1
|
Wang SR, Cao CL, Du TT, Wang JL, Li J, Li WX, Chen M. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:1611-1625. [PMID: 38808580 DOI: 10.1002/jum.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
OBJECTIVE This study seeks to construct a machine learning model that merges clinical characteristics with ultrasound radiomic analysis-encompassing both the intratumoral and peritumoral-to predict the status of axillary lymph nodes in patients with early-stage breast cancer. METHODS The study employed retrospective methods, collecting clinical information, ultrasound data, and postoperative pathological results from 321 breast cancer patients (including 224 in the training group and 97 in the validation group). Through correlation analysis, univariate analysis, and Lasso regression analysis, independent risk factors related to axillary lymph node metastasis in breast cancer were identified from conventional ultrasound and immunohistochemical indicators, and a clinical feature model was constructed. Additionally, features were extracted from ultrasound images of the intratumoral and its 1-5 mm peritumoral to establish a radiomics feature formula. Furthermore, by combining clinical features and ultrasound radiomics features, six machine learning models (Logistic Regression, Decision Tree, Support Vector Machine, Extreme Gradient Boosting, Random Forest, and K-Nearest Neighbors) were compared for diagnostic efficacy, and constructing a joint prediction model based on the optimal ML algorithm. The use of Shapley Additive Explanations (SHAP) enhanced the visualization and interpretability of the model during the diagnostic process. RESULTS Among the 321 breast cancer patients, 121 had axillary lymph node metastasis, and 200 did not. The clinical feature model had an AUC of 0.779 and 0.777 in the training and validation groups, respectively. Radiomics model analysis showed that the model including the Intratumor +3 mm peritumor area had the best diagnostic performance, with AUCs of 0.847 and 0.844 in the training and validation groups, respectively. The joint prediction model based on the XGBoost algorithm reached AUCs of 0.917 and 0.905 in the training and validation groups, respectively. SHAP analysis indicated that the Rad Score had the highest weight in the prediction model, playing a significant role in predicting axillary lymph node metastasis in breast cancer. CONCLUSION The predictive model, which integrates clinical features and radiomic characteristics using the XGBoost algorithm, demonstrates significant diagnostic value for axillary lymph node metastasis in breast cancer. This model can provide significant references for preoperative surgical strategy selection and prognosis evaluation for breast cancer patients, helping to reduce postoperative complications and improve long-term survival rates. Additionally, the utilization of SHAP enhancing the global and local interpretability of the model.
Collapse
Affiliation(s)
- Si-Rui Wang
- The Ultrasound Diagnosis Department, The First Affiliated Hospital of Shihezi University, Xinjiang, China
| | - Chun-Li Cao
- The Ultrasound Diagnosis Department, The First Affiliated Hospital of Shihezi University, Xinjiang, China
| | - Ting-Ting Du
- The Ultrasound Diagnosis Department, The First Affiliated Hospital of Shihezi University, Xinjiang, China
| | - Jin-Li Wang
- The Ultrasound Diagnosis Department, The First Affiliated Hospital of Shihezi University, Xinjiang, China
| | - Jun Li
- The Ultrasound Diagnosis Department, The First Affiliated Hospital of Shihezi University, Xinjiang, China
| | - Wen-Xiao Li
- The Ultrasound Diagnosis Department, The First Affiliated Hospital of Shihezi University, Xinjiang, China
| | - Ming Chen
- The Ultrasound Diagnosis Department, The First Affiliated Hospital of Shihezi University, Xinjiang, China
| |
Collapse
|
2
|
Demetriou D, Lockhat Z, Brzozowski L, Saini KS, Dlamini Z, Hull R. The Convergence of Radiology and Genomics: Advancing Breast Cancer Diagnosis with Radiogenomics. Cancers (Basel) 2024; 16:1076. [PMID: 38473432 DOI: 10.3390/cancers16051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Despite significant progress in the prevention, screening, diagnosis, prognosis, and therapy of breast cancer (BC), it remains a highly prevalent and life-threatening disease affecting millions worldwide. Molecular subtyping of BC is crucial for predictive and prognostic purposes due to the diverse clinical behaviors observed across various types. The molecular heterogeneity of BC poses uncertainties in its impact on diagnosis, prognosis, and treatment. Numerous studies have highlighted genetic and environmental differences between patients from different geographic regions, emphasizing the need for localized research. International studies have revealed that patients with African heritage are often diagnosed at a more advanced stage and exhibit poorer responses to treatment and lower survival rates. Despite these global findings, there is a dearth of in-depth studies focusing on communities in the African region. Early diagnosis and timely treatment are paramount to improving survival rates. In this context, radiogenomics emerges as a promising field within precision medicine. By associating genetic patterns with image attributes or features, radiogenomics has the potential to significantly improve early detection, prognosis, and diagnosis. It can provide valuable insights into potential treatment options and predict the likelihood of survival, progression, and relapse. Radiogenomics allows for visual features and genetic marker linkage that promises to eliminate the need for biopsy and sequencing. The application of radiogenomics not only contributes to advancing precision oncology and individualized patient treatment but also streamlines clinical workflows. This review aims to delve into the theoretical underpinnings of radiogenomics and explore its practical applications in the diagnosis, management, and treatment of BC and to put radiogenomics on a path towards fully integrated diagnostics.
