1
|
Cei G, Artoni A, Bianchi M. A review on finite element modelling of finger and hand mechanical behaviour in haptic interactions. Biomech Model Mechanobiol 2025:10.1007/s10237-025-01943-w. [PMID: 40327239 DOI: 10.1007/s10237-025-01943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
Touch perception largely depends on the mechanical properties of the soft tissues of the glabrous skin of fingers and hands. The correct modelling of the stress-strain state of these tissues during the interaction with external objects can provide insights on the exteroceptual mechanisms of human touch, offering design guidelines for artificial haptic systems. However, devising correct models of the finger and hand at contact is a challenging task, due to the biomechanical complexity of human skin. This work presents an overview of the use of Finite Element analysis for studying the stress-strain state in the glabrous skin of the hand, under different loading conditions. We summarize existing approaches for the design and validation of Finite Element models of the soft tissues of the human finger and hand, evaluating their capability to provide results that are valuable in understanding tactile perception. The goal of our work is to serve as a reference and provide guidelines for those approaching this modelling method for the study of human haptic perception.
Collapse
Affiliation(s)
- Gianmarco Cei
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy.
| | - Alessio Artoni
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Matteo Bianchi
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| |
Collapse
|
2
|
Azechi M, Okamoto S. Bumps and Dents are Not Perceptually Opposite When Exploring With Lateral Force Cues. IEEE TRANSACTIONS ON HAPTICS 2024; 17:52-57. [PMID: 38265895 DOI: 10.1109/toh.2024.3357806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Virtual tactile bumps and dents are presented by controlling frictional forces on a surface tactile display, a flat touch screen with tactile feedback functions. This technology enables users to touch and feel three-dimensional objects. The resistive force against a sliding finger is increased and then decreased compared to a base level to present a bump. The order of increase and decrease is inverted for a dent. Thus, the difference between bump and dent presentations lies in the change order of the resistive force. However, bumps and dents are not simply opposite when investigating psychophysical functions with only lateral force cues available, without height and depth information. The results demonstrate that bumps are more easily detected with high surface gradients or resultant force changes and small widths. In contrast, these parameters do not influence the detection of dents among different participants. These findings contribute to a deeper understanding of tactile perception of surface shapes.
Collapse
|
3
|
Normal and tangential forces combine to convey contact pressure during dynamic tactile stimulation. Sci Rep 2022; 12:8215. [PMID: 35581308 PMCID: PMC9114425 DOI: 10.1038/s41598-022-12010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
Humans need to accurately process the contact forces that arise as they perform everyday haptic interactions such as sliding the fingers along a surface to feel for bumps, sticky regions, or other irregularities. Several different mechanisms are possible for how the forces on the skin could be represented and integrated in such interactions. In this study, we used a force-controlled robotic platform and simultaneous ultrasonic modulation of the finger-surface friction to independently manipulate the normal and tangential forces during passive haptic stimulation by a flat surface. To assess whether the contact pressure on their finger had briefly increased or decreased during individual trials in this broad stimulus set, participants did not rely solely on either the normal force or the tangential force. Instead, they integrated tactile cues induced by both components. Support-vector-machine analysis classified physical trial data with up to 75% accuracy and suggested a linear perceptual mechanism. In addition, the change in the amplitude of the force vector predicted participants' responses better than the change of the coefficient of dynamic friction, suggesting that intensive tactile cues are meaningful in this task. These results provide novel insights about how normal and tangential forces shape the perception of tactile contact.
Collapse
|
4
|
Peng Y, Serfass CM, Kawazoe A, Shao Y, Gutierrez K, Hill CN, Santos VJ, Visell Y, Hsiao LC. Elastohydrodynamic friction of robotic and human fingers on soft micropatterned substrates. NATURE MATERIALS 2021; 20:1707-1711. [PMID: 33927390 DOI: 10.1038/s41563-021-00990-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/18/2021] [Indexed: 05/10/2023]
Abstract
Frictional sliding between patterned surfaces is of fundamental and practical importance in the haptic engineering of soft materials. In emerging applications such as remote surgery and soft robotics, thin fluid films between solid surfaces lead to a multiphysics coupling between solid deformation and fluid dissipation. Here, we report a scaling law that governs the peak friction values of elastohydrodynamic lubrication on patterned surfaces. These peaks, absent in smooth tribopairs, arise due to a separation of length scales in the lubricant flow. The framework is generated by varying the geometry, elasticity and fluid properties of soft tribopairs and measuring the lubricated friction with a triborheometer. The model correctly predicts the elastohydrodynamic lubrication friction of a bioinspired robotic fingertip and human fingers. Its broad applicability can inform the future design of robotic hands or grippers in realistic conditions, and open up new ways of encoding friction into haptic signals.
