1
|
Tang Z, Nong J, Qiu X, Huang J, Feng X, Tu G, Li L. Identification of Endoplasmic Reticulum Stress-Related Genes in Acute Myocardial Infarction: A Bioinformatics Approach with Experimental Validation. Biochem Genet 2025:10.1007/s10528-025-11121-3. [PMID: 40319218 DOI: 10.1007/s10528-025-11121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Acute myocardial infarction (AMI) continues to pose a substantial risk to human lives worldwide. Endoplasmic reticulum stress (ERS) is increasingly recognized as one of the potential mechanisms of myocardial injury following AMI. The primary goal of this study is to investigate the correlation between ERS and AMI through machine learning-based bioinformatics analysis, explore key genes, and conduct in vivo and in vitro experimental validation. We performed differential analysis and Weighted Gene Co-expression Network Analysis (WGCNA) on gene expression data from the GEO database (GSE62646). The intersection with ERS-related genes (ERSRGs) was taken to obtain AMI-ERS-related genes (MIEGs), and machine learning algorithms were further used to identify key genes (Hubs) from the MIEGs. The validation set GSE59867 was used to assess the expression levels and predictive capabilities of the Hubs for AMI. An AMI rat model was established to detect the mRNA and protein expression levels of the Hubs. The protein inhibitor of the key gene FURIN was used to treat H9C2 cells under oxygen-glucose deprivation (OGD) to explore the effects of FURIN on ERS and apoptosis. Bioinformatics analysis identified 27 MIEGs, and machine learning further determined 5 Hubs highly associated with AMI and ERS: RELA, FURIN, ERGIC3, TPP1, and BGLAP. The expression of these Hubs was significantly elevated in AMI patients within both the training and validation sets, and the area under the curve (AUC) indicated good diagnostic value. Our experiments confirmed that the mRNA levels of Furin and RelA were significantly elevated in AMI rats. Furin protein was increased in AMI rats and OGD H9C2. Furin inhibitor could alleviate OGD-induced ERS and apoptosis in H9C2. Our study demonstrates that Hubs play a pivotal role in myocardial infarction. Notably, Furin and its mediated ERS and apoptosis are significant in the pathogenesis of AMI, potentially serving as target for AMI diagnosis and treatment.
Collapse
Affiliation(s)
- Zhiqi Tang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Jiacong Nong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Xue Qiu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Junwen Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Xueyi Feng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Guangpeng Tu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Gallo CM, Kistler SA, Natrakul A, Labadorf AT, Beffert U, Ho A. APOER2 splicing repertoire in Alzheimer's disease: Insights from long-read RNA sequencing. PLoS Genet 2024; 20:e1011348. [PMID: 39038048 PMCID: PMC11293713 DOI: 10.1371/journal.pgen.1011348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/01/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Disrupted alternative splicing plays a determinative role in neurological diseases, either as a direct cause or as a driver in disease susceptibility. Transcriptomic profiling of aged human postmortem brain samples has uncovered hundreds of aberrant mRNA splicing events in Alzheimer's disease (AD) brains, associating dysregulated RNA splicing with disease. We previously identified a complex array of alternative splicing combinations across apolipoprotein E receptor 2 (APOER2), a transmembrane receptor that interacts with both the neuroprotective ligand Reelin and the AD-associated risk factor, APOE. Many of the human APOER2 isoforms, predominantly featuring cassette splicing events within functionally important domains, are critical for the receptor's function and ligand interaction. However, a comprehensive repertoire and the functional implications of APOER2 isoforms under both physiological and AD conditions are not fully understood. Here, we present an in-depth analysis of the splicing landscape of human APOER2 isoforms in normal and AD states. Using single-molecule, long-read sequencing, we profiled the entire APOER2 transcript from the parietal cortex and hippocampus of Braak stage IV AD brain tissues along with age-matched controls and investigated several functional properties of APOER2 isoforms. Our findings reveal diverse patterns of cassette exon skipping for APOER2 isoforms, with some showing region-specific expression and others unique to AD-affected brains. Notably, exon 15 of APOER2, which encodes the glycosylation domain, showed less inclusion in AD compared to control in the parietal cortex of females with an APOE ɛ3/ɛ3 genotype. Also, some of these APOER2 isoforms demonstrated changes in cell surface expression, APOE-mediated receptor processing, and synaptic number. These variations are likely critical in inducing synaptic alterations and may contribute to the neuronal dysfunction underlying AD pathogenesis.