Collapse
Affiliation(s)
- Demetra Demetriou
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Zarina Lockhat
- Department of Radiology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Luke Brzozowski
- Translational Research and Core Facilities, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Kamal S Saini
- Fortrea Inc., 8 Moore Drive, Durham, NC 27709, USA
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
3
|
Nakaya M, Tamura R, Takahara K, Senuma T, Yoshida K, Kitamura Y, Ueda R, Toda M. Volumetric measurement of paranasal sinuses and its clinical significance in pituitary neuroendocrine tumors operated using an endoscopic endonasal approach. Front Neurol 2023; 14:1162733. [PMID: 37064182 PMCID: PMC10098075 DOI: 10.3389/fneur.2023.1162733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
ObjectiveEndoscopic endonasal surgery (EES) for deep intracranial lesions has gained popularity following recent developments in endoscopic technology. The operability of invasive pituitary neuroendocrine tumors (PitNETs) depends on the anatomy of the nasal cavity and paranasal sinus. This study aimed to establish a simple volume reconstruction algorithm of the nasal cavity and paranasal sinus. Additionally, this is the first study to demonstrate the relationship between the segmentation method and the clinical significance in patients with PitNET.MethodsPre-and postoperative tumor volumes were analyzed in 106 patients with primary (new-onset) PitNETs (80 nonfunctioning and 26 functioning) who underwent EES. The efficiency and accuracy of the semiautomatic segmentation with manual adjustments (SSMA) method was compared with other established segmentation methods for volumetric analysis in the nasal cavity and paranasal sinuses. Correlations between the measured nasal cavity and paranasal sinus volumes and the extent of tumor removal were evaluated.ResultsThe SSMA method yielded accurate and time-saving results following the volumetric analyses of nasal cavity and paranasal sinuses with complex structures. Alternatively, the manual and semiautomatic segmentation methods proved time-consuming and inaccurate, respectively. The sphenoid sinus volume measured by SSMA was significantly correlated with the extent of tumor removal in patients with nonfunctioning Knosp grade 3 and 4 PitNET (r = 0.318; p = 0.015).ConclusionThe volume of sphenoid sinus potentially could predict the extent of resection due to better visualization of the tumor for PitNETs with CS invasion.
Collapse
Affiliation(s)
- Masato Nakaya
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Ryota Tamura,
| | - Kento Takahara
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Takumi Senuma
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Yoshida
- Department of Neurosurgery, Mihara Memorial Hospital, Isesaki-shi, Japan
| | - Yohei Kitamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Zhao Y, Zhang J, Hu D, Qu H, Tian Y, Cui X. Application of Deep Learning in Histopathology Images of Breast Cancer: A Review. MICROMACHINES 2022; 13:2197. [PMID: 36557496 PMCID: PMC9781697 DOI: 10.3390/mi13122197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
With the development of artificial intelligence technology and computer hardware functions, deep learning algorithms have become a powerful auxiliary tool for medical image analysis. This study was an attempt to use statistical methods to analyze studies related to the detection, segmentation, and classification of breast cancer in pathological images. After an analysis of 107 articles on the application of deep learning to pathological images of breast cancer, this study is divided into three directions based on the types of results they report: detection, segmentation, and classification. We introduced and analyzed models that performed well in these three directions and summarized the related work from recent years. Based on the results obtained, the significant ability of deep learning in the application of breast cancer pathological images can be recognized. Furthermore, in the classification and detection of pathological images of breast cancer, the accuracy of deep learning algorithms has surpassed that of pathologists in certain circumstances. Our study provides a comprehensive review of the development of breast cancer pathological imaging-related research and provides reliable recommendations for the structure of deep learning network models in different application scenarios.
Collapse
Affiliation(s)
- Yue Zhao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110169, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| | - Jie Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Dayu Hu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Hui Qu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
| | - Xiaoyu Cui
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang 110169, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Shenyang 110169, China
| |
Collapse
|
5
|
Radiogenomics, Breast Cancer Diagnosis and Characterization: Current Status and Future Directions. Methods Protoc 2022; 5:mps5050078. [PMID: 36287050 PMCID: PMC9611546 DOI: 10.3390/mps5050078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease, affecting millions of women every year. Early diagnosis is crucial to increasing survival. The clinical workup of BC diagnosis involves diagnostic imaging and bioptic characterization. In recent years, technical advances in image processing allowed for the application of advanced image analysis (radiomics) to clinical data. Furthermore, -omics technologies showed their potential in the characterization of BC. Combining information provided by radiomics with -omics data can be important to personalize diagnostic and therapeutic work up in a clinical context for the benefit of the patient. In this review, we analyzed the recent literature, highlighting innovative approaches to combine imaging and biochemical/biological data, with the aim of identifying recent advances in radiogenomics applied to BC. The results of radiogenomic studies are encouraging approaches in a clinical setting. Despite this, as radiogenomics is an emerging area, the optimal approach has to face technical limitations and needs to be applied to large cohorts including all the expression profiles currently available for BC subtypes (e.g., besides markers from transcriptomics, proteomics and miRNomics, also other non-coding RNA profiles).