Collapse
Affiliation(s)
- Yunhu Peng
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Christopher M Serfass
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Anzu Kawazoe
- Department of Electrical and Computer Engineering, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Yitian Shao
- Department of Electrical and Computer Engineering, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Kenneth Gutierrez
- Department of Mechanical and Aerospace Engineering, University of California-Los Angeles, Los Angeles, CA, USA
| | - Catherine N Hill
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Veronica J Santos
- Department of Mechanical and Aerospace Engineering, University of California-Los Angeles, Los Angeles, CA, USA
| | - Yon Visell
- Department of Electrical and Computer Engineering, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Nolin A, Licht A, Pierson K, Lo CY, Kayser LV, Dhong C. Predicting human touch sensitivity to single atom substitutions in surface monolayers for molecular control in tactile interfaces. SOFT MATTER 2021; 17:5050-5060. [PMID: 33929468 DOI: 10.1039/d1sm00451d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The mechanical stimuli generated as a finger interrogates the physical and chemical features of an object form the basis of fine touch. Haptic devices, which are used to control touch, primarily focus on recreating physical features, but the chemical aspects of fine touch may be harnessed to create richer tactile interfaces and reveal fundamental aspects of tactile perception. To connect tactile perception with molecular structure, we systematically varied silane-derived monolayers deposited onto surfaces smoother than the limits of human perception. Through mechanical friction testing and cross-correlation analysis, we made predictions of which pairs of silanes might be distinguishable by humans. We predicted, and demonstrated, that humans can distinguish between two isosteric silanes which differ only by a single nitrogen-for-carbon substitution. The mechanism of tactile contrast originates from a difference in monolayer ordering, as quantified by the Hurst exponent, which was replicated in two alkylsilanes with a three-carbon difference in length. This approach may be generalizable to other materials and lead to new tactile sensations derived from materials chemistry.
Collapse
Affiliation(s)
- Abigail Nolin
- Department of Materials Science & Engineering, University of Delaware, Newark, DE, USA.
| | - Amanda Licht
- Department of Materials Science & Engineering, University of Delaware, Newark, DE, USA.
| | - Kelly Pierson
- Department of Materials Science & Engineering, University of Delaware, Newark, DE, USA.
| | - Chun-Yuan Lo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Laure V Kayser
- Department of Materials Science & Engineering, University of Delaware, Newark, DE, USA. and Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Charles Dhong
- Department of Materials Science & Engineering, University of Delaware, Newark, DE, USA. and Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
6
|
Khamis H, Afzal HMN, Sanchez J, Vickery R, Wiertlewski M, Redmond SJ, Birznieks I. Friction sensing mechanisms for perception and motor control: passive touch without sliding may not provide perceivable frictional information. J Neurophysiol 2021; 125:809-823. [PMID: 33439786 DOI: 10.1152/jn.00504.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Perception of the frictional properties of a surface contributes to the multidimensional experience of exploring various materials; we slide our fingers over a surface to feel it. In contrast, during object manipulation, we grip objects without such intended exploratory movements. Given that we are aware of the slipperiness of objects or tools that are held in the hand, we investigated whether the initial contact between the fingertip skin and the surface of the object is sufficient to provide this consciously perceived frictional information. Using a two-alternative forced-choice protocol, we examined human capacity to detect frictional differences using touch, when two otherwise structurally identical surfaces were brought in contact with the immobilized finger perpendicularly or under an angle (20° or 30°) to the skin surface (passive touch). An ultrasonic friction reduction device was used to generate three different frictions over each of three flat surfaces with different surface structure: 1) smooth glass, 2) textured surface with dome-shaped features, and 3) surface with sharp asperities (sandpaper). Participants (n = 12) could not reliably indicate which of the two surfaces was more slippery under any of these conditions. In contrast, when slip was induced by moving the surface laterally by a total of 5 mm (passive slip), participants could clearly perceive frictional differences. Thus making contact with the surface, even with moderate tangential forces, was not enough to perceive frictional differences, instead conscious perception required a sufficient size slip.NEW & NOTEWORTHY This study contributes to understanding how frictional information is obtained and used by the brain. When the skin is contacting surfaces of identical topography but varying frictional properties, the deformation pattern is different; however, available sensory cues did not get translated into perception of frictional properties unless a sufficiently large lateral movement was present. These neurophysiological findings may inform how to design and operate haptic devices relying on friction modulation principles.
