1
|
Chadokiya J, Chang K, Sharma S, Hu J, Lill JR, Dionne J, Kirane A. Advancing precision cancer immunotherapy drug development, administration, and response prediction with AI-enabled Raman spectroscopy. Front Immunol 2025; 15:1520860. [PMID: 39850874 PMCID: PMC11753970 DOI: 10.3389/fimmu.2024.1520860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/25/2025] Open
Abstract
Molecular characterization of tumors is essential to identify predictive biomarkers that inform treatment decisions and improve precision immunotherapy development and administration. However, challenges such as the heterogeneity of tumors and patient responses, limited efficacy of current biomarkers, and the predominant reliance on single-omics data, have hindered advances in accurately predicting treatment outcomes. Standard therapy generally applies a "one size fits all" approach, which not only provides ineffective or limited responses, but also an increased risk of off-target toxicities and acceleration of resistance mechanisms or adverse effects. As the development of emerging multi- and spatial-omics platforms continues to evolve, an effective tumor assessment platform providing utility in a clinical setting should i) enable high-throughput and robust screening in a variety of biological matrices, ii) provide in-depth information resolved with single to subcellular precision, and iii) improve accessibility in economical point-of-care settings. In this perspective, we explore the application of label-free Raman spectroscopy as a tumor profiling tool for precision immunotherapy. We examine how Raman spectroscopy's non-invasive, label-free approach can deepen our understanding of intricate inter- and intra-cellular interactions within the tumor-immune microenvironment. Furthermore, we discuss the analytical advances in Raman spectroscopy, highlighting its evolution to be utilized as a single "Raman-omics" approach. Lastly, we highlight the translational potential of Raman for its integration in clinical practice for safe and precise patient-centric immunotherapy.
Collapse
Affiliation(s)
- Jay Chadokiya
- Department of Surgery, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, United States
| | - Kai Chang
- Department of Electrical Engineering, Stanford University,
Stanford, CA, United States
| | - Saurabh Sharma
- Department of Surgery, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, United States
| | - Jack Hu
- Pumpkinseed Technologies, Palo Alto, CA, United States
| | | | - Jennifer Dionne
- Pumpkinseed Technologies, Palo Alto, CA, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, United States
| | - Amanda Kirane
- Department of Surgery, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
2
|
Direct Quantification of Protein Antigens in Subunit Plague and Rickettsial Vaccine Preparations. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2023. [DOI: 10.21055/0370-1069-2022-4-69-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The aim of the work was to put forward the methods for direct quantitative determination of the content of Yersinia pestis and Rickettsia raoultii protein antigens in preparations and various prototypes of subunit vaccines. Materials and methods. Y. pestis LcrV and Caf1 antigens enclosed in the substance of the molecular microencapsulated plague vaccine (MMPV) and separately, in microcrystals of amino acids co-precipitated with plague proteins were used as model antigens. R. raoultii Adr2, OmpB24, and YbgF antigens were adsorbed on the prototype substance of the rickettsia vaccine. The release of plague antigens from MMPV microcapsules was carried out through successive treatment of the latter with organic solvents, methylene chloride and methanol, respectively; the carrier microcrystals were dissolved in 0.1 M sodium citrate buffer at pH 6.0. The antigen content in the prototype substance of the rickettsial vaccine was determined by measuring the amount of proteins not bound to the alumogel. Quantitative parameters characterizing the content of antigens in the substances and prototypes of vaccine preparations were calculated by processing digital images of polyacrylamide gels obtained by electrophoresis of protein antigen fractions extracted from carriers. Results and discussion. Methods for direct extraction and subsequent quantitative analysis of Y. pestis LcrV and Caf1 antigens from subunit vaccine preparations based on amino acid microcrystals and polylactide microcapsules that do not cause protein degradation have been studied. A different nature of the binding of LcrV and Caf1 in the substances of microcrystals has been established, while the proportion of antigens released from microcrystals has been quantified only in case of their complete dissolution. It was found that at low concentrations of LcrV and Caf1 proteins extracted from microcrystals, it is necessary to concentrate the extracts with subsequent removal of salts for their reliable visualization. It has been confirmed that 10 μg of plague antigens and proteins of R. raoultii in a dose volume of 200 μl of suspension is sufficient for quantitative analysis using electrophoretic method. The prospects of other physicochemical methods alternative to direct extraction of antigens for evaluating the composition and quality of vaccine preparations are discussed.
