1
|
Mejías EM, Carrión E, Sparman A, Juliana A. What is pentalogy of Cantrell? Cardiol Young 2024:1-3. [PMID: 39358849 DOI: 10.1017/s1047951124025794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
We present the unusual case of an 8-month-old female with tetralogy of Fallot, coarctation of aorta, and complete presentation of pentalogy of Cantrell. A meta-analysis of 236 cases of Cantrell's syndrome reported in the literature was performed to compare intracardiac findings.
Collapse
Affiliation(s)
- Exa M Mejías
- Department of Pediatrics, University Pediatric Hospital, San Juan, Puerto Rico
| | - Enrique Carrión
- Division of Pediatric Cardiology, Department of Pediatrics, University Pediatric Hospital, San Juan, Puerto Rico
| | - Arnelle Sparman
- Department of Pediatrics, Institute for Health Sciences Education, Georgetown Public Hospital Corporation, Georgetown, Guyana
| | - Amadu Juliana
- Department of Pediatrics, Institute for Health Sciences Education, Georgetown Public Hospital Corporation, Georgetown, Guyana
| |
Collapse
|
2
|
Lemay SE, Grobs Y, Romanet C, Martineau S, Salem M, Shimauchi T, Breuils-Bonnet S, Bourgeois A, Théberge C, Pelletier A, Potus F, Provencher S, Bonnet S, Boucherat O. Hypusine Signaling Promotes Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2024; 209:1376-1391. [PMID: 38261723 DOI: 10.1164/rccm.202305-0909oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024] Open
Abstract
Rationale: The ubiquitous polyamine spermidine is essential for cell survival and proliferation. One important function of spermidine is to serve as a substrate for hypusination, a posttranslational modification process that occurs exclusively on eukaryotic translation factor 5A (eIF5A) and ensures efficient translation of various gene products. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive obliteration of the small pulmonary arteries (PAs) caused by excessive proliferation of PA smooth muscle cells (PASMCs) and suppressed apoptosis. Objectives: To characterize the role of hypusine signaling in PAH. Methods: Molecular, genetic, and pharmacological approaches were used both in vitro and in vivo to investigate the role of hypusine signaling in pulmonary vascular remodeling. Measurements and Main Results: Hypusine forming enzymes-deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH)-and hypusinated eukaryotic translation factor 5A are overexpressed in distal PAs and isolated PASMCs from PAH patients and animal models. In vitro, inhibition of DHPS using N1-guanyl-1,7-diaminoheptane or shRNA resulted in a decrease in PAH-PASMC resistance to apoptosis and proliferation. In vivo, inactivation of one allele of Dhps targeted to smooth muscle cells alleviates PAH in mice, and its pharmacological inhibition significantly decreases pulmonary vascular remodeling and improves hemodynamics and cardiac function in two rat models of established PAH. With mass spectrometry, hypusine signaling is shown to promote the expression of a broad array of proteins involved in oxidative phosphorylation, thus supporting the bioenergetic requirements of cell survival and proliferation. Conclusions: These findings support inhibiting hypusine signaling as a potential treatment for PAH.
