1
|
Ahmed R, Hamdy O, Elattar S, Soliman AA. Improving human sperm motility via red and near-infrared laser irradiation: in-vitro study. Photochem Photobiol Sci 2024; 23:377-385. [PMID: 38280133 DOI: 10.1007/s43630-023-00525-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/16/2023] [Indexed: 01/29/2024]
Abstract
Improved sperm motility is necessary for successful sperm passage through the female genital system, efficacious fertilization, and a greater probability of pregnancy. By stimulating the mitochondrial respiratory chain, low-level laser photobiomodulation has been shown to increase sperm motility and velocity. The respiratory chain in mitochondria is the primary site of action for cytochrome c oxidase because it can absorb light in the visible and infrared ranges. The present study aimed to investigate the effects of red laser 650 nm, near infrared laser (NIR) 980 nm, and combination of both on human spermatozoa motility and DNA integrity at different doses. An in-vitro controlled trial was performed in Al Zahraa university hospital laboratory using thirty fresh human semen specimens. Samples were exposed to red laser 650 nm, near infrared laser (NIR) 980 nm, and combination of both for various irradiation times. Sperm motility for the test and control aliquots was assessed as recommended in the manual of WHO-2021. Sperm chromatin integrity was evaluated using the Sperm Chromatin Structure Assay. Results revealed almost 70%, 80% and 100% increase in the total motility after 3 min of the 650-nm, 980-nm and the combined laser irradiation, respectively. Additionally, the Sperm Chromatin Dispersion assay was carried out on sperm heads utilizing human sperm DNA fragmentation, demonstrating that none of the three laser types had any discernible effects.
Collapse
Affiliation(s)
- Rasha Ahmed
- Urology Department, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Omnia Hamdy
- Engineering Applications of Lasers Department, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt.
| | - Shaimaa Elattar
- Clinical Pathology Department, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Amany Ahmed Soliman
- Urology Department, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Poorhassan M, Gholaminejhad M, Ahmadi H, Mehboudi L, Chahar Kameh M, Pirani M, Hassanzadeh G. Preclinical and Clinical Applications of Photobiomodulation Therapy in Sperm Motility: A Narrative Review. J Lasers Med Sci 2022; 13:e75. [PMID: 37041786 PMCID: PMC10082901 DOI: 10.34172/jlms.2022.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/20/2022] [Indexed: 01/27/2023]
Abstract
About 50% of infertility problems are related to male factors and reduced sperm motility. The important factor that affects the structure and function of sperm is reactive oxygen species (ROS), and over-concentration of ROS reduces the quality and motility of sperm. Photobiomodulation therapy (PBMT) using red to near-infrared (NIR) light is useful in oxidative stress restoration. It plays a therapeutic role in disorders such as asthenospermia, oligospermia cases, and cryopreserved sperm. It also enhances the metabolic capacity of sperm and increases the low-level and non-harmful intracellular content of Ca2+, nitric oxide (NO), and ROS in the stressed cells. Likewise, it modulates survival intracellular pathways and maintains the motility, viability, DNA, and acrosome integrity of sperm. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of semen PBMT.
Collapse
Affiliation(s)
- Mahnaz Poorhassan
- Artificial Intelligence Department, Smart University of Medical Sciences, Tehran, Iran
| | - Morteza Gholaminejhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mehboudi
- Department of Anesthesia, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mahdis Chahar Kameh
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Pirani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhou Y, Yuan Y, Zeng T, Wang X, Tang D, Fan F, Wen S. Liquid crystal bifocal lens with adjustable intensities through polarization controls. OPTICS LETTERS 2020; 45:5716-5719. [PMID: 33057266 DOI: 10.1364/ol.405722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
In this Letter, transverse and longitudinal liquid crystal bifocal lenses (LCBLs) are proposed to continuously control the relative intensity of two foci through a simple polarization control. The modulation of a LCBL comes from the geometric phase control and is designed through the principle of holography, where the object wave is a light field from two foci respectively formed by the left-circular polarized (LCP) and right-circular polarized (RCP) light, and the reference wave is the incident plane wave. Constructed millimeter-scale LCBLs are verified experimentally, and the foci are precisely formed at the preset plane. Besides, the relative intensity can be easily controlled with different weights of LCP and RCP light. The proposed strategy overcomes the shortcomings of previous bifocal lenses, such as a complex design method, a long optimization time, and an unchangeable relative intensity, and it is expected to find potential applications in parallel optical processing and optical interconnections.
