1
|
Figaj D. The Role of Heat Shock Protein (Hsp) Chaperones in Environmental Stress Adaptation and Virulence of Plant Pathogenic Bacteria. Int J Mol Sci 2025; 26:528. [PMID: 39859244 PMCID: PMC11764788 DOI: 10.3390/ijms26020528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Plant pathogenic bacteria are responsible for a substantial number of plant diseases worldwide, resulting in significant economic losses. Bacteria are exposed to numerous stress factors during their epiphytic life and within the host. Their ability to survive in the host and cause symptomatic infections depends on their capacity to overcome stressors. Bacteria have evolved a range of defensive and adaptive mechanisms to thrive under varying environmental conditions. One such mechanism involves the induction of chaperone proteins that belong to the heat shock protein (Hsp) family. Together with proteases, these proteins are integral components of the protein quality control system (PQCS), which is essential for maintaining cellular proteostasis. However, knowledge of their action is considerably less extensive than that of human and animal pathogens. This study discusses the modulation of Hsp levels by phytopathogenic bacteria in response to stress conditions, including elevated temperature, oxidative stress, changes in pH or osmolarity of the environment, and variable host conditions during infection. All these factors influence bacterial virulence. Finally, the secretion of GroEL and DnaK proteins outside the bacterial cell is considered a potentially important virulence trait.
Collapse
Affiliation(s)
- Donata Figaj
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
Zou D, Chang J, Lu S, Xu J, Hu P, Zhang K, Sun X, Guo W, Li Y, Liu Z, Ren H. Analysis of virulence proteins in pathogenic Acinetobacter baumannii to provide early warning of zoonotic risk. Microbiol Res 2023; 266:127222. [DOI: 10.1016/j.micres.2022.127222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/18/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
3
|
Yuan X, Eldred LI, Sundin GW. Exopolysaccharides amylovoran and levan contribute to sliding motility in the fire blight pathogen Erwinia amylovora. Environ Microbiol 2022; 24:4738-4754. [PMID: 36054324 PMCID: PMC9826367 DOI: 10.1111/1462-2920.16193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/31/2022] [Indexed: 01/11/2023]
Abstract
Erwinia amylovora, the causative agent of fire blight, uses flagella-based motilities to translocate to host plant natural openings; however, little is known about how this bacterium migrates systemically in the apoplast. Here, we reveal a novel surface motility mechanism, defined as sliding, in E. amylovora. Deletion of flagella assembly genes did not affect this movement, whereas deletion of biosynthesis genes for the exopolysaccharides (EPSs) amylovoran and levan resulted in non-sliding phenotypes. Since EPS production generates osmotic pressure that potentially powers sliding, we validated this mechanism by demonstrating that water potential positively contributes to sliding. In addition, no sliding was observed when the water potential of the surface was lower than -0.5 MPa. Sliding is a passive motility mechanism. We further show that the force of gravity plays a critical role in directing E. amylovora sliding on unconfined surfaces but has a negligible effect when cells are sliding in confined microcapillaries, in which EPS-dependent osmotic pressure acts as the main force. Although amylovoran and levan are both required for sliding, we demonstrate that they exhibit different roles in bacterial communities. In summary, our study provides fundamental knowledge for a better understanding of mechanisms that drive bacterial sliding motility.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Lauren I. Eldred
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - George W. Sundin
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
4
|
Balotf S, Wilson R, Tegg RS, Nichols DS, Wilson CR. In Planta Transcriptome and Proteome Profiles of Spongospora subterranea in Resistant and Susceptible Host Environments Illuminates Regulatory Principles Underlying Host-Pathogen Interaction. BIOLOGY 2021; 10:biology10090840. [PMID: 34571717 PMCID: PMC8471823 DOI: 10.3390/biology10090840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
Simple Summary Infections of potato tubers and roots by Spongospora subterranea result in powdery scab and root diseases. Losses due to infections with S. subterranea are substantial in most potato-growing regions of the world with no fully effective treatments available. Understanding the gene regulation of pathogens in their host is dependent on multidimensional datasets. In this study, we profiled the transcriptome and proteome of S. subterranea within the susceptible and resistant host. Enzyme activity and nucleic acid metabolism appear to be important to the virulence of S. subterranea. Our results provide a good resource for future functional studies of powdery scab and might be useful in S. subterranea inoculum management. Abstract Spongospora subterranea is an obligate biotrophic pathogen, causing substantial economic loss to potato industries globally. Currently, there are no fully effective management strategies for the control of potato diseases caused by S. subterranea. To further our understanding of S. subterranea biology during infection, we characterized the transcriptome and proteome of the pathogen during the invasion of roots of a susceptible and a resistant potato cultivar. A total of 7650 transcripts from S. subterranea were identified in the transcriptome analysis in which 1377 transcripts were differentially expressed between two cultivars. In proteome analysis, we identified 117 proteins with 42 proteins significantly changed in comparisons between resistant and susceptible cultivars. The functional annotation of transcriptome data indicated that the gene ontology terms related to the transportation and actin processes were induced in the resistant cultivar. The downregulation of enzyme activity and nucleic acid metabolism in the resistant cultivar suggests a probable influence of these processes in the virulence of S. subterranea. The protein analysis results indicated that the majority of differentially expressed proteins were related to the metabolic processes and transporter activity. The present study provides a comprehensive molecular insight into the multiple layers of gene regulation that contribute to S. subterranea infection and development in planta and illuminates the role of host immunity in affecting pathogen responses.