Collapse
|
6
|
Ma CY, Zhou JY, Xu XT, Guo J, Han MF, Gao YZ, Du H, Stahl JN, Maltz JS. Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer. J Appl Clin Med Phys 2021; 23:e13470. [PMID: 34807501 PMCID: PMC8833283 DOI: 10.1002/acm2.13470] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives Because radiotherapy is indispensible for treating cervical cancer, it is critical to accurately and efficiently delineate the radiation targets. We evaluated a deep learning (DL)‐based auto‐segmentation algorithm for automatic contouring of clinical target volumes (CTVs) in cervical cancers. Methods Computed tomography (CT) datasets from 535 cervical cancers treated with definitive or postoperative radiotherapy were collected. A DL tool based on VB‐Net was developed to delineate CTVs of the pelvic lymph drainage area (dCTV1) and parametrial area (dCTV2) in the definitive radiotherapy group. The training/validation/test number is 157/20/23. CTV of the pelvic lymph drainage area (pCTV1) was delineated in the postoperative radiotherapy group. The training/validation/test number is 272/30/33. Dice similarity coefficient (DSC), mean surface distance (MSD), and Hausdorff distance (HD) were used to evaluate the contouring accuracy. Contouring times were recorded for efficiency comparison. Results The mean DSC, MSD, and HD values for our DL‐based tool were 0.88/1.32 mm/21.60 mm for dCTV1, 0.70/2.42 mm/22.44 mm for dCTV2, and 0.86/1.15 mm/20.78 mm for pCTV1. Only minor modifications were needed for 63.5% of auto‐segmentations to meet the clinical requirements. The contouring accuracy of the DL‐based tool was comparable to that of senior radiation oncologists and was superior to that of junior/intermediate radiation oncologists. Additionally, DL assistance improved the performance of junior radiation oncologists for dCTV2 and pCTV1 contouring (mean DSC increases: 0.20 for dCTV2, 0.03 for pCTV1; mean contouring time decrease: 9.8 min for dCTV2, 28.9 min for pCTV1). Conclusions DL‐based auto‐segmentation improves CTV contouring accuracy, reduces contouring time, and improves clinical efficiency for treating cervical cancer.
Collapse
Affiliation(s)
- Chen-Ying Ma
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ju-Ying Zhou
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Ting Xu
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Guo
- Department of Radiation Oncology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao-Fei Han
- Shanghai United Imaging Healthcare, Co. Ltd., Jiading, China
| | - Yao-Zong Gao
- Shanghai United Imaging Healthcare, Co. Ltd., Jiading, China
| | - Hui Du
- Shanghai United Imaging Healthcare, Co. Ltd., Jiading, China
| | | | | |
Collapse
|
7
|
Chalfant JS, Mortazavi S, Lee-Felker SA. Background Parenchymal Enhancement on Breast MRI: Assessment and Clinical Implications. CURRENT RADIOLOGY REPORTS 2021. [DOI: 10.1007/s40134-021-00386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Purpose of Review
To present recent literature regarding the assessment and clinical implications of background parenchymal enhancement on breast MRI.
Recent Findings
The qualitative assessment of BPE remains variable within the literature, as well as in clinical practice. Several different quantitative approaches have been investigated in recent years, most commonly region of interest-based and segmentation-based assessments. However, quantitative assessment has not become standard in clinical practice to date. Numerous studies have demonstrated a clear association between higher BPE and future breast cancer risk. While higher BPE does not appear to significantly impact cancer detection, it may result in a higher abnormal interpretation rate. BPE is also likely a marker of pathologic complete response after neoadjuvant chemotherapy, with decreases in BPE during and after neoadjuvant chemotherapy correlated with pCR. In contrast, pre-treatment BPE does not appear to be predictive of pCR. The association between BPE and prognosis is less clear, with heterogeneous results in the literature.
Summary
Assessment of BPE continues to evolve, with heterogeneity in approaches to both qualitative and quantitative assessment. The level of BPE has important clinical implications, with associations with future breast cancer risk and treatment response. BPE may also be an imaging marker of prognosis, but future research is needed on this topic.
Collapse
|
8
|
Arezzo F, Loizzi V, La Forgia D, Moschetta M, Tagliafico AS, Cataldo V, Kawosha AA, Venerito V, Cazzato G, Ingravallo G, Resta L, Cicinelli E, Cormio G. Radiomics Analysis in Ovarian Cancer: A Narrative Review. APPLIED SCIENCES 2021; 11:7833. [DOI: 10.3390/app11177833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
Ovarian cancer (OC) is the second most common gynecological malignancy, accounting for about 14,000 deaths in 2020 in the US. The recognition of tools for proper screening, early diagnosis, and prognosis of OC is still lagging. The application of methods such as radiomics to medical images such as ultrasound scan (US), computed tomography (CT), magnetic resonance imaging (MRI), or positron emission tomography (PET) in OC may help to realize so-called “precision medicine” by developing new quantification metrics linking qualitative and/or quantitative data imaging to achieve clinical diagnostic endpoints. This narrative review aims to summarize the applications of radiomics as a support in the management of a complex pathology such as ovarian cancer. We give an insight into the current evidence on radiomics applied to different imaging methods.
Collapse
Affiliation(s)
- Francesca Arezzo
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Vera Loizzi
- Obstetrics and Gynecology Unit, Interdisciplinar Department of Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Daniele La Forgia
- SSD Radiodiagnostica Senologica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124 Bari, Italy
| | - Marco Moschetta
- Breast Care Unit, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Alberto Stefano Tagliafico
- Radiology Section, Department of Health Sciences (DISSAL), University of Genova, Via L.B. Alberti 2, 16132 Genoa, Italy
| | - Viviana Cataldo
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Adam Abdulwakil Kawosha
- Department of General Medicine, Universitatea Medicina si Farmacie Grigore T Popa, Strada Universitatii 16, 700115 Iasi, Romania
| | - Vincenzo Venerito
- Rheumatology Unit, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Gerardo Cazzato
- Pathology Section, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppe Ingravallo
- Pathology Section, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Leonardo Resta
- Pathology Section, Department of Emergency and Organ Transplantation, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Ettore Cicinelli
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Gennaro Cormio
- Obstetrics and Gynecology Unit, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
9
|
Nougaret S, McCague C, Tibermacine H, Vargas HA, Rizzo S, Sala E. Radiomics and radiogenomics in ovarian cancer: a literature review. Abdom Radiol (NY) 2021; 46:2308-2322. [PMID: 33174120 DOI: 10.1007/s00261-020-02820-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 01/25/2023]
Abstract
Ovarian cancer remains one of the most lethal gynecological cancers in the world despite extensive progress in the areas of chemotherapy and surgery. Many studies have postulated that this is because of the profound heterogeneity that underpins response to therapy and prognosis. Standard imaging evaluation using CT or MRI does not take into account this tumoral heterogeneity especially in advanced stages with peritoneal carcinomatosis. As such, newly emergent fields in the assessment of tumor heterogeneity have been proposed using radiomics to evaluate the whole tumor burden heterogeneity as opposed to single biopsy sampling. This review provides an overview of radiomics, radiogenomics, and proteomics and examines the use of these newly emergent fields in assessing tumor heterogeneity and its implications in ovarian cancer.