Collapse
Affiliation(s)
- Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - Charlotte Romanet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - Mabrouka Salem
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - Tsukasa Shimauchi
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - Charlie Théberge
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - Andréanne Pelletier
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - François Potus
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
- Department of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
- Department of Medicine, Laval University, Quebec City, Quebec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Quebec City, Quebec, Canada; and
- Department of Medicine, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
3
|
Ward EJ, Bert S, Fanti S, Malone KM, Maughan RT, Gkantsinikoudi C, Prin F, Volpato LK, Piovezan AP, Graham GJ, Dufton NP, Perretti M, Marelli-Berg FM, Nadkarni S. Placental Inflammation Leads to Abnormal Embryonic Heart Development. Circulation 2023; 147:956-972. [PMID: 36484244 PMCID: PMC10022676 DOI: 10.1161/circulationaha.122.061934] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Placental heart development and embryonic heart development occur in parallel, and these organs have been proposed to exert reciprocal regulation during gestation. Poor placentation has been associated with congenital heart disease, an important cause of infant mortality. However, the mechanisms by which altered placental development can lead to congenital heart disease remain unresolved. METHODS In this study, we use an in vivo neutrophil-driven placental inflammation model through antibody depletion of maternal circulating neutrophils at key stages during time-mated murine pregnancy: embryonic days 4.5 and 7.5. Pregnant mice were culled at embryonic day 14.5 to assess placental and embryonic heart development. A combination of flow cytometry, histology, and bulk RNA sequencing was used to assess placental immune cell composition and tissue architecture. We also used flow cytometry and single-cell sequencing to assess embryonic cardiac immune cells at embryonic day 14.5 and histology and gene analyses to investigate embryonic heart structure and development. In some cases, offspring were culled at postnatal days 5 and 28 to assess any postnatal cardiac changes in immune cells, structure, and cardiac function, as measured by echocardiography. RESULTS In the present study, we show that neutrophil-driven placental inflammation leads to inadequate placental development and loss of barrier function. Consequently, placental inflammatory monocytes of maternal origin become capable of migration to the embryonic heart and alter the normal composition of resident cardiac macrophages and cardiac tissue structure. This cardiac impairment continues into postnatal life, hindering normal tissue architecture and function. Last, we show that tempering placental inflammation can prevent this fetal cardiac defect and is sufficient to promote normal cardiac function in postnatal life. CONCLUSIONS Taken together, these observations provide a mechanistic paradigm whereby neutrophil-driven inflammation in pregnancy can preclude normal embryonic heart development as a direct consequence of poor placental development, which has major implications on cardiac function into adult life.
Collapse
Affiliation(s)
- Eleanor J. Ward
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK (E.J.W., S.B., S.F., C.G., N.P.D., M.P., F.M.M.-B., S.N.)
| | - Serena Bert
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK (E.J.W., S.B., S.F., C.G., N.P.D., M.P., F.M.M.-B., S.N.)
| | - Silvia Fanti
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK (E.J.W., S.B., S.F., C.G., N.P.D., M.P., F.M.M.-B., S.N.)
| | - Kerri M. Malone
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK (K.M.M.)
| | - Robert T. Maughan
- National Heart and Lung Institute, Imperial College London, UK (R.T.M.)
| | - Christina Gkantsinikoudi
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK (E.J.W., S.B., S.F., C.G., N.P.D., M.P., F.M.M.-B., S.N.)
| | - Fabrice Prin
- Crick Advanced Light Microscopy Facility, the Francis Crick Institute, London, UK (F.P.)
| | - Lia Karina Volpato
- Postgraduate Program in Health Science, University of Southern Catarina, Campus Pedra Branca, Palhoça, SC, Brazil (L.K.V., A.P.P.)
| | - Anna Paula Piovezan
- Postgraduate Program in Health Science, University of Southern Catarina, Campus Pedra Branca, Palhoça, SC, Brazil (L.K.V., A.P.P.)
| | - Gerard J. Graham
- Institute of Infection, Immunity and Inflammation, University of Glasgow, UK (G.J.G.)
| | - Neil P. Dufton
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK (E.J.W., S.B., S.F., C.G., N.P.D., M.P., F.M.M.-B., S.N.)
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK (E.J.W., S.B., S.F., C.G., N.P.D., M.P., F.M.M.-B., S.N.)
| | - Federica M. Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK (E.J.W., S.B., S.F., C.G., N.P.D., M.P., F.M.M.-B., S.N.)
| | - Suchita Nadkarni
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, UK (E.J.W., S.B., S.F., C.G., N.P.D., M.P., F.M.M.-B., S.N.)