Collapse
Affiliation(s)
- Sadegh Balotf
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia; (R.W.); (D.S.N.)
| | - Robert S. Tegg
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia; (R.W.); (D.S.N.)
| | - Calum R. Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
- Correspondence:
| |
Collapse
|
5
|
Kharadi RR, Schachterle JK, Yuan X, Castiblanco LF, Peng J, Slack SM, Zeng Q, Sundin GW. Genetic Dissection of the Erwinia amylovora Disease Cycle. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:191-212. [PMID: 33945696 DOI: 10.1146/annurev-phyto-020620-095540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fire blight, caused by the bacterial phytopathogen Erwinia amylovora, is an economically important and mechanistically complex disease that affects apple and pear production in most geographic production hubs worldwide. We compile, assess, and present a genetic outlook on the progression of an E. amylovora infection in the host. We discuss the key aspects of type III secretion-mediated infection and systemic movement, biofilm formation in xylem, and pathogen dispersal via ooze droplets, a concentrated suspension of bacteria and exopolysaccharide components. We present an overall outlook on the genetic elements contributing to E. amylovora pathogenesis, including an exploration of the impact of floral microbiomes on E. amylovora colonization, and summarize the current knowledge of host responses to an incursion and how this response stimulates further infection and systemic spread. We hope to facilitate the identification of new, unexplored areas of research in this pathosystem that can help identify evolutionarily susceptible genetic targets to ultimately aid in the design of sustainable strategies for fire blight disease mitigation.
Collapse
Affiliation(s)
- Roshni R Kharadi
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Xiaochen Yuan
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Luisa F Castiblanco
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Jingyu Peng
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Suzanne M Slack
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| |
Collapse
|
6
|
Dagher F, Nickzad A, Zheng J, Hoffmann M, Déziel E. Characterization of the biocontrol activity of three bacterial isolates against the phytopathogen Erwinia amylovora. Microbiologyopen 2021; 10:e1202. [PMID: 34180603 PMCID: PMC8182272 DOI: 10.1002/mbo3.1202] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Antibiotics are sprayed on apple and pear orchards to control, among other pathogens, the bacterium Erwinia amylovora, the causative agent of fire blight. As with many other pathogens, we observe the emergence of antibiotic-resistant strains of E. amylovora. Consequently, growers are looking for alternative solutions to combat fire blight. To find alternatives to antibiotics against this pathogen, we have previously isolated three bacterial strains with antagonistic and extracellular activity against E. amylovora, both in vitro and in planta, corresponding to three different bacterial genera: Here, we identified the inhibitory mode of action of each of the three isolates against E. amylovora. Isolate Bacillus amyloliquefaciens subsp. plantarum (now B. velezensis) FL50S produces several secondary metabolites including surfactins, iturins, and fengycins. Specifically, we identified oxydifficidin as the most active against E. amylovora S435. Pseudomonas poae FL10F produces an active extracellular compound against E. amylovora S435 that can be attributed to white-line-inducing principle (WLIP), a cyclic lipopeptide belonging to the viscosin subfamily (massetolide E, F, L, or viscosin). Pantoea agglomerans NY60 has a direct cell-to-cell antagonistic effect against E. amylovora S435. By screening mutants of this strain generated by random transposon insertion with decreased antagonist activity against strain S435, we identified several defective transposants. Of particular interest was a mutant in a gene coding for a Major Facilitator Superfamily (MFS) transporter corresponding to a transmembrane protein predicted to be involved in the extracytoplasmic localization of griseoluteic acid, an intermediate in the biosynthesis of the broad-spectrum phenazine antibiotic D-alanylgriseoluteic acid.