Collapse
Affiliation(s)
- S Nougaret
- IRCM, Montpellier Cancer Research Institute, INSERM, U1194, University of Montpellier, 208 Ave des Apothicaires, 34295, Montpellier, France. .,Department of Radiology, Montpellier Cancer institute, 208 Ave des Apothicaires, 34295, Montpellier, France.
| | - Cathal McCague
- Department of Radiology, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Hichem Tibermacine
- IRCM, Montpellier Cancer Research Institute, INSERM, U1194, University of Montpellier, 208 Ave des Apothicaires, 34295, Montpellier, France.,Department of Radiology, Montpellier Cancer institute, 208 Ave des Apothicaires, 34295, Montpellier, France
| | - Hebert Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Stefania Rizzo
- Istituto di Imaging della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900, Lugano, CH, Switzerland.,Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Lugano, CH, Switzerland
| | - E Sala
- Department of Radiology, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| |
Collapse
|
10
|
Eskreis-Winkler S, Onishi N, Pinker K, Reiner JS, Kaplan J, Morris EA, Sutton EJ. Using Deep Learning to Improve Nonsystematic Viewing of Breast Cancer on MRI. JOURNAL OF BREAST IMAGING 2021; 3:201-207. [PMID: 38424820 DOI: 10.1093/jbi/wbaa102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 03/02/2024]
Abstract
OBJECTIVE To investigate the feasibility of using deep learning to identify tumor-containing axial slices on breast MRI images. METHODS This IRB-approved retrospective study included consecutive patients with operable invasive breast cancer undergoing pretreatment breast MRI between January 1, 2014, and December 31, 2017. Axial tumor-containing slices from the first postcontrast phase were extracted. Each axial image was subdivided into two subimages: one of the ipsilateral cancer-containing breast and one of the contralateral healthy breast. Cases were randomly divided into training, validation, and testing sets. A convolutional neural network was trained to classify subimages into "cancer" and "no cancer" categories. Accuracy, sensitivity, and specificity of the classification system were determined using pathology as the reference standard. A two-reader study was performed to measure the time savings of the deep learning algorithm using descriptive statistics. RESULTS Two hundred and seventy-three patients with unilateral breast cancer met study criteria. On the held-out test set, accuracy of the deep learning system for tumor detection was 92.8% (648/706; 95% confidence interval: 89.7%-93.8%). Sensitivity and specificity were 89.5% and 94.3%, respectively. Readers spent 3 to 45 seconds to scroll to the tumor-containing slices without use of the deep learning algorithm. CONCLUSION In breast MR exams containing breast cancer, deep learning can be used to identify the tumor-containing slices. This technology may be integrated into the picture archiving and communication system to bypass scrolling when viewing stacked images, which can be helpful during nonsystematic image viewing, such as during interdisciplinary tumor board meetings.
Collapse
Affiliation(s)
| | - Natsuko Onishi
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
- University of California, Department of Radiology, San Francisco, CA
| | - Katja Pinker
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
| | - Jeffrey S Reiner
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
| | - Jennifer Kaplan
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
| | - Elizabeth A Morris
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
| | - Elizabeth J Sutton
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY
| |
Collapse
|
11
|
Radiomics feature robustness as measured using an MRI phantom. Sci Rep 2021; 11:3973. [PMID: 33597610 PMCID: PMC7889870 DOI: 10.1038/s41598-021-83593-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/15/2021] [Indexed: 12/19/2022] Open
Abstract
Radiomics involves high-throughput extraction of large numbers of quantitative features from medical images and analysis of these features to predict patients’ outcome and support clinical decision-making. However, radiomics features are sensitive to several factors, including scanning protocols. The purpose of this study was to investigate the robustness of magnetic resonance imaging (MRI) radiomics features with various MRI scanning protocol parameters and scanners using an MRI radiomics phantom. The variability of the radiomics features with different scanning parameters and repeatability measured using a test–retest scheme were evaluated using the coefficient of variation and intraclass correlation coefficient (ICC) for both T1- and T2-weighted images. For variability measures, the features were categorized into three groups: large, intermediate, and small variation. For repeatability measures, the average T1- and T2-weighted image ICCs for the phantom (0.963 and 0.959, respectively) were higher than those for a healthy volunteer (0.856 and 0.849, respectively). Our results demonstrated that various radiomics features are dependent on different scanning parameters and scanners. The radiomics features with a low coefficient of variation and high ICC for both the phantom and volunteer can be considered good candidates for MRI radiomics studies. The results of this study will assist current and future MRI radiomics studies.
