1
|
Beshkar M. Consciousness and the Axon Initial Segment. Integr Psychol Behav Sci 2024; 59:1. [PMID: 39699783 DOI: 10.1007/s12124-024-09883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 12/20/2024]
Abstract
According to the QBIT theory, consciousness depends on the emergence of macroscopic coherence in a specific intracellular substrate which registers and processes sensory information. This occurs in a particular neuronal compartment called the axon initial segment which has unique properties not found in other neuronal segments. These unique properties allow the integration of synaptic inputs, amplification of sensory signals, and spontaneous emergence of coherence which is necessary for conscious perception.
Collapse
Affiliation(s)
- Majid Beshkar
- Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Costa FP, Wiedenmann B, Schöll E, Tuszynski J. Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1483401. [PMID: 39720338 PMCID: PMC11666389 DOI: 10.3389/fnetp.2024.1483401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology. Cancer cells exhibit autonomous oscillations, deviating from normal rhythms. In this context, a shift from a static view of cellular processes is required for a better understanding of the dynamic connections between cellular metabolism, gene expression, cell signaling and membrane polarization as states in constant flux in realistic human models. In oncology, radiofrequency electromagnetic fields have produced sustained responses and improved quality of life in cancer patients with minimal side effects. This review aims to show how non-thermal systemic radiofrequency electromagnetic fields leads to promising therapeutic responses at cellular and tissue levels in humans, supporting this newly emerging cancer treatment modality with early favorable clinical experience specifically in advanced cancer.
Collapse
Affiliation(s)
| | | | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
3
|
Wagner J, Park LM, Mukhopadhyay P, Matyas C, Trojnar E, Damadzic R, Jung J, Bell AS, Mavromatis LA, Hamandi AM, Rosoff DB, Vendruscolo LF, Koob GF, Pacher P, Lohoff FW. PCSK9 inhibition attenuates alcohol-associated neuronal oxidative stress and cellular injury. Brain Behav Immun 2024; 119:494-506. [PMID: 38657842 DOI: 10.1016/j.bbi.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.
Collapse
Affiliation(s)
- Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Lauren M Park
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Ruslan Damadzic
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Andrew S Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Lucas A Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States; Department of Medicine, NYU Grossman School of Medicine, New York, New York, United States
| | - Ali M Hamandi
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States; NIH-Oxford-Cambridge Scholars Program, Radcliffe Department of Medicine, University of Oxford, UK
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, MD, United States
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
4
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Carabajal MPA, Bonacina J, Scarinci N, Albarracín VH, Cantero MDR, Cantiello HF. The bacterial tubulin homolog FtsZ generates electrical oscillations. Biochem Biophys Res Commun 2023; 687:149186. [PMID: 37931420 DOI: 10.1016/j.bbrc.2023.149186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
FtsZ, a major cytoskeletal protein in all bacteria and archaea, forms a ring that directs cytokinesis. Bacterial FtsZ is considered the ancestral homolog of the eukaryotic microtubule (MT)-forming tubulins, sharing GTPase activity and the ability to assemble into protofilaments, rings, and sheets, but not MTs. Previous studies from our laboratory demonstrated that structures of isolated brain MTs spontaneously generate electrical oscillations and bursts of electrical activity similar to action potentials. No information about whether the prokaryotic tubulins may share similar properties is available. Here, we obtained by ammonium sulfate precipitation an enriched protein fraction of the endogenous FtsZ from wild-type Escherichia coli ATCC 25922 without any transfection or overexpression of the protein. As revealed by electron microscopy, FtsZ was detected by dot blot analysis and immunofluorescence that assembled into filaments and sheets in a polymerization buffer. We used the patch-clamp technique to explore the electrical properties of sheets of FtsZ and bacterial cells. Electrical recordings at various holding potentials ranging from ±200 mV showed a complex oscillatory behavior, with several peak frequencies between 12 and 110 Hz in the power spectra and a linear mean current response. To confirm the oscillatory electrical behavior of FtsZ we also conducted experiments with commercial recombinant FtsZ, with similar results. We also detected, by local field potentials, similar electrical oscillations in K+-depolarized pellets of E. coli cultures. FtsZ oscillations had a wider range of frequency peaks than MT sheets from eukaryotic origin. The findings indicate that the bacterial cytoskeleton generates electrical oscillators that may play a relevant role in cell division and unknown signaling mechanisms in bacterial populations.