Collapse
Affiliation(s)
- Fadi Dagher
- Centre Armand‐Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS)LavalQuébecH7V 1B7Canada
| | - Arvin Nickzad
- Centre Armand‐Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS)LavalQuébecH7V 1B7Canada
| | - Jie Zheng
- US Food and Drug Administration Regulatory Science Center for Food Safety and Applied NutritionCollege ParkMarylandUSA
| | - Maria Hoffmann
- US Food and Drug Administration Regulatory Science Center for Food Safety and Applied NutritionCollege ParkMarylandUSA
| | - Eric Déziel
- Centre Armand‐Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS)LavalQuébecH7V 1B7Canada
| |
Collapse
|
7
|
Tremblay O, Thow Z, Merrill AR. Several New Putative Bacterial ADP-Ribosyltransferase Toxins Are Revealed from In Silico Data Mining, Including the Novel Toxin Vorin, Encoded by the Fire Blight Pathogen Erwinia amylovora. Toxins (Basel) 2020; 12:E792. [PMID: 33322547 PMCID: PMC7764402 DOI: 10.3390/toxins12120792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Mono-ADP-ribosyltransferase (mART) toxins are secreted by several pathogenic bacteria that disrupt vital host cell processes in deadly diseases like cholera and whooping cough. In the last two decades, the discovery of mART toxins has helped uncover the mechanisms of disease employed by pathogens impacting agriculture, aquaculture, and human health. Due to the current abundance of mARTs in bacterial genomes, and an unprecedented availability of genomic sequence data, mART toxins are amenable to discovery using an in silico strategy involving a series of sequence pattern filters and structural predictions. In this work, a bioinformatics approach was used to discover six bacterial mART sequences, one of which was a functional mART toxin encoded by the plant pathogen, Erwinia amylovora, called Vorin. Using a yeast growth-deficiency assay, we show that wild-type Vorin inhibited yeast cell growth, while catalytic variants reversed the growth-defective phenotype. Quantitative mass spectrometry analysis revealed that Vorin may cause eukaryotic host cell death by suppressing the initiation of autophagic processes. The genomic neighbourhood of Vorin indicated that it is a Type-VI-secreted effector, and co-expression experiments showed that Vorin is neutralized by binding of a cognate immunity protein, VorinI. We demonstrate that Vorin may also act as an antibacterial effector, since bacterial expression of Vorin was not achieved in the absence of VorinI. Vorin is the newest member of the mART family; further characterization of the Vorin/VorinI complex may help refine inhibitor design for mART toxins from other deadly pathogens.
Collapse
Affiliation(s)
| | | | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (O.T.); (Z.T.)
| |
Collapse
|
8
|
Sharma M, Sudheer S, Usmani Z, Rani R, Gupta P. Deciphering the Omics of Plant-Microbe Interaction: Perspectives and New Insights. Curr Genomics 2020; 21:343-362. [PMID: 33093798 PMCID: PMC7536805 DOI: 10.2174/1389202921999200515140420] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/29/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Plants do not grow in isolation, rather they are hosts to a variety of microbes in their natural environments. While, few thrive in the plants for their own benefit, others may have a direct impact on plants in a symbiotic manner. Unraveling plant-microbe interactions is a critical component in recognizing the positive and negative impacts of microbes on plants. Also, by affecting the environment around plants, microbes may indirectly influence plants. The progress in sequencing technologies in the genomics era and several omics tools has accelerated in biological science. Studying the complex nature of plant-microbe interactions can offer several strategies to increase the productivity of plants in an environmentally friendly manner by providing better insights. This review brings forward the recent works performed in building omics strategies that decipher the interactions between plant-microbiome. At the same time, it further explores other associated mutually beneficial aspects of plant-microbe interactions such as plant growth promotion, nitrogen fixation, stress suppressions in crops and bioremediation; as well as provides better insights on metabolic interactions between microbes and plants through omics approaches. It also aims to explore advances in the study of Arabidopsis as an important avenue to serve as a baseline tool to create models that help in scrutinizing various factors that contribute to the elaborate relationship between plants and microbes. Causal relationships between plants and microbes can be established through systematic gnotobiotic experimental studies to test hypotheses on biologically derived interactions. Conclusion This review will cover recent advances in the study of plant-microbe interactions keeping in view the advantages of these interactions in improving nutrient uptake and plant health.
Collapse
Affiliation(s)
- Minaxi Sharma
- 1Department of Food Technology, ACA, Eternal University, Baru Sahib (173001), Himachal Pradesh, India; 2Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Surya Sudheer
- 1Department of Food Technology, ACA, Eternal University, Baru Sahib (173001), Himachal Pradesh, India; 2Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Zeba Usmani
- 1Department of Food Technology, ACA, Eternal University, Baru Sahib (173001), Himachal Pradesh, India; 2Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Rupa Rani
- 1Department of Food Technology, ACA, Eternal University, Baru Sahib (173001), Himachal Pradesh, India; 2Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Pratishtha Gupta
- 1Department of Food Technology, ACA, Eternal University, Baru Sahib (173001), Himachal Pradesh, India; 2Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Applied Microbiology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|