Zhao XJ, Hou H, Ding PP, Deng ZY, Ju YY, Liu SH, Liu YM, Tang C, Feng LB, Tan YZ. Molecular defect-containing bilayer graphene exhibiting brightened luminescence.
SCIENCE ADVANCES 2020;
6:eaay8541. [PMID:
32158946 PMCID:
PMC7048428 DOI:
10.1126/sciadv.aay8541]
[Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/06/2019] [Indexed: 05/03/2023]
Abstract
The electronic structure of bilayer graphene can be altered by creating defects in its carbon skeleton. However, the natural defects are generally heterogeneous. On the other hand, rational bottom-up synthesis offers the possibility of building well-defined molecular cutout of defect-containing bilayer graphene, which allows defect-induced modulation with atomic precision. Here, we report the construction of a molecular defect-containing bilayer graphene (MDBG) with an inner cavity by organic synthesis. Single-crystal x-ray diffraction, mass spectrometry, and nuclear magnetic resonance spectroscopy unambiguously characterize the structure of MDBG. Compared with its same-sized, defect-free counterpart, the MDBG exhibits a notable blue shift of optical absorption and emission, as well as a 9.6-fold brightening of its photoluminescence, which demonstrates that a single defect can markedly alter the optical properties of bilayer graphene.
Collapse