1
|
Cieslik SA, Zafra AG, Driemel C, Sudarsanam M, Cieslik JP, Flügen G, Dizdar L, Krieg A, Vaghiri S, Ashmawy H, Fung S, Wilms M, Terstappen LWMM, Nanou A, Neubauer H, Rahbari NN, Knoefel WT, Stoecklein NH, Neves RPL. Phenotypic diversity of CTCs and tdEVs in liquid biopsies of tumour-draining veins is linked to poor prognosis in colorectal cancer. J Exp Clin Cancer Res 2025; 44:9. [PMID: 39773651 PMCID: PMC11708080 DOI: 10.1186/s13046-024-03259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Circulating tumour cells (CTCs) and tumour-derived extracellular vesicles (tdEVs) have great potential for monitoring therapy response and early detection of tumour relapse, facilitating personalized adjuvant therapeutic strategies. However, their low abundance in peripheral blood limits their informative value. In this study, we explored the presence of CTCs and tdEVs collected intraoperatively from a tumour-draining vein (DV) and via a central venous catheter (CVC) prior to tumour resection. METHODS CellSearch analyses of 395 blood samples from 306 patients with gastrointestinal tumours and 93 blood samples from healthy donors were used to establish and validate gates for the automated detection of CTCs and tdEVs with ACCEPT software and R scripts. The selected gate settings were applied to 227 samples of 142 patients with colorectal cancer (CRC) from two independent collectives. Phenotypic features were obtained via numeric analysis of their fluorescence signals (e.g. size, shape, and intensity) and were used for calculating diversity using Shannon index (SI) of clusters generated via the k-means algorithm after Uniform Manifold Approximation and Projection (UMAP) pre-processing, and standard deviation (SD). RESULTS CTCs and tdEVs were more abundant in the DV samples compared to CVC samples (p < 0.05). tdEVs were detected in higher numbers than CTCs in both compartments. Importantly, tdEVs in CVCs were associated with tumor spread, whereas CTCs in DVs were linked to tumor size. In both compartments, the prognostic value of tdEVs for overall survival (OS) surpassed that of CTCs, as demonstrated by univariate, multivariate, and Kaplan-Meier analyses. CTCs and tdEVs in DVs were phenotypically distinct, being larger, more eccentric, and displaying stronger cytokeratin intensities (p < 0.05) compared to those in CVC samples. Furthermore, increased diversity in CTC and tdEV phenotypes was significantly associated with shorter survival, validating the prognostic relevance of the SD-diversity metric. CONCLUSION Our study demonstrates that DV sampling significantly enhances the detection of prognostically relevant CTCs and tdEVs in CRC patients, underscoring the superior prognostic significance of tdEVs compared to CTCs. Importantly, the combined phenotypic diversity of both markers emerges as a more powerful biomarker than their enumeration alone. These findings suggest that comprehensive, automated analysis of CTCs and tdEVs in DVs may open new avenues for tailoring individualized therapies in CRC patients.
Collapse
Affiliation(s)
- Stefan A Cieslik
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Andrés G Zafra
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christiane Driemel
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Monica Sudarsanam
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Jan-Philipp Cieslik
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Georg Flügen
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Levent Dizdar
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Andreas Krieg
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
- Department of General and Visceral Surgery, Thoracic Surgery and Proctology, Medical Campus OWL, University Hospital Herford, Ruhr University Bochum, 32049, Herford, Germany
| | - Sascha Vaghiri
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Hany Ashmawy
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Stephen Fung
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Miriam Wilms
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Leon W M M Terstappen
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, 7522 NH, The Netherlands
- Decisive Science, Amsterdam, The Netherlands
| | - Afroditi Nanou
- Department of Medical Cell BioPhysics, Faculty of Science and Technology, University of Twente, Enschede, 7522 NH, The Netherlands
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Nuh N Rahbari
- Department of General and Visceral Surgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Wolfram T Knoefel
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Rui P L Neves
- Department of General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of Heinrich-Heine University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| |
Collapse
|
2
|
Mondal D, Shinde S, Sinha V, Dixit V, Paul S, Gupta RK, Thakur S, Vishvakarma NK, Shukla D. Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers. Front Mol Biosci 2024; 11:1385238. [PMID: 38770216 PMCID: PMC11103528 DOI: 10.3389/fmolb.2024.1385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Gastrointestinal (GI) cancers account for one-fourth of the global cancer incidence and are incriminated to cause one-third of cancer-related deaths. GI cancer includes esophageal, gastric, liver, pancreatic, and colorectal cancers, mostly diagnosed at advanced stages due to a lack of accurate markers for early stages. The invasiveness of diagnostic methods like colonoscopy for solid biopsy reduces patient compliance as it cannot be frequently used to screen patients. Therefore, minimally invasive approaches like liquid biopsy may be explored for screening and early identification of gastrointestinal cancers. Liquid biopsy involves the qualitative and quantitative determination of certain cancer-specific biomarkers in body fluids such as blood, serum, saliva, and urine to predict disease progression, therapeutic tolerance, toxicities, and recurrence by evaluating minimal residual disease and its correlation with other clinical features. In this review, we deliberate upon various tumor-specific cellular and molecular entities such as circulating tumor cells (CTCs), tumor-educated platelets (TEPs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), exosomes, and exosome-derived biomolecules and cite recent advances pertaining to their use in predicting disease progression, therapy response, or risk of relapse. We also discuss the technical challenges associated with translating liquid biopsy into clinical settings for various clinical applications in gastrointestinal cancers.