Collapse
Affiliation(s)
- Mónica P A Carabajal
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Julieta Bonacina
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Virginia H Albarracín
- Centro Integral de Microscopía Electrónica (CIME, CONICET-UNT), Yerba Buena, 4107, Tucumán, Argentina
| | - María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, 4206, Argentina.
| |
Collapse
|
6
|
Sanfey J. Simultaneity of consciousness with physical reality: the key that unlocks the mind-matter problem. Front Psychol 2023; 14:1173653. [PMID: 37842692 PMCID: PMC10568466 DOI: 10.3389/fpsyg.2023.1173653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
The problem of explaining the relationship between subjective experience and physical reality remains difficult and unresolved. In most explanations, consciousness is epiphenomenal, without causal power. The most notable exception is Integrated Information Theory (IIT), which provides a causal explanation for consciousness. However, IIT relies on an identity between subjectivity and a particular type of physical structure, namely with an information structure that has intrinsic causal power greater than the sum of its parts. Any theory that relies on a psycho-phyiscal identity must eventually appeal to panpsychism, which undermines that theory's claim to be fundamental. IIT has recently pivoted towards a strong version of causal emergence, but macroscopic structures cannot be stronger causally than their microphysical parts without some new physical law or governing principle. The approach taken here is designed to uncover such a principle. The decisive argument is entirely deductive from initial premises that are phenomenologically certain. If correct, the arguments prove that conscious experience is sufficient to create additional degrees of causal freedom independently of the content of experience, and in a manner that is unpredictable and unobservable by any temporally sequential means. This provides a fundamental principle about consciousness, and a conceptual bridge between it and the physics describing what is experienced. The principle makes testable predictions about brain function, with notable differences from IIT, some of which are also empirically testable.
Collapse
|
7
|
Scarinci N, Priel A, Cantero MDR, Cantiello HF. Brain Microtubule Electrical Oscillations-Empirical Mode Decomposition Analysis. Cell Mol Neurobiol 2023; 43:2089-2104. [PMID: 36207654 PMCID: PMC11412201 DOI: 10.1007/s10571-022-01290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/24/2022] [Indexed: 11/03/2022]
Abstract
Microtubules (MTs) are essential cytoskeletal polymers of eukaryote cells implicated in various cell functions, including cell division, cargo transfer, and cell signaling. MTs also are highly charged polymers that generate electrical oscillations that may underlie their ability to act as nonlinear transmission lines. However, the oscillatory composition and time-frequency differences of the MT electrical oscillations have not been identified. Here, we applied the Empirical Mode Decomposition (EMD) to bovine brain MT sheet recordings to determine the number and fundamental frequencies of the Intrinsic Modes Functions (IMF) and evaluate their energetic contribution to the electrical signal. As previously reported, raw signals were obtained from cow brain MTs (Cantero et al. Sci Rep 6:27143, 2016), sampled, filtered, and subjected to signal decomposition from representative experiments. Filtered signals (200 Hz) allowed us to identify either six or seven IMFs. The reconstructed tracings faithfully resembled the original signals, with identifiable frequency peaks. To extend the analysis to obtain time-frequency information and the energy implicated in each IMF, we applied the Hilbert-Huang Transform (HHT) and the Continuous Wavelet Transform (CWT) to the same samples. The analyses disclosed the presence of more fundamental frequency peaks than initially reported and evidenced the advantages and disadvantages of each transform. The study indicates that the EMD is a robust approach to quantifying signal decomposition of brain MT oscillations and suggests novel similarities with human brain wave electroencephalogram (EEG) recordings. The evidence points to the potentially fundamental role of MT oscillations in brain electrical activity.
Collapse
Affiliation(s)
- Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), 4206, Santiago del Estero, Argentina
| | - Avner Priel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), 4206, Santiago del Estero, Argentina
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), 4206, Santiago del Estero, Argentina.