Collapse
|
12
|
Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, Zhu H, Shui P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front Oncol 2021; 10:570465. [PMID: 33575207 PMCID: PMC7870863 DOI: 10.3389/fonc.2020.570465] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
With the rapid development of new technologies, including artificial intelligence and genome sequencing, radiogenomics has emerged as a state-of-the-art science in the field of individualized medicine. Radiogenomics combines a large volume of quantitative data extracted from medical images with individual genomic phenotypes and constructs a prediction model through deep learning to stratify patients, guide therapeutic strategies, and evaluate clinical outcomes. Recent studies of various types of tumors demonstrate the predictive value of radiogenomics. And some of the issues in the radiogenomic analysis and the solutions from prior works are presented. Although the workflow criteria and international agreed guidelines for statistical methods need to be confirmed, radiogenomics represents a repeatable and cost-effective approach for the detection of continuous changes and is a promising surrogate for invasive interventions. Therefore, radiogenomics could facilitate computer-aided diagnosis, treatment, and prediction of the prognosis in patients with tumors in the routine clinical setting. Here, we summarize the integrated process of radiogenomics and introduce the crucial strategies and statistical algorithms involved in current studies.
Collapse
Affiliation(s)
- Lin Shui
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyu Ren
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ziwei Chen
- Department of Nephrology, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Pixian Shui
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Gao Y, Luo Y, Zhao C, Xiao M, Ma L, Li W, Qin J, Zhu Q, Jiang Y. Nomogram based on radiomics analysis of primary breast cancer ultrasound images: prediction of axillary lymph node tumor burden in patients. Eur Radiol 2020; 31:928-937. [PMID: 32845388 DOI: 10.1007/s00330-020-07181-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/27/2020] [Accepted: 08/11/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To establish a prediction model for evaluating the axillary lymph node (ALN) status of patients with T1/T2 invasive breast cancer based on radiomics analysis of US images of primary breast lesions. METHODS Between August 2016 and November 2018, a total of 343 patients with histologically proven malignant breast tumors were included in this study and randomly assigned to the training and validation groups at a ratio of 7:3. ALN tumor burden was defined as low (< 3 metastatic ALNs) or high (≥ 3 metastatic ALNs). Radiomics features were obtained using the PyRadiomics package, and the radiomics score was established by least absolute shrinkage and selection operator regression. A nomogram combining the breast cancer US radiomics score with patient age and lesion size was generated based on the multivariate logistic regression results. RESULTS In the training and validation cohorts, 29.1% (69/237) and 32.08% (34/106) of patients were pathologically diagnosed with more than 2 metastatic ALNs, respectively. The radiomics score consisted of 16 US features, and patient age and lesion diameter identified by US were included to construct the model. The AUC of the model was 0.846 (95% CI, 0.790-0.902) for the training cohort and 0.733 (95% CI, 0.613-0.852) for the validation cohort. The calibration curves showed good agreement between the predictions and observations. CONCLUSIONS Our novel nomogram demonstrates high accuracy in predicting ALN tumor burden in breast cancer patients. We also suggest further development of PyRadiomics to improve US radiomics. KEY POINTS • A nomogram based on US was developed to predict ALN tumor burden (low, < 3 metastatic ALNs; high, ≥ 3 metastatic ALNs). • The nomogram could assist clinicians in evaluating treatment strategies for T1/T2 invasive breast cancer.
Collapse
Affiliation(s)
- Yuanjing Gao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, China
| | - Yanwen Luo
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, China
| | - Chenyang Zhao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, China
| | - Mengsu Xiao
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, China
| | - Li Ma
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, China
| | - Wenbo Li
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, China
| | - Jing Qin
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, China
| | - Qingli Zhu
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, China.
| | - Yuxin Jiang
- Department of Ultrasound, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
14
|
Bhatia A, Birger M, Veeraraghavan H, Um H, Tixier F, McKenney AS, Cugliari M, Caviasco A, Bialczak A, Malani R, Flynn J, Zhang Z, Yang TJ, Santomasso BD, Shoushtari AN, Young RJ. MRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitors. Neuro Oncol 2020; 21:1578-1586. [PMID: 31621883 DOI: 10.1093/neuonc/noz141] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Melanoma brain metastases historically portend a dismal prognosis, but recent advances in immune checkpoint inhibitors (ICIs) have been associated with durable responses in some patients. There are no validated imaging biomarkers associated with outcomes in patients with melanoma brain metastases receiving ICIs. We hypothesized that radiomic analysis of magnetic resonance images (MRIs) could identify higher-order features associated with survival. METHODS Between 2010 and 2019, we retrospectively reviewed patients with melanoma brain metastases who received ICI. After volumes of interest were drawn, several texture and edge descriptors, including first-order, Haralick, Gabor, Sobel, and Laplacian of Gaussian (LoG) features were extracted. Progression was determined using Response Assessment in Neuro-Oncology Brain Metastases. Univariate Cox regression was performed for each radiomic feature with adjustment for multiple comparisons followed by Lasso regression and multivariate analysis. RESULTS Eighty-eight patients with 196 total brain metastases were identified. Median age was 63.5 years (range, 19-91 y). Ninety percent of patients had Eastern Cooperative Oncology Group performance status of 0 or 1 and 35% had elevated lactate dehydrogenase. Sixty-three patients (72%) received ipilimumab, 11 patients (13%) received programmed cell death protein 1 blockade, and 14 patients (16%) received nivolumab plus ipilimumab. Multiple features were associated with increased overall survival (OS), and LoG edge features best explained the variation in outcome (hazard ratio: 0.68, P = 0.001). In multivariate analysis, a similar trend with LoG was seen, but no longer significant with OS. Findings were confirmed in an independent cohort. CONCLUSION Higher-order MRI radiomic features in patients with melanoma brain metastases receiving ICI were associated with a trend toward improved OS.