Collapse
Affiliation(s)
- Christina M. Gallo
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Sabrina A. Kistler
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Anna Natrakul
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Adam T. Labadorf
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Uwe Beffert
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Angela Ho
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Zhang Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener 2022; 11:39. [PMID: 35996194 PMCID: PMC9395820 DOI: 10.1186/s40035-022-00313-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqin Gao
- Shijiazhuang People's Hospital, Hebei Medical University, Shijiazhuang, 050027, China
| | - Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shanshan Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
4
|
Asada M, Hayashi H, Takagi N. Possible Involvement of DNA Methylation and Protective Effect of Zebularine on Neuronal Cell Death after Glutamate Excitotoxity. Biol Pharm Bull 2022; 45:770-779. [PMID: 35650104 DOI: 10.1248/bpb.b22-00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuronal cell death after cerebral ischemia consists various steps including glutamate excitotoxity. Excessive Ca2+ influx through the N-methyl-D-aspartate (NMDA) receptor, which is one of the ionotropic glutamate receptors, plays a central role in neuronal cell death after cerebral ischemia. We previously reported that DNA methylation is transiently increased in neurons during ischemic injury and that this aberrant DNA methylation is accompanied by neuronal cell death. Therefore, we performed the present experiments on glutamate excitotoxicity to gain further insight into DNA methylation involvement in the neuronal cell death. We demonstrated that knockdown of DNA methyltransferase (DNMT)1, DNMT3a, or DNMT3b gene in Neuro2a cells was performed to examine which DNMTs were more important for neuronal cell death after glutamate excitotoxicity. Although we confirmed a decrease in the levels of the target DNMT protein after small interfering RNA (siRNA) transfection, the Neuro2a cells were not protected from injury by transfection with siRNA for each DNMT. We next revealed that the pharmacological inhibitor of DNMTs protected against glutamate excitotoxicity in Neuro2a cells and also in primary cultured cortical neurons. This protective effect was associated with a decrease in the number of 5-methylcytosine (5 mC)-positive cells under glutamate excitotoxicity. In addition, the increased level of cleaved caspase-3 was also reduced by a DNMT inhibitor. Our results suggest the possibility that at least 2 or all DNMTs functionally would cooperate to activate DNA methylation after glutamate excitotoxicity and that inhibition of DNA methylation in neurons after cerebral ischemia might become a strategy to reduce the neuronal injury.
Collapse
Affiliation(s)
- Mayumi Asada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
5
|
Kawai M, Imaizumi K, Ishikawa M, Shibata S, Shinozaki M, Shibata T, Hashimoto S, Kitagawa T, Ago K, Kajikawa K, Shibata R, Kamata Y, Ushiba J, Koga K, Furue H, Matsumoto M, Nakamura M, Nagoshi N, Okano H. Long-term selective stimulation of transplanted neural stem/progenitor cells for spinal cord injury improves locomotor function. Cell Rep 2021; 37:110019. [PMID: 34818559 DOI: 10.1016/j.celrep.2021.110019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
In cell transplantation therapy for spinal cord injury (SCI), grafted human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) mainly differentiate into neurons, forming synapses in a process similar to neurodevelopment. In the developing nervous system, the activity of immature neurons has an important role in constructing and maintaining new synapses. Thus, we investigate how enhancing the activity of transplanted hiPSC-NS/PCs affects both the transplanted cells themselves and the host tissue. We find that chemogenetic stimulation of hiPSC-derived neural cells enhances cell activity and neuron-to-neuron interactions in vitro. In a rodent model of SCI, consecutive and selective chemogenetic stimulation of transplanted hiPSC-NS/PCs also enhances the expression of synapse-related genes and proteins in surrounding host tissues and prevents atrophy of the injured spinal cord, thereby improving locomotor function. These findings provide a strategy for enhancing activity within the graft to improve the efficacy of cell transplantation therapy for SCI.
