1
|
Siggins C, Pan JA, Löffler AI, Yang Y, Shaw PW, Balfour PC, Epstein FH, Gan LM, Kramer CM, Keeley EC, Salerno M. Cardiometabolic biomarker patterns associated with cardiac MRI defined fibrosis and microvascular dysfunction in patients with heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 11:1334226. [PMID: 38500750 PMCID: PMC10945015 DOI: 10.3389/fcvm.2024.1334226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Heart failure with preserved ejection fraction (HFpEF) is a complex disease process influenced by metabolic disorders, systemic inflammation, myocardial fibrosis, and microvascular dysfunction. The goal of our study is to identify potential relationships between plasma biomarkers and cardiac magnetic resonance (CMR) imaging markers in patients with HFpEF. Methods Nineteen subjects with HFpEF and 15 age-matched healthy controls were enrolled and underwent multiparametric CMR and plasma biomarker analysis using the Olink® Cardiometabolic Panel (Olink Proteomics, Uppsala, Sweden). Partial least squares discriminant analysis (PLS-DA) was used to characterize CMR and biomarker variables that differentiate the subject groups into two principal components. Orthogonal projection to latent structures by partial least squares (OPLS) analysis was used to identify biomarker patterns that correlate with myocardial perfusion reserve (MPR) and extracellular volume (ECV) mapping. Results A PLS-DA could differentiate between HFpEF and normal controls with two significant components explaining 79% (Q2 = 0.47) of the differences. For OPLS, there were 7 biomarkers that significantly correlated with ECV (R2 = 0.85, Q = 0.53) and 6 biomarkers that significantly correlated with MPR (R2 = 0.92, Q2 = 0.32). Only 1 biomarker significantly correlated with both ECV and MPR. Discussion Patients with HFpEF have unique imaging and biomarker patterns that suggest mechanisms associated with metabolic disease, inflammation, fibrosis and microvascular dysfunction.
Collapse
Affiliation(s)
- Connor Siggins
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States
| | - Jonathan A. Pan
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
| | - Adrián I. Löffler
- UCHealth Heart and Vascular Clinic, Greeley Medical Center, Greeley, CO, United States
| | - Yang Yang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter W. Shaw
- New England Heart and Vascular Institute, Catholic Medical Center, Manchester, NH, United States
| | - Pelbreton C. Balfour
- Baptist Heart & Vascular Institute, Baptist Health Care, Pensacola, FL, United States
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christopher M. Kramer
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, Charlottesville, VA, United States
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, United States
| | - Ellen C. Keeley
- Department of Medicine, University of Florida, Gainesville, FL, United States
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States
| | - Michael Salerno
- Department of Radiology, Stanford University, Stanford, CA, United States
- Department of Medicine, Cardiovascular Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
2
|
Girerd N, Cleland J, Anker SD, Byra W, Lam CSP, Lapolice D, Mehra MR, van Veldhuisen DJ, Bresso E, Lamiral Z, Greenberg B, Zannad F. Inflammation and remodeling pathways and risk of cardiovascular events in patients with ischemic heart failure and reduced ejection fraction. Sci Rep 2022; 12:8574. [PMID: 35595781 PMCID: PMC9123183 DOI: 10.1038/s41598-022-12385-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Patients with heart failure (HF) and coronary artery disease (CAD) have a high risk for cardiovascular (CV) events including HF hospitalization, stroke, myocardial infarction (MI) and sudden cardiac death (SCD). The present study evaluated associations of proteomic biomarkers with CV outcome in patients with CAD and HF with reduced ejection fraction (HFrEF), shortly after a worsening HF episode. We performed a case-control study within the COMMANDER HF international, double-blind, randomized placebo-controlled trial investigating the effects of the factor-Xa inhibitor rivaroxaban. Patients with the following first clinical events: HF hospitalization, SCD and the composite of MI or stroke were matched with corresponding controls for age, sex and study drug. Plasma concentrations of 276 proteins with known associations with CV and cardiometabolic mechanisms were analyzed. Results were corrected for multiple testing using false discovery rate (FDR). In 485 cases and 455 controls, 49 proteins were significantly associated with clinical events of which seven had an adjusted FDR < 0.001 (NT-proBNP, BNP, T-cell immunoglobulin and mucin domain containing 4 (TIMD4), fibroblast growth factor 23 (FGF-23), growth differentiation factor-15 (GDF-15), pulmonary surfactant-associated protein D (PSP-D) and Spondin-1 (SPON1)). No significant interactions were identified between the type of clinical event (MI/stroke, SCD or HFH) and specific biomarkers (all interaction FDR > 0.20). When adding the biomarkers significantly associated with the above outcome to a clinical model (including NT-proBNP), the C-index increase was 0.057 (0.033-0.082), p < 0.0001 and the net reclassification index was 54.9 (42.5 to 67.3), p < 0.0001. In patients with HFrEF and CAD following HF hospitalization, we found that NT-proBNP, BNP, TIMD4, FGF-23, GDF-15, PSP-D and SPON1, biomarkers broadly associated with inflammation and remodeling mechanistic pathways, were strong but indiscriminate predictors of a variety of individual CV events.