| |
Collapse
|
8
|
Palicha KA, Loganathan P, Sudha V, Harinipriya S. Monte Carlo simulation and experimental validation of plant microtubules cathode in biodegradable battery. Sci Rep 2023; 13:10393. [PMID: 37369685 DOI: 10.1038/s41598-023-36902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
For the first time, electrochemical methods are utilized to study the response of tubulin monomers (extracted from plant source such as Green Peas: Arachis Hypogea) towards charge perturbations in the form of conductivity, conformational changes via self-assembly and adsorption on Au surface. The obtained dimerization and surface adsorption energetics of the tubulins from Cyclic Voltammetry agree well with the literature value of 6.9 and 14.9 kCal/mol for lateral and longitudinal bond formation energy respectively. In addition to the effects of charge perturbations on change in structure, ionic and electronic conductivity of tubulin with increasing load are investigated and found to be 1.25 Sm-1 and 2.89 mSm-1 respectively. The electronic conductivity is 1.93 times higher than the literature value of 1.5 mSm-1, demonstrating the fact that the microtubules (dimer of tubulins, MTs) from plant source can be used as a semiconductor electrode material in energy conversion and storage applications. Thus, motivated by the Monte Carlo simulation and electrochemical results the MTs extracted from plant source are used as cathode material for energy storage device such as Bio-battery and the Galvanostatic Charge/Discharge studies are carried out in coin cell configuration. The configuration of the bio-battery cell is as follows: Al/CB//PP-1M KCl//MTs/SS; where SS and Al are used as current collectors for cathode and anode respectively, Polypropylene (PP) membrane soaked in 1M KCl as electrolyte and Carbon Black (CB) is the anode material. Another configuration of the cell would be replacement of CB by biopolymer such as ethyl cellulose anode (Al/EC/PP-1M KCl/MTs/SS).
Collapse
Affiliation(s)
- Kaushik A Palicha
- Research and Development Center, Ram Charan Co Pvt Ltd - Entity1, Chennai, Tamilnadu, 600 002, India
| | - Pavithra Loganathan
- Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Chennai, Tamilnadu, 603203, India
| | - V Sudha
- Department of Chemistry, SRMIST, Kattankulathur, Chennai, Tamilnadu, 603203, India.
| | - S Harinipriya
- Research and Development Center, Ram Charan Co Pvt Ltd - Entity1, Chennai, Tamilnadu, 600 002, India.
| |
Collapse
|
9
|
Gutierrez BC, Cantiello HF, Cantero MDR. The electrical properties of isolated microtubules. Sci Rep 2023; 13:10165. [PMID: 37349383 PMCID: PMC10287629 DOI: 10.1038/s41598-023-36801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
This study examines the electrical properties of isolated brain microtubules (MTs), which are long hollow cylinders assembled from αβ-tubulin dimers that form cytoskeletal structures engaged in several functions. MTs are implicated in sensory functions in cilia and flagella and cellular activities that range from cell motility, vesicular traffic, and neuronal processes to cell division in the centrosomes and centrioles. We determined the electrical properties of the MTs with the loose patch clamp technique in either the presence or absence of the MT stabilizer Paclitaxel. We observed electrical oscillations at different holding potentials that responded accordingly in amplitude and polarity. At zero mV in symmetrical ionic conditions, a single MT radiated an electrical power of 10-17 W. The spectral analysis of the time records disclosed a single fundamental peak at 39 Hz in the Paclitaxel-stabilized MTs. However, a richer oscillatory response and two mean conductances were observed in the non-Paclitaxel MTs. The findings evidence that the brain MTs are electrical oscillators that behave as "ionic-based" transistors to generate, propagate, and amplify electrical signals.
Collapse
Affiliation(s)
- Brenda C Gutierrez
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| | - María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina.
| |
Collapse
|
10
|
Bongard J, Levin M. There's Plenty of Room Right Here: Biological Systems as Evolved, Overloaded, Multi-Scale Machines. Biomimetics (Basel) 2023; 8:110. [PMID: 36975340 PMCID: PMC10046700 DOI: 10.3390/biomimetics8010110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The applicability of computational models to the biological world is an active topic of debate. We argue that a useful path forward results from abandoning hard boundaries between categories and adopting an observer-dependent, pragmatic view. Such a view dissolves the contingent dichotomies driven by human cognitive biases (e.g., a tendency to oversimplify) and prior technological limitations in favor of a more continuous view, necessitated by the study of evolution, developmental biology, and intelligent machines. Form and function are tightly entwined in nature, and in some cases, in robotics as well. Thus, efforts to re-shape living systems for biomedical or bioengineering purposes require prediction and control of their function at multiple scales. This is challenging for many reasons, one of which is that living systems perform multiple functions in the same place at the same time. We refer to this as "polycomputing"-the ability of the same substrate to simultaneously compute different things, and make those computational results available to different observers. This ability is an important way in which living things are a kind of computer, but not the familiar, linear, deterministic kind; rather, living things are computers in the broad sense of their computational materials, as reported in the rapidly growing physical computing literature. We argue that an observer-centered framework for the computations performed by evolved and designed systems will improve the understanding of mesoscale events, as it has already done at quantum and relativistic scales. To develop our understanding of how life performs polycomputing, and how it can be convinced to alter one or more of those functions, we can first create technologies that polycompute and learn how to alter their functions. Here, we review examples of biological and technological polycomputing, and develop the idea that the overloading of different functions on the same hardware is an important design principle that helps to understand and build both evolved and designed systems. Learning to hack existing polycomputing substrates, as well as to evolve and design new ones, will have massive impacts on regenerative medicine, robotics, and computer engineering.