Collapse
Affiliation(s)
- Momotaro Kawai
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Shogo Hashimoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Kentaro Ago
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Keita Kajikawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Reo Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Yasuhiro Kamata
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Keisuke Koga
- Department of Neurophysiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| |
Collapse
|
6
|
Song Y, Du Z, Chen X, Zhang W, Zhang G, Li H, Chang L, Wu Y. Astrocytic N-Methyl-D-Aspartate Receptors Protect the Hippocampal Neurons Against Amyloid-β142-Induced Synaptotoxicity by Regulating Nerve Growth Factor. J Alzheimers Dis 2021; 85:167-178. [PMID: 34776441 DOI: 10.3233/jad-210730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Soluble oligomeric amyloid-β (Aβ)-induced synaptic dysfunction is an early event in Alzheimer's disease (AD) pathogenesis. Mounting evidence has suggested N-methyl-D-aspartate receptors (NMDARs) play an important role in Aβ-induced synaptotoxicity. Originally NMDARs were believed to be expressed exclusively in neurons; however, recent two decades studies have demonstrated functional NMDARs present on astrocytes. Neuronal NMDARs are modulators of neurodegeneration, while our previous initial study found that astrocytic NMDARs mediated synaptoprotection and identified nerve growth factor (NGF) secreted by astrocytes, as a likely mediator, but how astrocytic NMDARs protect neurons against Aβ-induced synaptotoxicity through regulating NGF remains unclear. OBJECTIVE To achieve further insight into the mechanism of astrocytic NMDARs oppose Aβ-induced synaptotoxicity through regulating NGF. METHODS With the primary hippocampal neuronal and astrocytic co-cultures, astrocytes were pretreated with agonist or antagonist of NMDARs before Aβ142 oligomers application to neuron-astrocyte co-cultures. Western blot, RT-PCR, etc., were used for the related proteins evaluation. RESULTS Activation of astrocytic NMDARs can significantly mitigate Aβ142-induced loss of PSD-95 and synaptophysin through increasing NGF release. Blockade of astrocytic NMDARs inhibited Aβ-induced compensatory protective NGF increase in protein and mRNA levels through modulating NF-κB of astrocytes. Astrocytic NMDARs activation can enhance Aβ-induced Furin increase, and blockade of astrocytic NMDARs inhibited Aβ-induced immunofluorescent intensity elevation of vesicle trafficking protein VAMP3 and NGF double-staining. CONCLUSION Astrocytic NMDARs oppose Aβ-induced synaptotoxicity through modulating the synthesis, maturation, and secretion of NGF in astrocytes. This new information may contribute to the quest for specific targeted strategy of intervention to delay the onset of AD.
Collapse
Affiliation(s)
- Yizhi Song
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Zunshu Du
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xinyue Chen
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Wanning Zhang
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hui Li
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic MedicalSciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
AbdelMassih A, Hozaien R, El Shershaby M, Kamel A, Ismail HA, Arsanyous M, El-Husseiny N, Khalil N, Naeem Y, Fouda R. The potential role of inhaled nitric oxide for postexposure chemoprophylaxis of COVID-19. J Genet Eng Biotechnol 2021; 19:165. [PMID: 34677688 PMCID: PMC8532099 DOI: 10.1186/s43141-021-00249-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022]
Abstract
Background Several vaccines have been fast-tracked in an attempt to decrease the morbidity and mortality of COVID-19. However, post-exposure prophylaxis has been overlooked in battling COVID-19. Main text Inhaled nitric oxide is a potential tool in post-exposure prophylaxis of COVID-19. It decreases cytosolic calcium levels, which impairs the action of Furin. SARS-CoV-2 uses Furin to replicate in the respiratory tract. Short conclusion Inhaled nitric oxide could decrease the viral load in the upper respiratory tract, abort clinically symptomatic infection, and prevent subsequent complications. Nitric oxide might be a tool for post-exposure chemoprophylaxis in at-risk groups, especially medical personnel.
Collapse
Affiliation(s)
- Antoine AbdelMassih
- Pediatric Cardiology unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Cairo, Egypt. .,Pediatric Cardio-Oncology Department, Children Cancer Hospital of Egypt, Cairo, 57357, Egypt.
| | - Rafeef Hozaien
- Research Accessibility Team, Student and Internship research program Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Meryam El Shershaby
- Research Accessibility Team, Student and Internship research program Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya Kamel
- Research Accessibility Team, Student and Internship research program Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Habiba-Allah Ismail
- Research Accessibility Team, Student and Internship research program Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mariem Arsanyous
- Research Accessibility Team, Student and Internship research program Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nadine El-Husseiny
- Faculty of Dentistry, Cairo University, Cairo, Egypt.,Pixagon Graphic Design Agency, Cairo, Egypt
| | - Noha Khalil
- Research Accessibility Team, Student and Internship research program Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Youstina Naeem
- Research Accessibility Team, Student and Internship research program Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Raghda Fouda
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Du Z, Song Y, Chen X, Zhang W, Zhang G, Li H, Chang L, Wu Y. Knockdown of astrocytic Grin2a aggravates β-amyloid-induced memory and cognitive deficits through regulating nerve growth factor. Aging Cell 2021; 20:e13437. [PMID: 34291567 PMCID: PMC8373273 DOI: 10.1111/acel.13437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Synapse degeneration correlates strongly with cognitive impairments in Alzheimer's disease (AD) patients. Soluble Amyloid-beta (Aβ) oligomers are thought as the major trigger of synaptic malfunctions. Our earlier studies have demonstrated that Aβ oligomers interfere with synaptic function through N-methyl-D-aspartate receptors (NMDARs). Our recent in vitro study found the neuroprotective role of astrocytic GluN2A in the promotion of synapse survival and identified nerve growth factor (NGF) derived from astrocytes, as a likely mediator of astrocytic GluN2A buffering against Aβ synaptotoxicity. Our present in vivo study focused on exploring the precise mechanism of astrocytic GluN2A influencing Aβ synaptotoxicity through regulating NGF. We generated an adeno-associated virus (AAV) expressing an astrocytic promoter (GfaABC1D) shRNA targeted to Grin2a (the gene encoding GluN2A) to perform astrocyte-specific Grin2a knockdown in the hippocampal dentate gyrus, after 3 weeks of virus vector expression, Aβ were bilaterally injected into the intracerebral ventricle. Our results showed that astrocyte-specific knockdown of Grin2a and Aβ application both significantly impaired spatial memory and cognition, which associated with the reduced synaptic proteins PSD95, synaptophysin and compensatory increased NGF. The reduced astrocytic GluN2A can counteract Aβ-induced compensatory protective increase of NGF through regulating pNF-κB, Furin and VAMP3, which modulating the synthesis, mature and secretion of NGF respectively. Our present data reveal, for the first time, a novel mechanism of astrocytic GluN2A in exerting protective effects on synapses at the early stage of Aβ exposure, which may contribute to establish new targets for AD prevention and early therapy.