| |
Collapse
|
4
|
Smooth muscle protein 22α-Cre recombination in resting cardiac fibroblasts and hematopoietic precursors. Sci Rep 2022; 12:11564. [PMID: 35798848 PMCID: PMC9263136 DOI: 10.1038/s41598-022-15957-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022] Open
Abstract
The Cre-loxP system has been widely used for cell- or organ-specific gene manipulation, but it is important to precisely understand what kind of cells the recombination takes place in. Smooth muscle 22α (SM22α)-Cre mice have been utilized to alter genes in vascular smooth muscle cells (VSMCs), activated fibroblasts or cardiomyocytes (CMs). Moreover, previous reports indicated that SM22α-Cre is expressed in adipocytes, platelets or myeloid cells. However, there have been no report of whether SM22α-Cre recombination takes place in nonCMs in hearts. Thus, we used the double-fluorescent Cre reporter mouse in which GFP is expressed when recombination occurs. Immunofluorescence analysis demonstrated that recombination occurred in resting cardiac fibroblasts (CFs) or macrophages, as well as VSMCs and CMs. Flow cytometry showed that some CFs, resident macrophages, neutrophils, T cells, and B cells were positive for GFP. These results prompted us to analyze bone marrow cells, and we observed GFP-positive hematopoietic precursor cells (HPCs). Taken together, these results indicated that SM22α-Cre-mediated recombination occurs in resting CFs and hematopoietic cell lineages, including HPCs, which is a cautionary point when using SM22α-Cre mice.
Collapse
|
5
|
Seelan RS, Pisano MM, Greene RM. MicroRNAs as epigenetic regulators of orofacial development. Differentiation 2022; 124:1-16. [DOI: 10.1016/j.diff.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 11/03/2022]
|
6
|
Stüssel LG, Hollstein R, Laugsch M, Hochfeld LM, Welzenbach J, Schröder J, Thieme F, Ishorst N, Romero RO, Weinhold L, Hess T, Gehlen J, Mostowska A, Heilmann-Heimbach S, Mangold E, Rada-Iglesias A, Knapp M, Schaaf CP, Ludwig KU. MiRNA-149 as a Candidate for Facial Clefting and Neural Crest Cell Migration. J Dent Res 2021; 101:323-330. [PMID: 34528480 DOI: 10.1177/00220345211038203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsyndromic cleft lip with or without palate (nsCL/P) ranks among the most common human birth defects and has a multifactorial etiology. Human neural crest cells (hNCC) make a substantial contribution to the formation of facial bone and cartilage and are a key cell type in terms of nsCL/P etiology. Based on increasing evidence for the role of noncoding regulatory mechanisms in nsCL/P, we investigated the role of hNCC-expressed microRNAs (miRNA) in cleft development. First, we conducted a systematic analysis of miRNAs expressed in human-induced pluripotent stem cell-derived hNCC using Affymetrix microarrays on cell lines established from 4 unaffected donors. These analyses identified 152 candidate miRNAs. Based on the hypothesis that candidate miRNA loci harbor genetic variation associated with nsCL/P risk, the genomic locations of these candidates were cross-referenced with data from a previous genome-wide association study of nsCL/P. Associated variants were reanalyzed in independent nsCL/P study populations. Jointly, the results suggest that miR-149 is implicated in nsCL/P etiology. Second, functional follow-up included in vitro overexpression and inhibition of miR-149 in hNCC and subsequent analyses at the molecular and phenotypic level. Using 3'RNA-Seq, we identified 604 differentially expressed (DE) genes in hNCC overexpressing miR-149 compared with untreated cells. These included TLR4 and JUNB, which are established targets of miR-149, and NOG, BMP4, and PAX6, which are reported nsCL/P candidate genes. Pathway analyses revealed that DE genes were enriched in pathways including regulation of cartilage development and NCC differentiation. At the cellular level, distinct hNCC migration patterns were observed in response to miR-149 overexpression. Our data suggest that miR-149 is involved in the etiology of nsCL/P via its role in hNCC migration.