Collapse
Affiliation(s)
- Ankush Bhatia
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maxwell Birger
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyemin Um
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Florent Tixier
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna Sophia McKenney
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marina Cugliari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Annalise Caviasco
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Angelica Bialczak
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachna Malani
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jessica Flynn
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - T Jonathan Yang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bianca D Santomasso
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Robert J Young
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
15
|
van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 2020; 11:91. [PMID: 32785796 PMCID: PMC7423816 DOI: 10.1186/s13244-020-00887-2] [Citation(s) in RCA: 709] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
Radiomics is a quantitative approach to medical imaging, which aims at enhancing the existing data available to clinicians by means of advanced mathematical analysis. Through mathematical extraction of the spatial distribution of signal intensities and pixel interrelationships, radiomics quantifies textural information by using analysis methods from the field of artificial intelligence. Various studies from different fields in imaging have been published so far, highlighting the potential of radiomics to enhance clinical decision-making. However, the field faces several important challenges, which are mainly caused by the various technical factors influencing the extracted radiomic features.The aim of the present review is twofold: first, we present the typical workflow of a radiomics analysis and deliver a practical "how-to" guide for a typical radiomics analysis. Second, we discuss the current limitations of radiomics, suggest potential improvements, and summarize relevant literature on the subject.
Collapse
Affiliation(s)
- Janita E van Timmeren
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Davide Cester
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Bettina Baessler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
16
|
Sutton EJ, Onishi N, Fehr DA, Dashevsky BZ, Sadinski M, Pinker K, Martinez DF, Brogi E, Braunstein L, Razavi P, El-Tamer M, Sacchini V, Deasy JO, Morris EA, Veeraraghavan H. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy. Breast Cancer Res 2020; 22:57. [PMID: 32466777 PMCID: PMC7254668 DOI: 10.1186/s13058-020-01291-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background For breast cancer patients undergoing neoadjuvant chemotherapy (NAC), pathologic complete response (pCR; no invasive or in situ) cannot be assessed non-invasively so all patients undergo surgery. The aim of our study was to develop and validate a radiomics classifier that classifies breast cancer pCR post-NAC on MRI prior to surgery. Methods This retrospective study included women treated with NAC for breast cancer from 2014 to 2016 with (1) pre- and post-NAC breast MRI and (2) post-NAC surgical pathology report assessing response. Automated radiomics analysis of pre- and post-NAC breast MRI involved image segmentation, radiomics feature extraction, feature pre-filtering, and classifier building through recursive feature elimination random forest (RFE-RF) machine learning. The RFE-RF classifier was trained with nested five-fold cross-validation using (a) radiomics only (model 1) and (b) radiomics and molecular subtype (model 2). Class imbalance was addressed using the synthetic minority oversampling technique. Results Two hundred seventy-three women with 278 invasive breast cancers were included; the training set consisted of 222 cancers (61 pCR, 161 no-pCR; mean age 51.8 years, SD 11.8), and the independent test set consisted of 56 cancers (13 pCR, 43 no-pCR; mean age 51.3 years, SD 11.8). There was no significant difference in pCR or molecular subtype between the training and test sets. Model 1 achieved a cross-validation AUROC of 0.72 (95% CI 0.64, 0.79) and a similarly accurate (P = 0.1) AUROC of 0.83 (95% CI 0.71, 0.94) in both the training and test sets. Model 2 achieved a cross-validation AUROC of 0.80 (95% CI 0.72, 0.87) and a similar (P = 0.9) AUROC of 0.78 (95% CI 0.62, 0.94) in both the training and test sets. Conclusions This study validated a radiomics classifier combining radiomics with molecular subtypes that accurately classifies pCR on MRI post-NAC.
Collapse
Affiliation(s)
- Elizabeth J Sutton
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Natsuko Onishi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Duc A Fehr
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brittany Z Dashevsky
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meredith Sadinski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katja Pinker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danny F Martinez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lior Braunstein
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahmoud El-Tamer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Virgilio Sacchini
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth A Morris
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
17
|
Conti A, Duggento A, Indovina I, Guerrisi M, Toschi N. Radiomics in breast cancer classification and prediction. Semin Cancer Biol 2020; 72:238-250. [PMID: 32371013 DOI: 10.1016/j.semcancer.2020.04.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
Breast Cancer (BC) is the common form of cancer in women. Its diagnosis and screening are usually performed through different imaging modalities such as mammography, magnetic resonance imaging and ultrasound. However, mammography and ultrasound-imaging techniques have limited sensitivity and specificity both in identifying lesions and in differentiating malign from benign lesions, especially in presence of dense breast parenchyma. Due to the higher resolution of magnetic resonance images, MRI represents the method with the higher specificity and sensitivity among all the available tools, in both lesions' identification and diagnosis. However, especially for diagnosis, even MRI has limitations that are only partially solved if combined with mammography. Unfortunately, due to the limits of all these imaging tools, in order to have a certain diagnosis, patients often receive painful and costly bioptics procedures. In this context, several computational approaches have been developed to increase sensitivity, while maintaining the same specificity, in BC diagnosis and screening. Amongst these, radiomics has been increasingly gaining ground in oncology to improve cancer diagnosis, prognosis and treatment. Radiomics derives multiple quantitative features from single or multiple medical imaging modalities, highlighting image traits which are not visible to the naked eye and hence significantly augmenting the discriminatory and predictive potential of medical imaging. This review article aims to summarize the state of the art in radiomics-based BC research. The dominating evidence extracted from the literature points towards a high potential of radiomics in disentangling malignant from benign breast lesions, classifying BC types and grades and also in predicting treatment response and recurrence risk. In the era of personalized medicine, radiomics has the potential to improve diagnosis, prognosis, prediction, monitoring, image-based intervention, and assessment of therapeutic response in BC.