Collapse
Affiliation(s)
- Zunshu Du
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Yizhi Song
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Xinyue Chen
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Wanning Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Guitao Zhang
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Hui Li
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Lirong Chang
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| | - Yan Wu
- Beijing Key Laboratory of Neural Regeneration and Repair Department of Anatomy School of Basic Medical Sciences Beijing Institute of Brain Disorders Capital Medical University Beijing China
| |
Collapse
|
9
|
Zhang Y, Xu C, Tang Z, Guo D, Yao R, Zhao H, Chen Z, Ni X. Furin is involved in uterine activation for labor. FASEB J 2021; 35:e21565. [PMID: 33864414 DOI: 10.1096/fj.202002128rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022]
Abstract
The uterus undergoes distinct molecular and functional changes during pregnancy and parturition. These processes are associated with the dramatic changes in various proteins. Given that the maturation and activation of many proteins require proteolytic processing by proprotein convertases (PCs), we sought to explore the role of PCs in uterine activation for labor. First, we found that furin was the most dramatically increased PC member in myometrial tissues from the pregnant women after onset of labor at term. Using the model of cultured human myometrial smooth muscle cells (HMSMCs), we showed that furin inhibitor CMK, D6R treatment and furin siRNA transfection suppressed contractility. Inhibition of furin activity or interfering furin expression decreased connexin 43 (CX43), prostaglandin (PG) endoperoxide synthase-2 (COX-2) and PGF2α receptor (FP) expression and NF-κB activation. In mouse model, administration of furin inhibitors prolonged gestational length. However, D6R treatment did not affect RU38486- and lipopolysaccharides (LPS)-induced preterm birth. Furthermore, D6R and furin siRNA treatment reduced the release of soluble form of tumor necrosis factor (TNF)-related weak inducer of apoptosis (TWEAK), while furin overexpression led to an increase in soluble TWEAK release in cultured HMSMCs. D6R treatment decreased TWEAK level in blood of pregnant mice. TWEAK treatment promoted contractility and NF-κB activation, while TWEAK receptor fibroblast growth factor-inducible 14 (FN14) antagonist treatment inhibited contractility and NF-κB activation in HMSMCs. In pregnant mice, administration of FN14 antagonist prolonged gestational length. Our data suggest that furin can act as a stimulator for uterine activation for labor at term. TWEAK is one of the potential substrates which mediate furin regulation of parturition initiation.
Collapse
Affiliation(s)
- Youyi Zhang
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,Department of Gynecology and Obstetrics, General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, Shanghai Medical School of Fundan University, Shanghai, China
| | - Zhengshan Tang
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Dewei Guo
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Ruojin Yao
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China
| | - Huina Zhao
- Department of Gynecology and Obstetrics, Changhai Hospital, Shanghai, China.,Department of Gynecology and Obstetrics, Shanghai Seventh People's Hospital, Shanghai, China
| | - Zixi Chen
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Xin Ni
- Department of Gynecology and Obstetrics, Research Center for Molecular Metabolomics, Xiangya Hospital Central South University, Changsha, China.,Department of Physiology, Second Military Medical University, Shanghai, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
10
|
Kakarla V, Kaneko N, Nour M, Khatibi K, Elahi F, Liebeskind DS, Hinman JD. Pathophysiologic mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. J Cereb Blood Flow Metab 2021; 41:1179-1192. [PMID: 33530831 PMCID: PMC8142132 DOI: 10.1177/0271678x20985666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Cerebrovascular events have emerged as a central feature of the clinical syndrome associated with Sars-CoV-2 infection. This increase in infection-related strokes is marked by atypical presentations including stroke in younger patients and a high rate of hemorrhagic transformation after ischemia. A variety of pathogenic mechanisms may underlie this connection. Efforts to identify synergism in the pathophysiology underlying stroke and Sars-CoV-2 infection can inform the understanding of both conditions in novel ways. In this review, the molecular cascades connected to Sars-CoV-2 infection are placed in the context of the cerebral vasculature and in relationship to pathways known to be associated with stroke. Cytokine-mediated promotion of systemic hypercoagulability is suggested while direct Sars-CoV-2 infection of cerebral endothelial cells may also contribute. Endotheliopathy resulting from direct Sars-CoV-2 infection of the cerebral vasculature can modulate ACE2/AT1R/MasR signaling pathways, trigger direct viral activation of the complement cascade, and activate feed-forward cytokine cascades that impact the blood-brain barrier. All of these pathways are already implicated as independent mechanisms driving stroke and cerebrovascular injury irrespective of Sars-CoV-2. Recognizing the overlap of molecular pathways triggered by Sars-CoV-2 infection with those implicated in the pathogenesis of stroke provides an opportunity to identify future therapeutics targeting both Sars-CoV-2 and stroke thereby reducing the impact of the global pandemic.