Collapse
Affiliation(s)
- Heba Khamis
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Hafiz Malik Naqash Afzal
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Jennifer Sanchez
- School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Richard Vickery
- School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Michaël Wiertlewski
- Cognitive Robotics Department, Delft University of Technology, Delft, The Netherlands
| | - Stephen J Redmond
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia.,School of Electrical and Electronic Engineering, University College Dublin, Belfield, Ireland
| | - Ingvars Birznieks
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Liu M, Batista A, Bensmaia S, Weber DJ. Information about contact force and surface texture is mixed in the firing rates of cutaneous afferent neurons. J Neurophysiol 2020; 125:496-508. [PMID: 33326349 DOI: 10.1152/jn.00725.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cutaneous mechanoreceptors in our hands gather information about the objects we handle. Tactile fibers encode mixed information about contact events and object properties. Neural coding in tactile afferents is typically studied by varying a single aspect of tactile stimuli, avoiding the confounds of real-world haptic interactions. We instead record responses of small populations of dorsal root ganglia (DRG) neurons to variable tactile stimuli and find that neurons primarily respond to force, though some texture information can be detected. Tactile nerve fibers convey information about many features of haptic interactions, including the force and speed of contact, as well as the texture and shape of the objects being handled. How we perceive these object features is relatively unaffected by the forces and movements we use when interacting with the object. Because signals related to contact events and object properties are mixed in the responses of tactile fibers, our ability to disentangle these different components of our tactile experience implies that they are demultiplexed as they propagate along the neuraxis. To understand how texture and contact mechanics are encoded together by tactile fibers, we studied the activity of multiple neurons recorded simultaneously in the cervical DRG of two anesthetized rhesus monkeys while textured surfaces were applied to the glabrous skin of the fingers and palm using a handheld probe. A transducer at the tip of the textured probe measured contact forces as tactile stimuli were applied at different locations on the finger-pads and palm. We examined how a sample population of DRG neurons encode force and texture and found that firing rates of individual neurons are modulated by both force and texture. In particular, slowly adapting (SA) neurons were more responsive to force than texture, and rapidly adapting (RA) neurons were more responsive to texture than force. Although force could be decoded accurately throughout the entire contact interval, texture signals were most salient during onset and offset phases of the contact interval.NEW & NOTEWORTHY Cutaneous mechanoreceptors in our hands gather information about the objects we handle. Tactile fibers encode mixed information about contact events and object properties. Neural coding in tactile afferents is typically studied by varying a single aspect of tactile stimuli, avoiding the confounds of real-world haptic interactions. We instead record responses of small populations of DRG neurons to variable tactile stimuli and find that neurons primarily respond to force, though some texture information can be detected.