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vibha Sinha
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Sadguru Jagjit Singh Namdhari College, Garhwa, Jharkhand, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Rakesh Kumar Gupta
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
3
|
An SX, Yu ZJ, Fu C, Wei MJ, Shen LH. Biological factors driving colorectal cancer metastasis. World J Gastrointest Oncol 2024; 16:259-272. [PMID: 38425391 PMCID: PMC10900157 DOI: 10.4251/wjgo.v16.i2.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
Approximately 20% of colorectal cancer (CRC) patients present with metastasis at diagnosis. Among Stage I-III CRC patients who undergo surgical resection, 18% typically suffer from distal metastasis within the first three years following initial treatment. The median survival duration after the diagnosis of metastatic CRC (mCRC) is only 9 mo. mCRC is traditionally considered to be an advanced stage malignancy or is thought to be caused by incomplete resection of tumor tissue, allowing cancer cells to spread from primary to distant organs; however, increasing evidence suggests that the mCRC process can begin early in tumor development. CRC patients present with high heterogeneity and diverse cancer phenotypes that are classified on the basis of molecular and morphological alterations. Different genomic and nongenomic events can induce subclone diversity, which leads to cancer and metastasis. Throughout the course of mCRC, metastatic cascades are associated with invasive cancer cell migration through the circulatory system, extravasation, distal seeding, dormancy, and reactivation, with each step requiring specific molecular functions. However, cancer cells presenting neoantigens can be recognized and eliminated by the immune system. In this review, we explain the biological factors that drive CRC metastasis, namely, genomic instability, epigenetic instability, the metastatic cascade, the cancer-immunity cycle, and external lifestyle factors. Despite remarkable progress in CRC research, the role of molecular classification in therapeutic intervention remains unclear. This review shows the driving factors of mCRC which may help in identifying potential candidate biomarkers that can improve the diagnosis and early detection of mCRC cases.
Collapse
Affiliation(s)
- Shuai-Xing An
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, China
- Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110122, Liaoning Province, China
- BD Department, Greenpine Pharma Group Co., Ltd, Tianjin 300020, China
| | - Zhao-Jin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, China
- Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110122, Liaoning Province, China
| | - Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, China
- Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110122, Liaoning Province, China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning Province, China
- Liaoning Key Laboratory of Molecular Targeted Antitumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Shenyang 110122, Liaoning Province, China
| | - Long-Hai Shen
- Center of Oncology, Genertec Liaoyou Gem Flower Hospital, PanJin 124010, Liaoning Province, China
| |
Collapse
|
4
|
Wu M, Wu S, Chen Y, Sun L, Zhou J. Immune Activation Effects at Different Irradiated Sites and Optimal Timing of Radioimmunotherapy in Patients with Extensive-Stage Small Cell Lung Cancer: a Real-World Analysis. Biol Proced Online 2023; 25:24. [PMID: 37710179 PMCID: PMC10503112 DOI: 10.1186/s12575-023-00217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND In view of the limited data on radiotherapy (RT) combined with immunotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC), this study aimed to identify the immune activation effect on different sites and the survival outcomes of radioimmunotherapy at different treatment stages. METHODS Forty-five patients diagnosed with ES-SCLC were included in this retrospective analysis. We collected the overall survival (OS) of the patients,, recorded the blood cell counts before, during, and after RT, and derived blood index ratios such as the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII). The datasets were analyzed using the Spearman rank correlation test, Kruskal-Wallis rank sum test and logistic regression. RESULTS Among the selected blood indices, the delta-NLR/PLR/Sll correlated with different irradiated organs, and the mean ranks of these three indices were the lowest in the brain-irradiated group during immunotherapy. Additionally, adjunct first-line immunotherapy with RT demonstrated a significant improvement compared to second- or third-line therapy and subsequent therapies. CONCLUSION Our findings suggest that compared to other organs, the strongest immune activation effect occurs with brain RT, and ES-SCLC patients who received radioimmunotherapy (RIT) earlier achieved higher OS rates.