Collapse
Affiliation(s)
- Visesha Kakarla
- School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Naoki Kaneko
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - May Nour
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kasra Khatibi
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Fanny Elahi
- Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - David S Liebeskind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Horinokita I, Hayashi H, Yoshizawa R, Ichiyanagi M, Imamura Y, Iwatani Y, Takagi N. Possible involvement of progranulin in the protective effect of elastase inhibitor on cerebral ischemic injuries of neuronal and glial cells. Mol Cell Neurosci 2021; 113:103625. [PMID: 33933589 DOI: 10.1016/j.mcn.2021.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022] Open
Abstract
In a previous study, we demonstrated that neutrophil elastase is activated in the brain parenchyma after cerebral ischemia, which enzyme cleaves progranulin (PGRN), an anti-inflammatory factor. In that study, we also found that sivelestat, a selective neutrophil elastase inhibitor, attenuates ischemia-induced inflammatory responses. However, it was not clear whether this anti-inflammatory effect was due to the direct effect of sivelestat. In this study, we evaluated the effects of sivelestat or recombinant PGRN (rPGRN) on cell injuries in cultured neurons, astrocytes, and microglia under oxygen/glucose deprivation (OGD) conditions. We demonstrated that OGD-induced neuronal cell injury, astrocyte activation, and increased proinflammatory cytokines caused by microglial activation, were suppressed by rPGRN treatment, whereas sivelestat had no effect on any of these events. These results indicate that the anti-inflammatory responses after in vivo cerebral ischemia were not due to the direct action of sivelestat but due to the suppression of PGRN cleavage by inhibition of elastase activity. It was also suggested that the pleiotropic effect of rPGRN could be attributed to the differentiation of M1 microglia into anti-inflammatory type M2 microglia. Therefore, the inhibition of PGRN cleavage by sivelestat could contribute to the establishment of a new therapeutic approach for cerebral ischemia.
Collapse
Affiliation(s)
- Ichiro Horinokita
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Rihona Yoshizawa
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mika Ichiyanagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yui Imamura
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yui Iwatani
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
12
|
Post J, Kogel V, Schaffrath A, Lohmann P, Shah NJ, Langen KJ, Willbold D, Willuweit A, Kutzsche J. A Novel Anti-Inflammatory d-Peptide Inhibits Disease Phenotype Progression in an ALS Mouse Model. Molecules 2021; 26:molecules26061590. [PMID: 33805709 PMCID: PMC7999518 DOI: 10.3390/molecules26061590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterised by selective neuronal death in the brain stem and spinal cord. The cause is unknown, but an increasing amount of evidence has firmly certified that neuroinflammation plays a key role in ALS pathogenesis. Neuroinflammation is a pathological hallmark of several neurodegenerative disorders and has been implicated as driver of disease progression. Here, we describe a treatment study demonstrating the therapeutic potential of a tandem version of the well-known all-d-peptide RD2 (RD2RD2) in a transgenic mouse model of ALS (SOD1*G93A). Mice were treated intraperitoneally for four weeks with RD2RD2 vs. placebo. SOD1*G93A mice were tested longitudinally during treatment in various behavioural and motor coordination tests. Brain and spinal cord samples were investigated immunohistochemically for gliosis and neurodegeneration. RD2RD2 treatment in SOD1*G93A mice resulted not only in a reduction of activated astrocytes and microglia in both the brain stem and lumbar spinal cord, but also in a rescue of neurons in the motor cortex. RD2RD2 treatment was able to slow progression of the disease phenotype, especially the motor deficits, to an extent that during the four weeks treatment duration, no significant progression was observed in any of the motor experiments. Based on the presented results, we conclude that RD2RD2 is a potential therapeutic candidate against ALS.