Collapse
Affiliation(s)
- Allegra Conti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179, Rome, Italy; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| | - Iole Indovina
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179, Rome, Italy; Department of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Maria Guerrisi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, United States.
| |
Collapse
|
18
|
Haq R, Berry SL, Deasy JO, Hunt M, Veeraraghavan H. Dynamic multiatlas selection-based consensus segmentation of head and neck structures from CT images. Med Phys 2019; 46:5612-5622. [PMID: 31587300 DOI: 10.1002/mp.13854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Manual delineation of head and neck (H&N) organ-at-risk (OAR) structures for radiation therapy planning is time consuming and highly variable. Therefore, we developed a dynamic multiatlas selection-based approach for fast and reproducible segmentation. METHODS Our approach dynamically selects and weights the appropriate number of atlases for weighted label fusion and generates segmentations and consensus maps indicating voxel-wise agreement between different atlases. Atlases were selected for a target as those exceeding an alignment weight called dynamic atlas attention index. Alignment weights were computed at the image level and called global weighted voting (GWV) or at the structure level and called structure weighted voting (SWV) by using a normalized metric computed as the sum of squared distances of computed tomography (CT)-radiodensity and modality-independent neighborhood descriptors (extracting edge information). Performance comparisons were performed using 77 H&N CT images from an internal Memorial Sloan-Kettering Cancer Center dataset (N = 45) and an external dataset (N = 32) using Dice similarity coefficient (DSC), Hausdorff distance (HD), 95th percentile of HD, median of maximum surface distance, and volume ratio error against expert delineation. Pairwise DSC accuracy comparisons of proposed (GWV, SWV) vs single best atlas (BA) or majority voting (MV) methods were performed using Wilcoxon rank-sum tests. RESULTS Both SWV and GWV methods produced significantly better segmentation accuracy than BA (P < 0.001) and MV (P < 0.001) for all OARs within both datasets. SWV generated the most accurate segmentations with DSC of: 0.88 for oral cavity, 0.85 for mandible, 0.84 for cord, 0.76 for brainstem and parotids, 0.71 for larynx, and 0.60 for submandibular glands. SWV's accuracy exceeded GWV's for submandibular glands (DSC = 0.60 vs 0.52, P = 0.019). CONCLUSIONS The contributed SWV and GWV methods generated more accurate automated segmentations than the other two multiatlas-based segmentation techniques. The consensus maps could be combined with segmentations to visualize voxel-wise consensus between atlases within OARs during manual review.
Collapse
Affiliation(s)
- Rabia Haq
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Sean L Berry
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph O Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Margie Hunt
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
19
|
AI-based applications in hybrid imaging: how to build smart and truly multi-parametric decision models for radiomics. Eur J Nucl Med Mol Imaging 2019; 46:2673-2699. [PMID: 31292700 DOI: 10.1007/s00259-019-04414-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The quantitative imaging features (radiomics) that can be obtained from the different modalities of current-generation hybrid imaging can give complementary information with regard to the tumour environment, as they measure different morphologic and functional imaging properties. These multi-parametric image descriptors can be combined with artificial intelligence applications into predictive models. It is now the time for hybrid PET/CT and PET/MRI to take the advantage offered by radiomics to assess the added clinical benefit of using multi-parametric models for the personalized diagnosis and prognosis of different disease phenotypes. OBJECTIVE The aim of the paper is to provide an overview of current challenges and available solutions to translate radiomics into hybrid PET-CT and PET-MRI imaging for a smart and truly multi-parametric decision model.
Collapse
|
20
|
Qiu X, Wang H, Wang Z, Fu Y, Yin J. Expression of PCNA, Ki-67 and COX-2 in breast cancer based on DCE-MRI image information. J Infect Public Health 2019; 13:2032-2037. [PMID: 31289003 DOI: 10.1016/j.jiph.2019.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
In order to explore the application value of DCE-MRI in clinical diagnosis and treatment, guide early clinical diagnosis, evaluate prognosis, guide clinical selection of treatment options and improve medical level, the expression of adenocarcinoma, its relationship with clinicopathology, and the significance of co-expression of the proliferating cell nuclear antigen (PCNA), Ki67 protein and cyclooxygenase 2 (COX-2) in breast cancer are analyzed. The results show that the positive expression rates of ki67, PCNA, and COX-2 in breast cancer patients are significantly higher than those in breast cancer patients (P<0.05). Positive expressions of ki67, PCNA, and COX-2 in breast cancer patients are not correlated with age, tumor size and clinical stage (P>0.05). There is no significant difference (P>0.05) between the pathological types of breast cancer and positive expressions of ki67, PCNA and COX-2 in all the samples studied. Therefore, there is a correlation between DCE-MRI imaging features and prognostic indicators in breast cancer.
Collapse
Affiliation(s)
- Xiaoming Qiu
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi City 435000, China
| | - Hong Wang
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi City 435000, China
| | - Zhen Wang
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi City 435000, China
| | - Yufei Fu
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi City 435000, China
| | - Jianjun Yin
- Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi City 435000, China.