Collapse
Affiliation(s)
- L G Stüssel
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - R Hollstein
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - M Laugsch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, CMMC, University Hospital Cologne, Cologne, Germany
| | - L M Hochfeld
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - J Welzenbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - J Schröder
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - F Thieme
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - N Ishorst
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - R Olmos Romero
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, CMMC, University Hospital Cologne, Cologne, Germany
| | - L Weinhold
- Institute of Medical Biometry Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - T Hess
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany.,Center of Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - J Gehlen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany.,Center of Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - A Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - S Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - E Mangold
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - A Rada-Iglesias
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Biomedicine and Biotechnology, University of Cantabria, Santander, Spain
| | - M Knapp
- Institute of Medical Biometry Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - C P Schaaf
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, CMMC, University Hospital Cologne, Cologne, Germany
| | - K U Ludwig
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
7
|
Zhong W, Sun B, Ruan H, Yang G, Qian B, Cao H, He L, Fan Y, Roberts AG, Liu X, Hu X, Liang Y, Ye Q, Yin T, Wang B, Yang C, Sun T, Zhou H. Deglycosylated Azithromycin Targets Transgelin to Enhance Intestinal Smooth Muscle Function. iScience 2020; 23:101464. [PMID: 32889431 PMCID: PMC7479357 DOI: 10.1016/j.isci.2020.101464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/21/2020] [Accepted: 08/12/2020] [Indexed: 01/21/2023] Open
Abstract
Azithromycin (AZM) has been widely used as an antibacterial drug for many years. It has also been used to treat delayed gastric emptying. However, it exerts several side effects. We found that deglycosylated AZM (Deg-AZM or CP0119), an AZM metabolite, is a positively strong intestinal agonist that may result in the intestinal mobility experienced by patients after AZM administration. We confirmed that Deg-AZM can function strongly on intestinal peristalsis and identified transgelin as its potential molecular target. Furthermore, our pharmacological studies showed that the binding of Deg-AZM to transgelin enhanced the contractility of intestinal smooth muscle cells by facilitating the assembly of actin filaments into tight bundles and stress fibers. Specifically, Deg-AZM promoted intestinal peristaltic activity in wild-type mice but not in transgelin (-/-) mice. Moreover, Deg-AZM did not exert antibacterial activity and did not disrupt intestinal flora. Thus, Deg-AZM may become a potential drug for slow-transit constipation treatment.
Collapse
Affiliation(s)
- Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin 300052, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Bo Sun
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Hao Ruan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Baoxin Qian
- Department of Gastroenterology and Hepatology, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin 300041, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin 300052, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Lingfei He
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yunjing Fan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Arthur G. Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin 300052, China
| | - Xuejiao Hu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Yuan Liang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Qing Ye
- Department of Gastroenterology and Hepatology, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin 300041, China
| | - Tingting Yin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin 300052, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300450, China
| |
Collapse
|
8
|
Yin LM, Ulloa L, Yang YQ. Transgelin-2: Biochemical and Clinical Implications in Cancer and Asthma. Trends Biochem Sci 2019; 44:885-896. [PMID: 31256982 DOI: 10.1016/j.tibs.2019.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022]
Abstract
Transgelin-2 has been regarded as an actin-binding protein that induces actin gelation and regulates actin cytoskeleton. However, transgelin-2 has recently been shown to relax the myosin cytoskeleton of the airway smooth muscle cells by acting as a receptor for extracellular metallothionein-2. From a clinical perspective, these results support transgelin-2 as a promising therapeutic target for diseases such as cancer and asthma. The inhibition of transgelin-2 prevents actin gelation and thereby cancer cell proliferation, invasion, and metastasis. Conversely, the activation of transgelin-2 with specific agonists relaxes airway smooth muscles and reduces pulmonary resistance in asthma. Here, we review new studies on the biochemical properties of transgelin-2 and discuss their clinical implications for the treatment of immune, oncogenic, and respiratory disorders.
Collapse
Affiliation(s)
- Lei-Miao Yin
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Luis Ulloa
- International Laboratory of Neuro-Immunomodulation, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Center of Immunology and Inflammation, Dept. of Surgery. Rutgers University-New Jersey Medical School, Newark, NJ 07101, USA.
| | - Yong-Qing Yang
- Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| |
Collapse
|
9
|
Abstract
Pentalogy of Cantrell is a constellation of five congenital defects that pose a unique challenge for surgeons. Defects of the heart, pericardium, diaphragm, sternum, and anterior abdominal wall are pathognomonic. Although the incidence is low, it is critical to identify it in a timely fashion in order to adequately address all aspects. Early diagnosis, supportive care, and strategic surgical planning with a multidisciplinary team are all key components in managing patients with Pentalogy of Cantrell. In this text we sought to explore the evolution of both the understanding and treatment for this complex entity and provide current recommendations to today's pediatric caregivers.
Collapse
|