Collapse
Affiliation(s)
- Julia Post
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
| | - Vanessa Kogel
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
| | - Anja Schaffrath
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- JARA-Brain-Translational Medicine, 52074 Aachen, Germany
- Department of Neurology, RWTH Aachen University, 52062 Aachen, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
- Department of Nuclear Medicine, RWTH Aachen University, 52062 Aachen, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: (D.W.); (A.W.); (J.K.); Tel.: +49-2461-619496 (J.K.)
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (P.L.); (N.J.S.); (K.-J.L.)
- Correspondence: (D.W.); (A.W.); (J.K.); Tel.: +49-2461-619496 (J.K.)
| | - Janine Kutzsche
- Institute of Biological Information Processing, Structural Biochemistry, IBI-7, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; (J.P.); (V.K.); (A.S.)
- Correspondence: (D.W.); (A.W.); (J.K.); Tel.: +49-2461-619496 (J.K.)
| |
Collapse
|
13
|
Virreira Winter S, Karayel O, Strauss MT, Padmanabhan S, Surface M, Merchant K, Alcalay RN, Mann M. Urinary proteome profiling for stratifying patients with familial Parkinson's disease. EMBO Mol Med 2021; 13:e13257. [PMID: 33481347 PMCID: PMC7933820 DOI: 10.15252/emmm.202013257] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
The prevalence of Parkinson's disease (PD) is increasing but the development of novel treatment strategies and therapeutics altering the course of the disease would benefit from specific, sensitive, and non-invasive biomarkers to detect PD early. Here, we describe a scalable and sensitive mass spectrometry (MS)-based proteomic workflow for urinary proteome profiling. Our workflow enabled the reproducible quantification of more than 2,000 proteins in more than 200 urine samples using minimal volumes from two independent patient cohorts. The urinary proteome was significantly different between PD patients and healthy controls, as well as between LRRK2 G2019S carriers and non-carriers in both cohorts. Interestingly, our data revealed lysosomal dysregulation in individuals with the LRRK2 G2019S mutation. When combined with machine learning, the urinary proteome data alone were sufficient to classify mutation status and disease manifestation in mutation carriers remarkably well, identifying VGF, ENPEP, and other PD-associated proteins as the most discriminating features. Taken together, our results validate urinary proteomics as a valuable strategy for biomarker discovery and patient stratification in PD.
Collapse
Affiliation(s)
- Sebastian Virreira Winter
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Ozge Karayel
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Maximilian T Strauss
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | | | | | | | - Roy N Alcalay
- Department of NeurologyColumbia UniversityNew YorkNYUSA
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
14
|
Kluge S, Schubert M, Börmel L, Lorkowski S. The vitamin E long-chain metabolite α-13'-COOH affects macrophage foam cell formation via modulation of the lipoprotein lipase system. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158875. [PMID: 33421592 DOI: 10.1016/j.bbalip.2021.158875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022]
Abstract
The α-tocopherol-derived long-chain metabolite (α-LCM) α-13'-carboxychromanol (α-13'-COOH) is formed via enzymatic degradation of α-tocopherol (α-TOH) in the liver. In the last decade, α-13'-COOH has emerged as a new regulatory metabolite revealing more potent or even different effects compared with its vitamin precursor α-TOH. The detection of α-13'-COOH in human serum has further strengthened the concept of its physiological relevance as a potential regulatory molecule. Here, we present a new facet on the interaction of α-13'-COOH with macrophage foam cell formation. We found that α-13'-COOH (5 μM) increases angiopoietin-like 4 (ANGPTL4) mRNA expression in human THP-1 macrophages in a time- and dose-dependent manner, while α-TOH (100 μM) showed no effects. Interestingly, the mRNA level of lipoprotein lipase (LPL) was not influenced by α-13'-COOH, but α-TOH treatment led to a reduction of LPL mRNA expression. Both compounds also revealed different effects on protein level: while α-13'-COOH reduced the secreted amount of LPL protein via induction of ANGPTL4 cleavage, i.e. activation, the secreted amount of LPL in the α-TOH-treated samples was diminished due to the inhibition of mRNA expression. In line with this, both compounds reduced the catalytic activity of LPL. However, α-13'-COOH but not α-TOH attenuated VLDL-induced lipid accumulation by 35%. In conclusion, only α-13'-COOH revealed possible antiatherogenic effects due to the reduction of VLDL-induced foam cell formation in THP-1 macrophages. Our results provide further evidence for the role of α-13'-COOH as a functional metabolite of its vitamin E precursor.