Collapse
Affiliation(s)
- Min Wu
- Department of Radiation Oncology, Nanjing Medical University, Nanjing, Jiangsu, China
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shihao Wu
- Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yuetong Chen
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Liangchao Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Jundong Zhou
- Department of Radiation Oncology, Nanjing Medical University, Nanjing, Jiangsu, China.
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Schmid S, Becker H, Fritsch R, Bausch J, Hunter N, Jenkner C, Hassan M, Passlick B. Study Protocol for a Randomised Controlled Trial on Pulmonary Metastasectomy vs. Standard of Care in Colorectal Cancer Patients With ≥ 3 Lung Metastases (PUCC-Trial). Front Oncol 2022; 12:913896. [PMID: 35898865 PMCID: PMC9313587 DOI: 10.3389/fonc.2022.913896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022] Open
Abstract
This is a multicentre prospective randomised controlled trial for patients with 3 or more resectable pulmonary metastases from colorectal carcinoma. The study investigates the effects of pulmonary metastasectomy in addition to standard medical treatment in comparison to standard medical treatment plus possible local ablative measures such as SBRT. This trial is intended to demonstrate an overall survival difference in the group undergoing pulmonary metastasectomy. Further secondary and exploratory endpoints include quality of life (EORTC QLQ-C30, QLQ-CR29 and QLQ-LC29 questionnaires), progression-free survival and impact of mutational status. Due to the heterogeneity and complexity of the disease and treatment trajectories in metastasised colorectal cancer, well powered trials have been very challenging to design and execute. The goal of this study is to create a setting which allows treatment as close to the real life conditions as possible but under well standardised conditions. Based on previous trials, in which patient recruitment in the given setting hindered successful study completion, we decided to (1) restrict inclusion to patients with 3 or more metastases (since in case of lesser, surgery will probably be the preferred option) and (2) allow for real world standard of care (SOC) treatment options before and after randomisation including watchful waiting (as opposed to a predefined treatment protocol) and (3) possibility that patient can receive SOC externally (to reduce patient burden). Moreover, we chose to stipulate 12 weeks of systemic treatment prior to possible resection to further standardize treatment response and disease course over a certain period of time. Hence, included patients will be in the disease state of oligopersistence rather than primary oligometastatic. The trial was registered in the German Clinical Trials Register (DRKS-No.: DRKS00024727).
Collapse
Affiliation(s)
- Severin Schmid
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Fritsch
- Department of Medical Oncology and Hematology - University Hospital of Zurich, Zurich, Switzerland
| | - Johannes Bausch
- Clinical Trials Unit, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Natalie Hunter
- Clinical Trials Unit, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Jenkner
- Clinical Trials Unit, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mohamed Hassan
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernward Passlick
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Zhong M, Khan FZ, He X, Cui L, Lei K, Ge M. Impact of Lung Metastasis versus Metastasis of Bone, Brain, or Liver on Overall Survival and Thyroid Cancer-Specific Survival of Thyroid Cancer Patients: A Population-Based Study. Cancers (Basel) 2022; 14:cancers14133133. [PMID: 35804903 PMCID: PMC9265095 DOI: 10.3390/cancers14133133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
We investigate the impact of lung metastasis versus metastasis of bone, brain, or liver on overall survival (OS) and thyroid cancer-specific survival (TCSS) in patients with thyroid cancer (TC). Therefore, de-identified SEER 18 registry data of primary TC patients diagnosed between 2010 and 2016 were analyzed. The primary outcome was the prognosis of TC patients with lung metastasis compared with other sites. The secondary outcomes included the prognosis comparison between patients with and without surgery and between single and multiple metastasis sites. Isolated lung metastasis was associated with worse OS and TCSS than bone metastasis (both p < 0.05) and was associated with worse OS than liver metastasis (p = 0.0467). Surgery performed either for the primary or distant site was associated with better OS and TCSS in patients with metastasis of lung or bone (p < 0.05). Isolated lung metastasis was related to better OS and TCSS than lung−liver, lung−brain, and lung−other multiple metastases. The multivariable analysis revealed that age < 55 years, surgery to the primary site, and to the distant site(s) were associated with better outcomes, while T4 and Tx were associated with worse outcomes. Nevertheless, it revealed that the other race (i.e., any race other than white, black, or unknown) and male gender were associated with better TCSS only (p < 0.05). Isolated lung metastasis is associated with a worse prognosis in TC patients compared with bone or liver metastasis. Surgery performed either for the primary or distant site(s) is associated with better survival outcomes in TC patients with metastasis of lung or bone.
