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 11/07/2022]
Abstract
We theoretically study the quantum transport of an electron wave packet on the Fermi arcs and in the bulk of a Weyl semimetal slab. The numerical analysis of the dynamical equations obtained from the Heisenberg equation of motion reveals that the electron motion in the Weyl semimetal exhibits interesting unusual effects. In particular, signatures of chaotic behavior in the transport of the electron wave packet are observed that are diagnosed by the relevant out-of-time-order correlation function and are analyzed using Poincaré maps. We attribute the appearance of such chaotic transport of the electron wave packet to the interplay of Zitterbewegung and cyclotron oscillations in the Weyl semimetal slab. The chaotic nature of the electron transport is exhibited both along the Fermi arcs and in the bulk of the slab, depending strongly upon the spin orientation of the electron. In the presence of a magnetic field, both interband and intraband (cyclotron) frequencies contribute to the resulting oscillation frequency of the electron motion.
Collapse
Affiliation(s)
- Abdullah Yar
- Department of Physics, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Safi Ullah Khan
- Department of Physics, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
Faber J, Bozovic D. Noise-induced chaos and signal detection by the nonisochronous Hopf oscillator. CHAOS (WOODBURY, N.Y.) 2019; 29:043132. [PMID: 31042933 DOI: 10.1063/1.5091938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The Hopf oscillator has been shown to capture many phenomena of the auditory and vestibular systems. These systems exhibit remarkable temporal resolution and sensitivity to weak signals, as they are able to detect sounds that induce motion in the angstrom regime. In the present work, we find the analytic response function of a nonisochronous Hopf oscillator to a step stimulus and show that the system is most sensitive in the regime where noise induces chaotic dynamics. We show that this regime also provides a faster response and enhanced temporal resolution. Thus, the system can detect a very brief, low-amplitude pulse. Finally, we subject the oscillator to periodic delta-function forcing, mimicking a spike train, and find the exact analytic expressions for the stroboscopic maps. Using these maps, we find a period-doubling cascade to chaos with increasing force strength.
Collapse
Affiliation(s)
- Justin Faber
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Dolores Bozovic
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| |
Collapse
|