| |
Collapse
|
21
|
Tixier F, Um H, Young RJ, Veeraraghavan H. Reliability of tumor segmentation in glioblastoma: Impact on the robustness of MRI-radiomic features. Med Phys 2019; 46:3582-3591. [PMID: 31131906 DOI: 10.1002/mp.13624] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The use of radiomic features as biomarkers of treatment response and outcome or as correlates to genomic variations requires that the computed features are robust and reproducible. Segmentation, a crucial step in radiomic analysis, is a major source of variability in the computed radiomic features. Therefore, we studied the impact of tumor segmentation variability on the robustness of MRI radiomic features. METHOD Fluid-attenuated inversion recovery (FLAIR) and contrast-enhanced T1-weighted (T1WICE ) MRI of 90 patients diagnosed with glioblastoma were segmented using a semiautomatic algorithm and an interactive segmentation with two different raters. We analyzed the robustness of 108 radiomic features from five categories (intensity histogram, gray-level co-occurrence matrix, gray-level size-zone matrix (GLSZM), edge maps, and shape) using intra-class correlation coefficient (ICC) and Bland and Altman analysis. RESULTS Our results show that both segmentation methods are reliable with ICC ≥ 0.96 and standard deviation (SD) of mean differences between the two raters (SDdiffs ) ≤ 30%. Features computed from the histogram and co-occurrence matrices were found to be the most robust (ICC ≥ 0.8 and SDdiffs ≤ 30% for most features in these groups). Features from GLSZM were shown to have mixed robustness. Edge, shape, and GLSZM features were the most impacted by the choice of segmentation method with the interactive method resulting in more robust features than the semiautomatic method. Finally, features computed from T1WICE and FLAIR images were found to have similar robustness when computed with the interactive segmentation method. CONCLUSION Semiautomatic and interactive segmentation methods using two raters are both reliable. The interactive method produced more robust features than the semiautomatic method. We also found that the robustness of radiomic features varied by categories. Therefore, this study could help motivate segmentation methods and feature selection in MRI radiomic studies.
Collapse
Affiliation(s)
- Florent Tixier
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hyemin Um
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
22
|
Spuhler KD, Ding J, Liu C, Sun J, Serrano-Sosa M, Moriarty M, Huang C. Task-based assessment of a convolutional neural network for segmenting breast lesions for radiomic analysis. Magn Reson Med 2019; 82:786-795. [PMID: 30957936 DOI: 10.1002/mrm.27758] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiomics allows for powerful data-mining and feature extraction techniques to guide clinical decision making. Image segmentation is a necessary step in such pipelines and different techniques can significantly affect results. We demonstrate that a convolutional neural network (CNN) segmentation method performs comparably to expert manual segmentations in an established radiomics pipeline. METHODS Using the manual regions of interest (ROIs) of an expert radiologist (R1), a CNN was trained to segment breast lesions from dynamic contrast-enhanced MRI (DCE-MRI). Following network training, we segmented lesions for the testing set of a previously established radiomics pipeline for predicting lymph node metastases using DCE-MRI of breast cancer. Prediction accuracy of CNN segmentations relative to manual segmentations by R1 from the original study, a resident (R2), and another expert radiologist (R3) were determined. We then retrained the CNN and radiomics model using R3's manual segmentations to determine the effects of different expert observers on end-to-end prediction. RESULTS Using R1's ROIs, the CNN achieved a mean Dice coefficient of 0.71 ± 0.16 in the testing set. When input to our previously published radiomics pipeline, these CNN segmentations achieved comparable prediction performance to R1's manual ROIs, and superior performance to those of the other radiologists. Similar results were seen when training the CNN and radiomics model using R3's ROIs. CONCLUSION A CNN architecture is able to provide DCE-MRI breast lesion segmentations which are suitable for input to our radiomics model. Moreover, the previously established radiomics model and CNN can be accurately trained end-to-end using ground truth data provided by distinct experts.
Collapse
Affiliation(s)
- Karl D Spuhler
- Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jie Ding
- Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Chunling Liu
- Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York.,Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junqi Sun
- Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York.,Radiology, Yuebei People's Hospital, Shaoguan, Guangdong, China
| | | | - Meghan Moriarty
- Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York.,Radiology, Mather Hospital, Port Jefferson, New York
| | - Chuan Huang
- Biomedical Engineering, Stony Brook University, Stony Brook, New York.,Radiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York.,Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
23
|
Jiang J, Hu YC, Liu CJ, Halpenny D, Hellmann MD, Deasy JO, Mageras G, Veeraraghavan H. Multiple Resolution Residually Connected Feature Streams for Automatic Lung Tumor Segmentation From CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:134-144. [PMID: 30040632 PMCID: PMC6402577 DOI: 10.1109/tmi.2018.2857800] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Volumetric lung tumor segmentation and accurate longitudinal tracking of tumor volume changes from computed tomography images are essential for monitoring tumor response to therapy. Hence, we developed two multiple resolution residually connected network (MRRN) formulations called incremental-MRRN and dense-MRRN. Our networks simultaneously combine features across multiple image resolution and feature levels through residual connections to detect and segment the lung tumors. We evaluated our method on a total of 1210 non-small cell (NSCLC) lung tumors and nodules from three data sets consisting of 377 tumors from the open-source Cancer Imaging Archive (TCIA), 304 advanced stage NSCLC treated with anti- PD-1 checkpoint immunotherapy from internal institution MSKCC data set, and 529 lung nodules from the Lung Image Database Consortium (LIDC). The algorithm was trained using 377 tumors from the TCIA data set and validated on the MSKCC and tested on LIDC data sets. The segmentation accuracy compared to expert delineations was evaluated by computing the dice similarity coefficient, Hausdorff distances, sensitivity, and precision metrics. Our best performing incremental-MRRN method produced the highest DSC of 0.74 ± 0.13 for TCIA, 0.75±0.12 for MSKCC, and 0.68±0.23 for the LIDC data sets. There was no significant difference in the estimations of volumetric tumor changes computed using the incremental-MRRN method compared with the expert segmentation. In summary, we have developed a multi-scale CNN approach for volumetrically segmenting lung tumors which enables accurate, automated identification of and serial measurement of tumor volumes in the lung.
Collapse
|