Collapse
Affiliation(s)
- Miaochun Zhong
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou 215006, China;
- Department of General Surgery, Cancer Center, Division of Breast Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Farhana Zerin Khan
- Department of Pediatric Surgery, Square Hospital Pvt. Ltd., Dhaka 1205, Bangladesh;
| | - Xianghong He
- Public Basic Courses Department, Guangdong University of Science and Technology, Dongguan 523083, China;
| | - Lingfei Cui
- Department of General Surgery, The 7th Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China;
| | - Kefeng Lei
- Department of General Surgery, The 7th Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, China;
- Correspondence: (K.L.); (M.G.); Tel.: +86-185-2959-8502 (K.L.); +86-137-7783-1634 (M.G.)
| | - Minghua Ge
- Department of Clinical Medicine, Medical College of Soochow University, Suzhou 215006, China;
- Department of Head and Neck & Thyroid Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (K.L.); (M.G.); Tel.: +86-185-2959-8502 (K.L.); +86-137-7783-1634 (M.G.)
| |
Collapse
|
7
|
Hu M, Wang Z, Wu Z, Ding P, Pei R, Wang Q, Xing C. Circulating tumor cells in colorectal cancer in the era of precision medicine. J Mol Med (Berl) 2021; 100:197-213. [PMID: 34802071 PMCID: PMC8770420 DOI: 10.1007/s00109-021-02162-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the main causes of cancer-related morbidity and mortality across the globe. Although serum biomarkers such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19–9 (CA-199) have been prevalently used as biomarkers in various cancers, they are neither very sensitive nor highly specific. Repeated tissue biopsies at different times of the disease can be uncomfortable for cancer patients. Additionally, the existence of tumor heterogeneity and the results of local biopsy provide limited information about the overall tumor biology. Against this backdrop, it is necessary to look for reliable and noninvasive biomarkers of CRC. Circulating tumor cells (CTCs), which depart from a primary tumor, enter the bloodstream, and imitate metastasis, have a great potential for precision medicine in patients with CRC. Various efficient CTC isolation platforms have been developed to capture and identify CTCs. The count of CTCs, as well as their biological characteristics and genomic heterogeneity, can be used for the early diagnosis, prognosis, and prediction of treatment response in CRC. This study reviewed the existing CTC isolation techniques and their applications in the clinical diagnosis and treatment of CRC. The study also presented their limitations and provided future research directions.
Collapse
Affiliation(s)
- Mingchao Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.,Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Zhili Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zeen Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Qiang Wang
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China.