Collapse
|
4
|
Photo-Aligned Ferroelectric Liquid Crystal Devices with Novel Electro-Optic Characteristics. CRYSTALS 2020. [DOI: 10.3390/cryst10070563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper examines different applications of ferroelectric liquid crystal devices based on photo-alignment. Successful application of the photo-alignment technique is considered to be a critical breakthrough. A variety of display and photonic devices with azo dye aligned ferroelectric liquid crystals is presented: smart glasses, liquid crystal Pancharatnam–Berry phase optical elements, 2D/3D switchable lenses, and laser therapy devices. Comparison of electro-optical behavior of ferroelectric liquid crystals is described considering the performance of devices. This paper facilitates the optimization of device design, and broadens the possible applications in the display and photonic area.
Collapse
|
5
|
Esteves C, Ramou E, Porteira ARP, Barbosa AJM, Roque ACA. Seeing the Unseen: The Role of Liquid Crystals in Gas-Sensing Technologies. ADVANCED OPTICAL MATERIALS 2020; 8:1902117. [PMID: 32612901 PMCID: PMC7329384 DOI: 10.1002/adom.201902117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/17/2020] [Indexed: 05/17/2023]
Abstract
Fast, real-time detection of gases and volatile organic compounds (VOCs) is an emerging research field relevant to most aspects of modern society, from households to health facilities, industrial units, and military environments. Sensor features such as high sensitivity, selectivity, fast response, and low energy consumption are essential. Liquid crystal (LC)-based sensors fulfill these requirements due to their chemical diversity, inherent self-assembly potential, and reversible molecular order, resulting in tunable stimuliresponsive soft materials. Sensing platforms utilizing thermotropic uniaxial systems-nematic and smectic-that exploit not only interfacial phenomena, but also changes in the LC bulk, are demonstrated. Special focus is given to the different interaction mechanisms and tuned selectivity toward gas and VOC analytes. Furthermore, the different experimental methods used to transduce the presence of chemical analytes into macroscopic signals are discussed and detailed examples are provided. Future perspectives and trends in the field, in particular the opportunities for LC-based advanced materials in artificial olfaction, are also discussed.
Collapse
Affiliation(s)
- Carina Esteves
- UCIBIO, Departamento de Química Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa Caparica 2829-516, Portugal
| | - Efthymia Ramou
- UCIBIO, Departamento de Química Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa Caparica 2829-516, Portugal
| | - Ana Raquel Pina Porteira
- UCIBIO, Departamento de Química Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa Caparica 2829-516, Portugal
| | - Arménio Jorge Moura Barbosa
- UCIBIO, Departamento de Química Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa Caparica 2829-516, Portugal
| | - Ana Cecília Afonso Roque
- UCIBIO, Departamento de Química Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa Caparica 2829-516, Portugal
| |
Collapse
|
6
|
Cirtoaje C, Petrescu E. The Influence of Single-Walled Carbon Nanotubes on the Dynamic Properties of Nematic Liquid Crystals in Magnetic Field. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4031. [PMID: 31817251 PMCID: PMC6947598 DOI: 10.3390/ma12244031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/23/2022]
Abstract
This article aims to study the impact of carbon nanotube dispersions in liquid crystals. A theoretical model for the system's dynamics is presented, considering the elastic continuum theory and a planar alignment of liquid crystal molecules on the nanotube's surface. Experimental calculation of the relaxation times in the magnetic field was made for two cases: when the field was switched on (τon), and when it was switched off (τoff). The results indicate an increase of the relaxation time by about 25% when the magnetic field was switched off, and a smaller increase (about 10%) when the field was switched on, where both were in good agreement with the theoretical values.
Collapse
Affiliation(s)
| | - Emil Petrescu
- Department of Physics, Faculty of Applied Science, University Politehnica of Bucharest, Bucharest RO-060042, Romania;
| |
Collapse
|
7
|
Liu C, Wang D, Wang QH, Fang J. Electrowetting-actuated multifunctional optofluidic lens to improve the quality of computer-generated holography. OPTICS EXPRESS 2019; 27:12963-12975. [PMID: 31052829 DOI: 10.1364/oe.27.012963] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
This paper presents an electrowetting-actuated multifunctional optofluidic (EAMO) lens to improve the quality of computer-generated holography (CGH). A unique structure of the EAMO lens based on electrowetting effect is designed. When the electrodes of the EAMO lens are applied on different voltages, the functions of focal length change and aperture change can be achieved. Then the proposed lens is used in the reproduction system of the CGH due to the multiple functions. The experimental results show that the CGH with zoom function can be realized and undesirable light can be eliminated due to the unique structure of the EAMO lens. The focal length changes can be varied from 11.6 cm to + ∞ and -∞ to -150.6 cm. The aperture size changes can be varied from 10.1 cm to 6.7 cm. By using the proposed EAMO lens, high-quality CGH can be realized without moving the position of any components mechanically, while the setup of the CGH is greatly simplified.
Collapse
|
8
|
Clinical Assessment of Anti-inflammatory Activity of 940 Nanometer Low Level laser Therapy on Carrageenan Induced Arthritis in Temporomandibular Joint in Wistar Albino Rats. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|