Li Z, Kawanaka J. Velocity and acceleration freely tunable straight-line propagation light bullet.
Sci Rep 2020;
10:11481. [PMID:
32661349 PMCID:
PMC7359314 DOI:
10.1038/s41598-020-68478-1]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 11/09/2022] Open
Abstract
Three-dimensional (3-D) light solitons in space–time, referred to as light bullets, have many novel properties and wide applications. Here we theoretically show how the combination of diffraction-free beam and ultrashort pulse spatiotemporal-coupling enables the creation of a straight-line propagation light bullet with freely tunable velocity and acceleration. This light bullet could propagate with a constant superluminal or subluminal velocity, and it could also counter-propagate with a very fast superluminal velocity (e.g., − 35.6c). Apart from uniform motion, an acceleration or deceleration straight-line propagation light bullet with a tunable instantaneous acceleration could also be produced. The high controllability of the velocity and the acceleration of a straight-line propagation light bullet would enable very specific applications, such as velocity and/or acceleration matched micromanipulation, microscopy, particle acceleration, radiation generation, and so on.
Collapse