| | - Chungen Xing
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
8
|
Hassan M, Graeter T, Dietrich I, Kemna LJ, Passlick B, Schmid S. Surgical Morbidity and Lung Function Changes After Laser-Assisted Pulmonary Metastasectomy: A Prospective Bicentric Study. Front Surg 2021; 8:646269. [PMID: 34141719 PMCID: PMC8203914 DOI: 10.3389/fsurg.2021.646269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/06/2021] [Indexed: 12/02/2022] Open
Abstract
Objective: The surgical resection of pulmonary metastases is associated with a survival benefit in selected patients. The use of laser devices for pulmonary metastasectomy (PM) is believed to facilitate the complete resection of metastases while preserving a maximum of healthy parenchyma. This is a prospective study to evaluate surgical outcome including the changes of lung function after laser–assisted surgery (LAS). Methods: A total of 77 operations in 61 patients in which PM was carried out in a curative intent were analyzed. A 1.320 nm diode-pumped Nd: YAG-Laser was used for resection of the metastases. Surgical and clinical data were collected using a standardized form and postoperative lung function changes 3 and 6 months after surgery were assessed using whole body plethysmography and diffusion capacity for carbon monoxide (DLCO). Size and distance of metastases to the pleural surface were measured radiologically. Results: A median of two metastases were resected per operation (range 1–13). The median duration of postoperative air leak was 1 day (range 0–11). LAS associated postoperative minor and major complications were observed in 4 (5%) cases and 1 (1%) case, respectively; there were no mortalities. The analysis of perioperative lung function showed that mean VC 3 months after surgery was reduced by 11 %, FEV1 by 11% and median DLCO by 11% (all p < 0.0001). There was almost no recovery of lung function between 3 and 6 months in the whole cohort. Patients with two or less metastases showed a recovery of lung function after 3 months regarding DLCO (p = 0.003). Decline of DLCO in the whole cohort correlated with the number of resected metastases at 3 months (r = 0.45, p = 0.006) and at 6 months (r = 0.42, p = 0.02) as well as depth of metastases in the parenchyma at 6 months (r = 0.48, p = 0.001). Conclusions: LAS is a safe and effective method for PM even for higher numbers of metastases, with short duration of postoperative air leak and little morbidity. Number and depth, but not size of metastases affect lung function changes after resection.
Collapse
Affiliation(s)
- Mohamed Hassan
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Graeter
- Department of Thoracic Surgery, Klinik Loewenstein, Loewenstein, Germany
| | - Irene Dietrich
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lars Johann Kemna
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Radiology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Bernward Passlick
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Severin Schmid
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Memarpour S, Khalili-Tanha G, Ghannad AA, Razavi MS, Joudi M, Joodi M, Ferns GA, Hassanian SM, Khazaei M, Avan A. The Clinical Application of Circulating Tumor Cells and DNAs as Prognostic and Predictive Biomarkers in Gastrointestinal Cancer. Curr Cancer Drug Targets 2021; 21:676-688. [PMID: 33719973 DOI: 10.2174/1568009621666210311090531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/21/2020] [Accepted: 01/31/2021] [Indexed: 11/22/2022]
Abstract
Gastrointestinal (GI) cancer is one of the most common cancers globally. Genetic and epigenetic mechanisms are involved in its pathogenesis. The conventional methods for diagnosis and screening for GI cancers are often invasive and have other limitations. In the era of personalized medicine, a novel non-invasive approach called liquid biopsy has been introduced for the detection and management of GI cancers, which focuses on the analysis of circulating tumor cells (CTCs) and circulating cell-free tumor DNA (ctDNA). Several studies have shown that this new approach allows for an improved understanding of GI tumor biology and will lead to an improvement in clinical management. The aim of the current review is to explore the clinical applications of CTCs and ctDNA in patients with GI cancer.
Collapse
Affiliation(s)
- Sara Memarpour
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Awa Alizadeh Ghannad
- Department of biological sciences, California state University, Sacramento, California. United States
| | - Masoud Sharifian Razavi
- Department of Gastroenterology, Ghaem Medical Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mona Joudi
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Marjan Joodi
- Sarvar Children's Hospital, Endoscopic and Minimally Invasive Surgery Research Center, Mashhad. Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH. United Kingdom
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Majid Khazaei
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
10
|
Circulating Giant Tumor-Macrophage Fusion Cells Are Independent Prognosticators in Patients With NSCLC. J Thorac Oncol 2020; 15:1460-1471. [DOI: 10.1016/j.jtho.2020.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
|
11
|