Collapse
Affiliation(s)
- Monica Liu
- Rehab Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| | - Aaron Batista
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| | - Sliman Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Douglas J Weber
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Sahli R, Prot A, Wang A, Müser MH, Piovarči M, Didyk P, Bennewitz R. Tactile perception of randomly rough surfaces. Sci Rep 2020; 10:15800. [PMID: 32978470 PMCID: PMC7519105 DOI: 10.1038/s41598-020-72890-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/08/2020] [Indexed: 11/09/2022] Open
Abstract
Most everyday surfaces are randomly rough and self-similar on sufficiently small scales. We investigated the tactile perception of randomly rough surfaces using 3D-printed samples, where the topographic structure and the statistical properties of scale-dependent roughness were varied independently. We found that the tactile perception of similarity between surfaces was dominated by the statistical micro-scale roughness rather than by their topographic resemblance. Participants were able to notice differences in the Hurst roughness exponent of 0.2, or a difference in surface curvature of 0.8 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {mm}^{-1}$$\end{document}mm-1 for surfaces with curvatures between 1 and 3 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {mm}^{-1}$$\end{document}mm-1. In contrast, visual perception of similarity between color-coded images of the surface height was dominated by their topographic resemblance. We conclude that vibration cues from roughness at the length scale of the finger ridge distance distract the participants from including the topography into the judgement of similarity. The interaction between surface asperities and fingertip skin led to higher friction for higher micro-scale roughness. Individual friction data allowed us to construct a psychometric curve which relates similarity decisions to differences in friction. Participants noticed differences in the friction coefficient as small as 0.035 for samples with friction coefficients between 0.34 and 0.45.
Collapse
Affiliation(s)
- Riad Sahli
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Aubin Prot
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany.,Department of Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Anle Wang
- Department of Materials Science and Engineering, Saarland University, 66123, Saarbrücken, Germany
| | - Martin H Müser
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany.,Department of Materials Science and Engineering, Saarland University, 66123, Saarbrücken, Germany
| | - Michal Piovarči
- Cluster of Excellence (MMCI), Saarland Informatics Campus, 66123, Saarbrücken, Germany.,Università della Svizzera italiana, 6900, Lugano, Switzerland
| | - Piotr Didyk
- Cluster of Excellence (MMCI), Saarland Informatics Campus, 66123, Saarbrücken, Germany.,Università della Svizzera italiana, 6900, Lugano, Switzerland
| | - Roland Bennewitz
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany. .,Department of Physics, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
9
|
Dhong C, Miller R, Root NB, Gupta S, Kayser LV, Carpenter CW, Loh KJ, Ramachandran VS, Lipomi DJ. Role of indentation depth and contact area on human perception of softness for haptic interfaces. SCIENCE ADVANCES 2019; 5:eaaw8845. [PMID: 31497646 PMCID: PMC6716960 DOI: 10.1126/sciadv.aaw8845] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/23/2019] [Indexed: 05/22/2023]
Abstract
In engineering, the "softness" of an object, as measured by an indenter, manifests as two measurable parameters: (i) indentation depth and (ii) contact area. For humans, softness is not well defined, although it is believed that perception depends on the same two parameters. Decoupling their relative contributions, however, has not been straightforward because most bulk-"off-the-shelf"-materials exhibit the same ratio between the indentation depth and contact area. Here, we decoupled indentation depth and contact area by fabricating elastomeric slabs with precise thicknesses and microstructured surfaces. Human subject experiments using two-alternative forced-choice and magnitude estimation tests showed that the indentation depth and contact area contributed independently to perceived softness. We found an explicit relationship between the perceived softness of an object and its geometric properties. Using this approach, it is possible to design objects for human interaction with a desired level of perceived softness.
Collapse
Affiliation(s)
- Charles Dhong
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA
| | - Rachel Miller
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA
| | - Nicholas B. Root
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, Mail Code 0109, La Jolla, CA 92093-0109, USA
| | - Sumit Gupta
- Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0085, USA
| | - Laure V. Kayser
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA
| | - Cody W. Carpenter
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA
| | - Kenneth J. Loh
- Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92003-0085, USA
| | - Vilayanur S. Ramachandran
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, Mail Code 0109, La Jolla, CA 92093-0109, USA
| | - Darren J. Lipomi
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448, USA
| |
Collapse
|
10
|
Gueorguiev D, Vezzoli E, Sednaoui T, Grisoni L, Lemaire-Semail B. The Perception of Ultrasonic Square Reductions of Friction With Variable Sharpness and Duration. IEEE TRANSACTIONS ON HAPTICS 2019; 12:179-188. [PMID: 30676978 DOI: 10.1109/toh.2019.2894412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The human perception of square ultrasonic modulation of the finger-surface friction was investigated during active tactile exploration by using short frictional cues of varying duration and sharpness. In a first experiment, we asked participants to discriminate the transition time and duration of short square ultrasonic reductions of friction. They proved very sensitive to discriminate millisecond differences in these two parameters with the average psychophysical thresholds being 2.3-2.4 ms for both parameters. A second experiment focused on the perception of square friction reductions with variable transition times and durations. We found that for durations of the stimulation larger than 90 ms, participants often perceived three or four edges when only two stimulations were presented while they consistently felt two edges for signals shorter than 50 ms. A subsequent analysis of the contact forces induced by these ultrasonic stimulations during slow and fast active exploration showed that two identical consecutive ultrasonic pulses can induce significantly different frictional dynamics especially during fast motion of the finger. These results confirm the human sensitivity to transient frictional cues and suggest that the human perception of square reductions of friction can depend on their sharpness and duration as well as on the speed of exploration.