Collapse
Affiliation(s)
- Joshua Bongard
- Department of Computer Science, University of Vermont, Burlington, VT 05405, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155, USA
| |
Collapse
|
11
|
Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 2023; 478:375-392. [PMID: 35829870 DOI: 10.1007/s11010-022-04513-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.
Collapse
|
12
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
13
|
Sun G, Li J, Zhou W, Hoyle RG, Zhao Y. Electromagnetic interactions in regulations of cell behaviors and morphogenesis. Front Cell Dev Biol 2022; 10:1014030. [DOI: 10.3389/fcell.2022.1014030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence indicates that the cellular electromagnetic field regulates the fundamental physics of cell biology. The electromagnetic oscillations and synchronization of biomolecules triggered by the internal and external pulses serve as the physical basis of the cellular electromagnetic field. Recent studies have indicated that centrosomes, a small organelle in eukaryotic cells that organize spindle microtubules during mitosis, also function as a nano-electronic generator in cells. Additionally, cellular electromagnetic fields are defined by cell types and correlated to the epigenetic status of the cell. These interactions between tissue-specific electromagnetic fields and chromatin fibers of progenitor cells regulate cell differentiation and organ sizes. The same mechanism is implicated in the regulation of tissue homeostasis and morphological adaptation in evolution. Intercellular electromagnetic interactions also regulate the migratory behaviors of cells and the morphogenesis programs of neural circuits. The process is closely linked with centrosome function and intercellular communication of the electromagnetic fields of microtubule filaments. Clearly, more and more evidence has shown the importance of cellular electromagnetic fields in regulatory processes. Furthermore, a detailed understanding of the physical nature of the inter- and intracellular electromagnetic interactions will better our understanding of fundamental biological questions and a wide range of biological processes.
Collapse
|
14
|
Tuszynski JA, Costa F. Low-energy amplitude-modulated radiofrequency electromagnetic fields as a systemic treatment for cancer: Review and proposed mechanisms of action. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:869155. [PMID: 36157082 PMCID: PMC9498185 DOI: 10.3389/fmedt.2022.869155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to Low-Energy Amplitude-Modulated Radiofrequency Electromagnetic Fields (LEAMRFEMF) represents a new treatment option for patients with advanced hepatocellular carcinoma (AHCC). We focus on two medical devices that modulate the amplitude of a 27.12 MHz carrier wave to generate envelope waves in the low Hz to kHz range. Each provides systemic exposure to LEAMRFEMF via an intrabuccal antenna. This technology differs from so-called Tumour Treating Fields because it uses different frequency ranges, uses electromagnetic rather than electric fields, and delivers energy systemically rather than locally. The AutemDev also deploys patient-specific frequencies. LEAMRFEMF devices use 100-fold less power than mobile phones and have no thermal effects on tissue. Tumour type-specific or patient-specific treatment frequencies can be derived by measuring haemodynamic changes induced by exposure to LEAMRFEMF. These specific frequencies inhibited growth of human cancer cell lines in vitro and in mouse xenograft models. In uncontrolled prospective clinical trials in patients with AHCC, minorities of patients experienced complete or partial tumour responses. Pooled comparisons showed enhanced overall survival in treated patients compared to historical controls. Mild transient somnolence was the only notable treatment-related adverse event. We hypothesize that intracellular oscillations of charged macromolecules and ion flows couple resonantly with LEAMRFEMF. This resonant coupling appears to disrupt cell division and subcellular trafficking of mitochondria. We provide an estimate of the contribution of the electromagnetic effects to the overall energy balance of an exposed cell by calculating the power delivered to the cell, and the energy dissipated through the cell due to EMF induction of ionic flows along microtubules. We then compare this with total cellular metabolic energy production and conclude that energy delivered by LEAMRFEMF may provide a beneficial shift in cancer cell metabolism away from aberrant glycolysis. Further clinical research may confirm that LEAMRFEMF has therapeutic value in AHCC.