Coyne GO'S, Wang L, Zlott J, Juwara L, Covey JM, Beumer JH, Cristea MC, Newman EM, Koehler S, Nieva JJ, Garcia AA, Gandara DR, Miller B, Khin S, Miller SB, Steinberg SM, Rubinstein L, Parchment RE, Kinders RJ, Piekarz RL, Kummar S, Chen AP, Doroshow JH. Intravenous 5-fluoro-2'-deoxycytidine administered with tetrahydrouridine increases the proportion of p16-expressing circulating tumor cells in patients with advanced solid tumors. Cancer Chemother Pharmacol 2020; 85:979-993. [PMID: 32314030 PMCID: PMC7188725 DOI: 10.1007/s00280-020-04073-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Following promising responses to the DNA methyltransferase (DNMT) inhibitor 5-fluoro-2'-deoxycytidine (FdCyd) combined with tetrahydrouridine (THU) in phase 1 testing, we initiated a non-randomized phase 2 study to assess response to this combination in patients with advanced solid tumor types for which tumor suppressor gene methylation is potentially prognostic. To obtain pharmacodynamic evidence for DNMT inhibition by FdCyd, we developed a novel method for detecting expression of tumor suppressor protein p16/INK4A in circulating tumor cells (CTCs). METHODS Patients in histology-specific strata (breast, head and neck [H&N], or non-small cell lung cancers [NSCLC] or urothelial transitional cell carcinoma) were administered FdCyd (100 mg/m2) and THU (350 mg/m2) intravenously 5 days/week for 2 weeks, in 28-day cycles, and progression-free survival (PFS) rate and objective response rate (ORR) were evaluated. Blood specimens were collected for CTC analysis. RESULTS Ninety-three eligible patients were enrolled (29 breast, 21 H&N, 25 NSCLC, and 18 urothelial). There were three partial responses. All strata were terminated early due to insufficient responses (H&N, NSCLC) or slow accrual (breast, urothelial). However, the preliminary 4-month PFS rate (42%) in the urothelial stratum exceeded the predefined goal-though the ORR (5.6%) did not. An increase in the proportion of p16-expressing cytokeratin-positive CTCs was detected in 69% of patients evaluable for clinical and CTC response, but was not significantly associated with clinical response. CONCLUSION Further study of FdCyd + THU is potentially warranted in urothelial carcinoma but not NSCLC or breast or H&N cancer. Increase in the proportion of p16-expressing cytokeratin-positive CTCs is a pharmacodynamic marker of FdCyd target engagement.
Collapse
Affiliation(s)
- Geraldine O 'Sullivan Coyne
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Lihua Wang
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Zlott
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Lamin Juwara
- Clinical Monitoring Research Program, Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph M Covey
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Jan H Beumer
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Mihaela C Cristea
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Edward M Newman
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Jorge J Nieva
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Agustin A Garcia
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Louisiana State University, New Orleans, LA, 70112, USA
| | - David R Gandara
- University of California Davis Cancer Center, Sacramento, CA, USA
| | - Brandon Miller
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sonny Khin
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sarah B Miller
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Seth M Steinberg
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Larry Rubinstein
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert J Kinders
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Richard L Piekarz
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, 31 Center Drive, Bldg. 31 Room 3A-44, Bethesda, MD, 20892, USA.
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
12
|
Circulating tumor cell clusters are a potential biomarker for detection of non-small cell lung cancer. Lung Cancer 2019; 134:147-150. [PMID: 31319973 DOI: 10.1016/j.lungcan.2019.06.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Circulating tumor cell (CTC) clusters (≥2 CTCs in aggregate) detected in the peripheral blood have predictive value in solid cancers, including non-small cell lung cancer (NSCLC). The goal of the study was to investigate the presence of CTC clusters in NSCLC patients and in high-risk screening subjects having no or benign nodules in a screening low-dose CT (LDCT). MATERIALS AND METHODS In a prospective pilot trial, 7.5 ml peripheral blood was collected from treatment-naïve NSCLC patients, LDCT screening subjects (55-80 years, ≥30 pack-year smoking history) with no (Lung-RADS 1) or benign lung nodules (Lung-RADS 2), and healthy never-smoking controls. CTCs were enriched by size, also allowing CTC cluster isolation. For CTC identification and enumeration, immunofluorescence staining was performed for cytokeratins (CK) 8/18 and/or 19, EpCAM, CD45, and nuclei were stained with DAPI. Clinicopathological data were collected, and LDCT interpreted by the American College of Radiology Lung-RADS criteria. RESULTS CTC clusters were detected in 12/29 (41.4%) of all NSCLC patients, but not found in 31 high-risk screening subjects with Lung-RADS 1 or Lung-RADS 2 (P < 0.05). Since non-clustered, single CTCs were detectable in both groups of NSCLC patients (100%) and in 18/31 (58.1%) of high-risk screening subjects. No CTCs were detected in 20 healthy control subjects. CONCLUSION This pilot study suggests that CTC clusters are a useful and specific liquid biomarker to further explore for screening by LDCT and risk stratification of NSCLC patients. Future prospective studies with higher subject numbers will need to be performed.