Collapse
|
3
|
Gao M, Liu S, Chen J, Gordon KC, Tian F, McGoverin CM. Potential of Raman spectroscopy in facilitating pharmaceutical formulations development - An AI perspective. Int J Pharm 2021; 597:120334. [PMID: 33540015 DOI: 10.1016/j.ijpharm.2021.120334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/17/2023]
Abstract
Drug development is time-consuming and inherently possesses a high failure rate. Pharmaceutical formulation development is the bridge that links a new chemical entity (NCE) to pre-clinical and clinical trials, and has a high impact on the efficacy and safety of the final drug product. Further, the time required for this process is escalating as formulation techniques are becoming more complicated due to the rising demands for drug products with better efficacy and patient compliance, as well as the inherent difficulties of addressing the unfavorable properties of NCEs such as low water solubility. The advent of artificial intelligence (AI) provides possibilities to accelerate the drug development process. In this review, we first examine applications of AI methods in different types of pharmaceutical formulations and formulation techniques. Moreover, as availability of data is the engine for the advancement of AI, we then suggest a potential way (i.e. applying Raman spectroscopy) for faster high-quality data gathering from formulations. Raman techniques have the capability of analyzing the composition and distribution of components and the physicochemical properties thereof within formulations, which are prominent factors governing drug dissolution profiles and subsequently bioavailability. Thus, useful information can be obtained bridging formulation development to the final product quality.
Collapse
Affiliation(s)
- Ming Gao
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China
| | - Sibo Liu
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China
| | - Jianan Chen
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, MaRS Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Keith C Gordon
- Dodd-Walls Centre, Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Fang Tian
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China
| | - Cushla M McGoverin
- Nycrist Pharmtech Limited, 2/2D, A3, Science and Technology Park, 3009 Guanguang Rd, Guangming, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
4
|
McAvan BS, Bowsher LA, Powell T, O'Hara JF, Spitali M, Goodacre R, Doig AJ. Raman Spectroscopy to Monitor Post-Translational Modifications and Degradation in Monoclonal Antibody Therapeutics. Anal Chem 2020; 92:10381-10389. [PMID: 32614170 PMCID: PMC7467412 DOI: 10.1021/acs.analchem.0c00627] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Monoclonal
antibodies (mAbs) represent a rapidly expanding market
for biotherapeutics. Structural changes in the mAb can lead to unwanted
immunogenicity, reduced efficacy, and loss of material during production.
The pharmaceutical sector requires new protein characterization tools
that are fast, applicable in situ and to the manufacturing process.
Raman has been highlighted as a technique to suit this application
as it is information-rich, minimally invasive, insensitive to water
background and requires little to no sample preparation. This study
investigates the applicability of Raman to detect Post-Translational
Modifications (PTMs) and degradation seen in mAbs. IgG4 molecules
have been incubated under a range of conditions known to result in
degradation of the therapeutic including varied pH, temperature, agitation,
photo, and chemical stresses. Aggregation was measured using size-exclusion
chromatography, and PTM levels were calculated using peptide mapping.
By combining principal component analysis (PCA) with Raman spectroscopy
and circular dichroism (CD) spectroscopy structural analysis we were
able to separate proteins based on PTMs and degradation. Furthermore,
by identifying key bands that lead to the PCA separation we could
correlate spectral peaks to specific PTMs. In particular, we have
identified a peak which exhibits a shift in samples with higher levels
of Trp oxidation. Through separation of IgG4 aggregates, by size,
we have shown a linear correlation between peak wavenumbers of specific
functional groups and the amount of aggregate present. We therefore
demonstrate the capability for Raman spectroscopy to be used as an
analytical tool to measure degradation and PTMs in-line with therapeutic
production.
Collapse
Affiliation(s)
- Bethan S McAvan
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Leo A Bowsher
- UCB Celltech, UCB Pharma, Limited, 208 Bath Road, Slough, Berkshire SL1 3WE, United Kingdom
| | - Thomas Powell
- UCB Celltech, UCB Pharma, Limited, 208 Bath Road, Slough, Berkshire SL1 3WE, United Kingdom
| | - John F O'Hara
- UCB Celltech, UCB Pharma, Limited, 208 Bath Road, Slough, Berkshire SL1 3WE, United Kingdom
| | - Mariangela Spitali
- UCB Celltech, UCB Pharma, Limited, 208 Bath Road, Slough, Berkshire SL1 3WE, United Kingdom
| | - Royston Goodacre
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|