Collapse
Affiliation(s)
- Stefan Kluge
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Martin Schubert
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Lisa Börmel
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
15
|
Asada M, Hayashi H, Murakami K, Kikuiri K, Kaneko R, Yuan B, Takagi N. Investigating the Relationship Between Neuronal Cell Death and Early DNA Methylation After Ischemic Injury. Front Neurosci 2020; 14:581915. [PMID: 33177984 PMCID: PMC7591788 DOI: 10.3389/fnins.2020.581915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Cerebral ischemia induces neuronal cell death and causes various kinds of brain dysfunction. Therefore, prevention of neuronal cell death is most essential for protection of the brain. On the other hand, it has been reported that epigenetics including DNA methylation plays a pivotal role in pathogenesis of some diseases such as cancer. Accumulating evidences indicate that aberrant DNA methylation is related to cell death. However, DNA methylation after cerebral ischemia has not been fully understood yet. The aim of this present study was to investigate the relationships between DNA methylation and neuronal cell death after cerebral ischemia. We examined DNA methylation under the ischemic condition by using transient middle cerebral artery occlusion and reperfusion (MCAO/R) model rats and N-methyl-D-aspartate (NMDA)–treated cortical neurons in primary culture. In this study, we demonstrated that DNA methylation increased in these neurons 24 h after MCAO/R and that DNA methylation, possibly through activation of DNA methyltransferases (DNMT) 3a, increased in such neurons immediately after NMDA treatment. Furthermore, NMDA-treated neurons were protected by treatment with a DNMT inhibitor that were accompanied by inhibition of DNA methylation. Our results showed that DNA methylation would be an initiation factor of neuronal cell death and that inhibition of such methylation could become an effective therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Mayumi Asada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kenjiro Murakami
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Kento Kikuiri
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Ryotaro Kaneko
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Bo Yuan
- Laboratory of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, School of Pharmacy, Josai University, Sakado, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
16
|
AbdelMassih AF, Ye J, Kamel A, Mishriky F, Ismail HA, Ragab HA, El Qadi L, Malak L, Abdu M, El-Husseiny M, Ashraf M, Hafez N, AlShehry N, El-Husseiny N, AbdelRaouf N, Shebl N, Hafez N, Youssef N, Afdal P, Hozaien R, Menshawey R, Saeed R, Fouda R. A multicenter consensus: A role of furin in the endothelial tropism in obese patients with COVID-19 infection. OBESITY MEDICINE 2020; 19:100281. [PMID: 32835124 PMCID: PMC7362855 DOI: 10.1016/j.obmed.2020.100281] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Furin, a cleavage enzyme, is increasingly recognized in the pathogenesis of metabolic syndrome. Its cleavage action is an essential activation step for the endothelial pathogenicity of several viruses including SARS-CoV-2. This Furin-mediated endothelial tropism seems to underlie the multi-organ system involvement of COVID-19; which is a feature that was not recognized in the older versions of coronaviridae. Obese and diabetic patients, males, and the elderly, have increased serum levels of Furin, with its increased cellular activity; this might explain why these subgroups are at an increased risk of COVID-19 related complications and deaths. In contrast, smoking decreases cellular levels of Furin, this finding may be at the origin of the decreased severity of COVID-19 in smokers. Chinese herbal derived luteolin is suggested to be putative Furin inhibitor, with previous success against Dengue Fever. Additionally, Furin intracellular levels are largely dependent on concentration of intracellular ions, notably sodium, potassium, and magnesium. Consequently, the use of ion channel inhibitors, such as Calcium Channel blockers or Potassium Channel blockers, can prevent cellular transfection early in the course of the illness. Nicotine patches and Colchicine have also been suggested as potential therapies due to Furin mediated inhibition of COVID-19.