Collapse
|
11
|
Ishizuka H, Komurasaki S, Kato K, Kajimoto H. Evaluation of Electrovibration Stimulation with a Narrow Electrode. MICROMACHINES 2018; 9:mi9100483. [PMID: 30424416 PMCID: PMC6215128 DOI: 10.3390/mi9100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Recently, electrovibration tactile displays were studied and applied to several use cases by researchers. The high-resolution electrode for electrovibration stimulus will contribute to the presentation of a more realistic tactile sensation. However, the sizes of the electrodes that have been used thus far are of the millimeter-order. In this study, we evaluated whether a single narrow electrode was able to provide the electrovibration stimulus adequately. The widths of the prepared electrodes were 10, 20, 50, 100, 200, and 500 μm. We conducted a sensory experiment to characterize each electrode. The electrodes with widths of 50 μm or less were not durable or suitable for the applied signal, although the subjects perceived the stimulus. Therefore, we conducted the experiment without using these non-durable electrodes. The voltage waveform condition affected perception, and the subjects were not sensitive to the electrovibration stimulus at low frequencies. In addition, the stroke direction of the fingertip had a significant effect on perception under certain conditions. The results indicate that electrovibration stimulation requires an electrode with a width of only a few hundred micrometers for stimulation.
Collapse
Affiliation(s)
- Hiroki Ishizuka
- Department of Intelligent Mechanical Systems Engineering, Institute of Technology, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan.
| | - Seiya Komurasaki
- Department of Intelligent Mechanical Systems Engineering, Institute of Technology, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan.
| | - Kunihiro Kato
- Department of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan.
| | - Hiroyuki Kajimoto
- Department of Informatics, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| |
Collapse
|
12
|
Complexity, rate, and scale in sliding friction dynamics between a finger and textured surface. Sci Rep 2018; 8:13710. [PMID: 30209322 PMCID: PMC6135846 DOI: 10.1038/s41598-018-31818-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/23/2018] [Indexed: 11/24/2022] Open
Abstract
Sliding friction between the skin and a touched surface is highly complex, but lies at the heart of our ability to discriminate surface texture through touch. Prior research has elucidated neural mechanisms of tactile texture perception, but our understanding of the nonlinear dynamics of frictional sliding between the finger and textured surfaces, with which the neural signals that encode texture originate, is incomplete. To address this, we compared measurements from human fingertips sliding against textured counter surfaces with predictions of numerical simulations of a model finger that resembled a real finger, with similar geometry, tissue heterogeneity, hyperelasticity, and interfacial adhesion. Modeled and measured forces exhibited similar complex, nonlinear sliding friction dynamics, force fluctuations, and prominent regularities related to the surface geometry. We comparatively analysed measured and simulated forces patterns in matched conditions using linear and nonlinear methods, including recurrence analysis. The model had greatest predictive power for faster sliding and for surface textures with length scales greater than about one millimeter. This could be attributed to the the tendency of sliding at slower speeds, or on finer surfaces, to complexly engage fine features of skin or surface, such as fingerprints or surface asperities. The results elucidate the dynamical forces felt during tactile exploration and highlight the challenges involved in the biological perception of surface texture via touch.
Collapse
|