Collapse
Affiliation(s)
- Jack A. Tuszynski
- Division of Experimental Oncology, Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Turin, Italy
- Autem Therapeutics, Hanover, NH, United States
| | - Frederico Costa
- Autem Therapeutics, Hanover, NH, United States
- Oncology Department, Hospital Sírio-Libanês, São Paulo, Brazil
| |
Collapse
|
15
|
Priel A, Dai XQ, Chen XZ, Scarinci N, Cantero MDR, Cantiello HF. Electrical recordings from dendritic spines of adult mouse hippocampus and effect of the actin cytoskeleton. Front Mol Neurosci 2022; 15:769725. [PMID: 36090255 PMCID: PMC9453158 DOI: 10.3389/fnmol.2022.769725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Dendritic spines (DS) are tiny protrusions implicated in excitatory postsynaptic responses in the CNS. To achieve their function, DS concentrate a high density of ion channels and dynamic actin networks in a tiny specialized compartment. However, to date there is no direct information on DS ionic conductances. Here, we used several experimental techniques to obtain direct electrical information from DS of the adult mouse hippocampus. First, we optimized a method to isolate DS from the dissected hippocampus. Second, we used the lipid bilayer membrane (BLM) reconstitution and patch clamping techniques and obtained heretofore unavailable electrical phenotypes on ion channels present in the DS membrane. Third, we also patch clamped DS directly in cultured adult mouse hippocampal neurons, to validate the electrical information observed with the isolated preparation. Electron microscopy and immunochemistry of PDS-95 and NMDA receptors and intrinsic actin networks confirmed the enrichment of the isolated DS preparation, showing open and closed DS, and multi-headed DS. The preparation was used to identify single channel activities and “whole-DS” electrical conductance. We identified NMDA and Ca2+-dependent intrinsic electrical activity in isolated DS and in situ DS of cultured adult mouse hippocampal neurons. In situ recordings in the presence of local NMDA, showed that individual DS intrinsic electrical activity often back-propagated to the dendrite from which it sprouted. The DS electrical oscillations were modulated by changes in actin cytoskeleton dynamics by addition of the F-actin disrupter agent, cytochalasin D, and exogenous actin-binding proteins. The data indicate that DS are elaborate excitable electrical devices, whose activity is a functional interplay between ion channels and the underlying actin networks. The data argue in favor of the active contribution of individual DS to the electrical activity of neurons at the level of both the membrane conductance and cytoskeletal signaling.
Collapse
Affiliation(s)
- Avner Priel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xiao-Qing Dai
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- *Correspondence: Horacio F. Cantiello,
| |
Collapse
|
16
|
Dutta A, Biber J, Bae Y, Augustyniak J, Liput M, Stachowiak E, Stachowiak MK. Model-based investigation of elasticity and spectral exponent from atomic force microscopy and electrophysiology in normal versus Schizophrenia human cerebral organoids. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:1585-1589. [PMID: 36085803 DOI: 10.1109/embc48229.2022.9871376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The physiological origin of the aperiodic signal present in the electrophysiological recordings, called l/f neural noise, is unknown; nevertheless, it has been associated with health and disease. The power spectrum slope, -α in 1/fα, has been postulated to be related to the dynamic balance between excitation (E) and inhibition (I). Our study found that human cerebral organoids grown from induced pluripotent stem cells (iPSCs) from Schizophrenia patients (SCZ) showed structural changes associated with altered elasticity compared to that of the normal cerebral organoids. Furthermore, mitochondrial drugs modulated the elasticity in SCZ that was found related to the changes in the spectral exponent. Therefore, we developed an electro-mechanical model that related the microtubular-actin tensegrity structure to the elasticity and the 1/fα noise. Model-based analysis showed that a decrease in the number and length of the constitutive elements in the tensegrity structure decreased its elasticity and made the spectral exponent more negative while thermal white noise will make α = 0.. Based on the microtubularactin model and the cross-talk in structural (elasticity) and functional (electrophysiology) response, aberrant mitochondrial dynamics in SCZ are postulated to be related to the deficits in mitochondrial-cytoskeletal interactions for long-range transport of mitochondria to support synaptic activity for E/I balance. Clinical Relevance-Our experimental data and modeling present a structure-function relationship between mechanical elasticity and electrophysiology of human cerebral organoids that differentiated SCZ patients from normal controls.