Collapse
Affiliation(s)
- Antoine Fakhry AbdelMassih
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianping Ye
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Aya Kamel
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Fady Mishriky
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Habiba-Allah Ismail
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Heba Amin Ragab
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
| | - Layla El Qadi
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Lauris Malak
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
| | - Mariam Abdu
- Pediatric Cardiology Unit, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
| | - Miral El-Husseiny
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Mirette Ashraf
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Nada Hafez
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Nada AlShehry
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Nadine El-Husseiny
- Faculty of Dentistry, Cairo University, Egypt
- Pixagon Graphic Design Agency, Cairo, Egypt
| | - Nora AbdelRaouf
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Noura Shebl
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Nouran Hafez
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Nourhan Youssef
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Peter Afdal
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Rafeef Hozaien
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Rahma Menshawey
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Rana Saeed
- Student and Internship Research Program (Research Accessibility Team), Faculty of Medicine, Cairo University, Egypt
| | - Raghda Fouda
- University of Irvine California, USA
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Pediatrics' Department, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
17
|
Saha RP, Sharma AR, Singh MK, Samanta S, Bhakta S, Mandal S, Bhattacharya M, Lee SS, Chakraborty C. Repurposing Drugs, Ongoing Vaccine, and New Therapeutic Development Initiatives Against COVID-19. Front Pharmacol 2020; 11:1258. [PMID: 32973505 PMCID: PMC7466451 DOI: 10.3389/fphar.2020.01258] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
As the COVID-19 is still growing throughout the globe, a thorough investigation into the specific immunopathology of SARS-CoV-2, its interaction with the host immune system and pathogen evasion mechanism may provide a clear picture of how the pathogen can breach the host immune defenses in elderly patients and patients with comorbid conditions. Such studies will also reveal the underlying mechanism of how children and young patients can withstand the disease better. The study of the immune defense mechanisms and the prolonged immune memory from patients population with convalescent plasma may help in designing a suitable vaccine candidate not only for the current outbreak but also for similar outbreaks in the future. The vital drug candidates, which are being tested as potential vaccines or therapeutics against COVID-19, include live attenuated vaccine, inactivated or killed vaccine, subunit vaccine, antibodies, interferon treatment, repurposing existing drugs, and nucleic acid-based vaccines. Several organizations around the world have fast-tracked the development of a COVID-19 vaccine, and some drugs already went to phase III of clinical trials. Hence, here, we have tried to take a quick glimpse of the development stages of vaccines or therapeutic approaches to treat this deadly disease.
Collapse
Affiliation(s)
- Rudra P. Saha
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Manoj K. Singh
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Saikat Samanta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Snehasish Mandal
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science & Biotechnology, Adamas University, Kolkata, India
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
18
|
Yamada M, Hayashi H, Suzuki K, Sato S, Inoue D, Iwatani Y, Ohata M, Yuan B, Takagi N. Furin-mediated cleavage of LRP1 and increase in ICD of LRP1 after cerebral ischemia and after exposure of cultured neurons to NMDA. Sci Rep 2019; 9:11782. [PMID: 31409872 PMCID: PMC6692408 DOI: 10.1038/s41598-019-48279-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
The N-methyl-D-aspartate (NMDA) receptor has been implicated in several neurodegenerative diseases, including stroke. Low-density lipoprotein receptor-related protein 1 (LRP1) plays pivotal roles in endocytosis and signaling in the cell. Immature LRP1 is processed by furin in the trans-Golgi network (TGN) and transported to the cell surface as its mature form. Activation of mature LRP1 exerts a protective effect against glutamate-induced degeneration of the rat retinal ganglion cells, as was shown in our previous study. However, the roles of LRP1 in the pathogenesis of excitotoxic neuronal injuries remain to be determined. The aim of this present study was to achieve further insight into the pathophysiologic roles of LRP1 after excitotoxic neuronal injuries. Our findings are the first to demonstrate that LRP1 was significantly cleaved by furin after cerebral ischemia in rats as well as after exposure of cultured cortical neurons to NMDA. It was noteworthy that the intracellular domain (ICD) of LRP1 was co-localized with TGN and furin. Furthermore, a furin inhibitor inhibited the cleavage of LRP1 and co-localization of LRP1-ICD with TGN or furin. Our findings suggest that furin-mediated cleavage of LRP1 and changes in the localization of LRP1-ICD were involved in the excitotoxic neuronal injury.
Collapse
Affiliation(s)
- Mariko Yamada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kaori Suzuki
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shoko Sato
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Daisuke Inoue
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yui Iwatani
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Meiko Ohata
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.,Laboratory of Pharmacology, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
19
|
Inberg S, Meledin A, Kravtsov V, Iosilevskii Y, Oren-Suissa M, Podbilewicz B. Lessons from Worm Dendritic Patterning. Annu Rev Neurosci 2019; 42:365-383. [PMID: 30939099 DOI: 10.1146/annurev-neuro-072116-031437] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structural and functional properties of neurons have intrigued scientists since the pioneering work of Santiago Ramón y Cajal. Since then, emerging cutting-edge technologies, including light and electron microscopy, electrophysiology, biochemistry, optogenetics, and molecular biology, have dramatically increased our understanding of dendritic properties. This advancement was also facilitated by the establishment of different animal model organisms, from flies to mammals. Here we describe the emerging model system of a Caenorhabditis elegans polymodal neuron named PVD, whose dendritic tree follows a stereotypical structure characterized by repeating candelabra-like structural units. In the past decade, progress has been made in understanding PVD's functions, morphogenesis, regeneration, and aging, yet many questions still remain.
Collapse
Affiliation(s)
- Sharon Inberg
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Anna Meledin
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Veronika Kravtsov
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Yael Iosilevskii
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| | - Meital Oren-Suissa
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Podbilewicz
- Department of Biology, Technion Israel Institute of Technology, Haifa 3200003, Israel;
| |
Collapse
|