Collapse
|
13
|
Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med 2019; 69:107-122. [PMID: 31189073 DOI: 10.1016/j.mam.2019.06.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
Abstract
New non-invasive approaches that can complement and improve on current strategies for colorectal cancer (CRC) screening and management are urgently needed. A growing number of publications have documented that components of tumors, which are shed into the circulation, can be detected in the form of liquid biopsies and can be used to detect CRC at early stages, to predict response to certain therapies and to detect CRC recurrence in a minimally invasive way. The analysis of circulating tumor DNA (ctDNA), tumor-derived cells (CTC, circulating tumor cells) or circulating microRNA (miRNA) in blood and other body fluids, have a great potential to improve different aspects of CRC management. The challenge now is to find which types of components, biofluids and detection methods would be the most suitable to be applied in the different steps of CRC detection and treatment. This chapter will provide an up to date review on ctDNA, CTCs and circulating miRNAs as new biomarkers for CRC, either for clinical management or early detection, highlighting their advantages and limitations.
Collapse
|
14
|
PD-L1 Expression with Epithelial Mesenchymal Transition of Circulating Tumor Cells Is Associated with Poor Survival in Curatively Resected Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11060806. [PMID: 31212653 PMCID: PMC6628040 DOI: 10.3390/cancers11060806] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
In addition to the FDA-approved definition of a circulating tumor cell (CTC), various CTC phenotypes have been discovered. Epithelial-mesenchymal transition (EMT) of cancer cells is directly linked to PD-L1 upregulation. The goal of the study was to investigate PD-L1 expression and EMT in CTCs of non-small cell lung cancer (NSCLC) patients, and perform an outcome analysis. Prospectively, 7.5 mL peripheral blood was collected from 30 NSCLC patients that underwent surgery and 15 healthy controls. CTCs were enriched by size-based microfilter and immunofluorescence stainings performed (cytokeratin (CK) 8/18/19, EpCAM, CD45, PD-L1, EMT markers vimentin, and N-Cadherin, DAPI). Patient-matched NSCLC tissues were also stained. CTC staining intensity was quantified with a software and correlated with patient-matched NSCLC tissues and survival. PD-L1 and EMT markers were expressed at significantly higher proportions in CTCs than patient-matched NSCLC tissues (p < 0.05); ≥3 PD-L1pos/EMTposCTCs were associated with significantly poorer survival after curative surgery (p < 0.05). No CTCs were detected in 15 healthy controls. This study shows that PD-L1 expression and EMT of CTCs is a negative survival predictor for NSCLC patients. The therapeutic role of the molecular linkage of PD-L1 and EMT will need to be further investigated, as linked pathways could be targeted to improve NSCLC outcome.
Collapse
|
15
|
Chen WX, Li JG, Wan XH, Zou XS, Qi SY, Zhang YQ, Weng QM, Li JY, Xiong WM, Xie C, Cheng WL. Design of a microfluidic chip consisting of micropillars and its use for the enrichment of nasopharyngeal cancer cells. Oncol Lett 2019; 17:1581-1588. [PMID: 30675216 PMCID: PMC6341559 DOI: 10.3892/ol.2018.9771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to discuss the design of a microfluidic chip consisting of columns, and its use for the enrichment of nasopharyngeal cancer (NPC) cells. A microfluidic chip experiment was simulated using FLUENT software. Within the microfluidic chip, aptamers were bound to the reaction chamber (consisting of columns) using a biotin-avidin system. Cell suspension was introduced into the reaction chamber to capture NPC cells. NPC cells were subsequently eluted, and the capture rate of the cells was calculated. The modified aptamer-bound microfluidic chip was able to capture NPC cells with a capture rate of ~90%. The modified aptamer-bound microfluidic chip has a wide range of potential applications for the diagnosis of NPC.
Collapse
Affiliation(s)
- Wen-Xue Chen
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Jin-Gao Li
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Xiang-Hui Wan
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Xue-Sen Zou
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Shu-Yi Qi
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Yu-Qing Zhang
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Qiu-Min Weng
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Jun-Yu Li
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Wen-Min Xiong
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Chen Xie
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Wei-Liang Cheng
- Jiangxi Railway Health Supervision Institute, Nanchang, Jiangxi 330003, P.R. China
| |
Collapse
|