Collapse
Affiliation(s)
- Nicolas Girerd
- Université de Lorraine, Centre d'Investigation Clinique-Plurithématique Inserm CIC-P 1433, Inserm U1116, CHRU Nancy Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - John Cleland
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, Scotland
| | - Stefan D Anker
- Department of Cardiology (CVK), and Berlin Institute of Health Center for Regenerative Therapies (BCRT), German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - William Byra
- Janssen Research and Development, Raritan, NJ, USA
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-National University of Singapore, Singapore, Singapore
| | | | - Mandeep R Mehra
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Emmanuel Bresso
- Université de Lorraine, Centre d'Investigation Clinique-Plurithématique Inserm CIC-P 1433, Inserm U1116, CHRU Nancy Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Zohra Lamiral
- Université de Lorraine, Centre d'Investigation Clinique-Plurithématique Inserm CIC-P 1433, Inserm U1116, CHRU Nancy Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Barry Greenberg
- Cardiology Division, Department of Medicine, University of California, La Jolla, San Diego, USA
| | - Faiez Zannad
- Université de Lorraine, Centre d'Investigation Clinique-Plurithématique Inserm CIC-P 1433, Inserm U1116, CHRU Nancy Brabois, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France.
| |
Collapse
|
3
|
García-Onrubia L, Valentín-Bravo FJ, Coco-Martin RM, González-Sarmiento R, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Matrix Metalloproteinases in Age-Related Macular Degeneration (AMD). Int J Mol Sci 2020; 21:ijms21165934. [PMID: 32824762 PMCID: PMC7460693 DOI: 10.3390/ijms21165934] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial and progressive retinal disease affecting millions of people worldwide. In developed countries, it is the leading cause of vision loss and legal blindness among the elderly. Although the pathogenesis of AMD is still barely understood, recent studies have reported that disorders in the regulation of the extracellular matrix (ECM) play an important role in its etiopathogenesis. The dynamic metabolism of the ECM is closely regulated by matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). The present review focuses on the crucial processes that occur at the level of the Bruch’s membrane, with special emphasis on MMPs, TIMPs, and the polymorphisms associated with increased susceptibility to AMD development. A systematic literature search was performed, covering the years 1990–2020, using the following keywords: AMD, extracellular matrix, Bruch’s membrane, MMPs, TIMPs, and MMPs polymorphisms in AMD. In both early and advanced AMD, the pathological dynamic changes of ECM structural components are caused by the dysfunction of specific regulators and by the influence of other regulatory systems connected with both genetic and environmental factors. Better insight into the pathological role of MMP/TIMP complexes may lead to the development of new strategies for AMD treatment and prevention.
Collapse
Affiliation(s)
- Luis García-Onrubia
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
| | - Fco. Javier Valentín-Bravo
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
| | - Rosa M. Coco-Martin
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca—CSIC, 37007 Salamanca, Spain
| | - J. Carlos Pastor
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Correspondence: (R.U.-M.); (S.P.-I.)
| | - Salvador Pastor-Idoate
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.)
| |
Collapse
|
4
|
Andrusiewicz M, Harasymczuk P, Janusz P, Biecek P, Żbikowska A, Kotwicka M, Kotwicki T. TIMP2 Polymorphisms Association With Curve Initiation and Progression of Thoracic Idiopathic Scoliosis in the Caucasian Females. J Orthop Res 2019; 37:2217-2225. [PMID: 31119800 DOI: 10.1002/jor.24380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/17/2019] [Indexed: 02/04/2023]
Abstract
Idiopathic scoliosis (IS) etiology remains unclear, but strong genetic background is suggested. Previously reported TIMP2 study indicates an association of genic rs8179090 with IS progression in a Han Chinese population. However, there has been a lack of investigation into intragenic TIMP2 polymorphisms in IS patients. We recruited 100 Caucasian females with IS and 100 controls. Patients were subdivided accordingly to: progression rate, curve severity, joint mobility, and curve pattern. Allele-specific-polymerase chain reaction based on fluorescence resonance energy transfer was applied to evaluate nine TIMP2 polymorphisms. Distribution of genotype and allele frequency in only one polymorphism (rs11658743) differed in case-control study. Four of the polymorphisms (rs2277700, rs11077401, rs2376999, and rs4789934) showed non-equal distributions either in genotype or/and allele distributions in the patients of different progression rates. The rs11077401 was related to curve severity patients distinction and the rs8179090 distinguished patients with different joint mobility level. Two polymorphisms either differed statistically in case of curve patterns subgrouping (rs8068674 and rs8179090) or showed a slight tendency toward significance in the recessive model of allele distributions (rs9916809 and rs8179090). The remaining two polymorphisms (rs2377005, rs11658743) showed no association with either clinical or radiographic IS characteristics. The influence of the G allele of the rs8179090 on the clinical course of IS has not yet been confirmed. We identified four TIMP2 polymorphisms (rs11077401, rs2376999, rs2277700, and rs4789934) that were associated with a higher risk of the progressive IS form. Further genetic association studies based on suggested clinical criteria would be necessary to validate TIMP2 polymorphisms associated with the curve progression. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2217-2225, 2019.
Collapse
Affiliation(s)
- Mirosław Andrusiewicz
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland
| | - Piotr Harasymczuk
- Department of Pediatric Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Piotr Janusz
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, Poznań, Poland
| | - Przemysław Biecek
- Department of Medical Statistics, University of Warsaw, Warsaw, Poland
| | - Aleksandra Żbikowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland
| | - Małgorzata Kotwicka
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806, Poznań, Poland
| | - Tomasz Kotwicki
- Department of Spine Disorders and Pediatric Orthopedics, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|