Collapse
|
17
|
Hameroff S. Consciousness, Cognition and the Neuronal Cytoskeleton - A New Paradigm Needed in Neuroscience. Front Mol Neurosci 2022; 15:869935. [PMID: 35782391 PMCID: PMC9245524 DOI: 10.3389/fnmol.2022.869935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Viewing the brain as a complex computer of simple neurons cannot account for consciousness nor essential features of cognition. Single cell organisms with no synapses perform purposeful intelligent functions using their cytoskeletal microtubules. A new paradigm is needed to view the brain as a scale-invariant hierarchy extending both upward from the level of neurons to larger and larger neuronal networks, but also downward, inward, to deeper, faster quantum and classical processes in cytoskeletal microtubules inside neurons. Evidence shows self-similar patterns of conductive resonances repeating in terahertz, gigahertz, megahertz, kilohertz and hertz frequency ranges in microtubules. These conductive resonances apparently originate in terahertz quantum dipole oscillations and optical interactions among pi electron resonance clouds of aromatic amino acid rings of tryptophan, phenylalanine and tyrosine within each tubulin, the component subunit of microtubules, and the brain's most abundant protein. Evidence from cultured neuronal networks also now shows that gigahertz and megahertz oscillations in dendritic-somatic microtubules regulate specific firings of distal axonal branches, causally modulating membrane and synaptic activities. The brain should be viewed as a scale-invariant hierarchy, with quantum and classical processes critical to consciousness and cognition originating in microtubules inside neurons.
Collapse
Affiliation(s)
- Stuart Hameroff
- Department of Anesthesiology, The University of Arizona, Tucson, AZ, United States
- Department of Psychology, The University of Arizona, Tucson, AZ, United States
- Center for Consciousness Studies, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
18
|
Wnek GE, Costa ACS, Kozawa SK. Bio-Mimicking, Electrical Excitability Phenomena Associated With Synthetic Macromolecular Systems: A Brief Review With Connections to the Cytoskeleton and Membraneless Organelles. Front Mol Neurosci 2022; 15:830892. [PMID: 35321030 PMCID: PMC8937024 DOI: 10.3389/fnmol.2022.830892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical excitability of cells, tissues and organs is a fundamental phenomenon in biology and physiology. Signatures of excitability include transient currents resulting from a constant or varying voltage gradient across compartments. Interestingly, such signatures can be observed with non-biologically-derived, macromolecular systems. Initial key literature, dating to roughly the late 1960’s into the early 1990’s, is reviewed here. We suggest that excitability in response to electrical stimulation is a material phenomenon that is exploited by living organisms, but that is not exclusive to living systems. Furthermore, given the ubiquity of biological hydrogels, we also speculate that excitability in protocells of primordial organisms might have shared some of the same molecular mechanisms seen in non-biological macromolecular systems, and that vestigial traces of such mechanisms may still play important roles in modern organisms’ biological hydrogels. Finally, we also speculate that bio-mimicking excitability of synthetic macromolecular systems might have practical biomedical applications.
Collapse
Affiliation(s)
- Gary E. Wnek
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Gary E. Wnek,
| | - Alberto C. S. Costa
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, United States
- Alberto C. S. Costa,
| | - Susan K. Kozawa
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
19
|
Kalra AP, Eakins BB, Vagin SI, Wang H, Patel SD, Winter P, Aminpour M, Lewis JD, Rezania V, Shankar K, Scholes GD, Tuszynski JA, Rieger B, Meldrum A. A Nanometric Probe of the Local Proton Concentration in Microtubule-Based Biophysical Systems. NANO LETTERS 2022; 22:517-523. [PMID: 34962401 DOI: 10.1021/acs.nanolett.1c04487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We show a double-functional fluorescence sensing paradigm that can retrieve nanometric pH information on biological structures. We use this method to measure the extent of protonic condensation around microtubules, which are protein polymers that play many roles crucial to cell function. While microtubules are believed to have a profound impact on the local cytoplasmic pH, this has been hard to show experimentally due to the limitations of conventional sensing techniques. We show that subtle changes in the local electrochemical surroundings cause a double-functional sensor to transform its spectrum, thus allowing a direct measurement of the protonic concentration at the microtubule surface. Microtubules concentrate protons by as much as one unit on the pH scale, indicating a charge storage role within the cell via the localized ionic condensation. These results confirm the bioelectrical significance of microtubules and reveal a sensing concept that can deliver localized biochemical information on intracellular structures.
Collapse
Affiliation(s)
- Aarat P Kalra
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States of America
| | - Boden B Eakins
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Sergei I Vagin
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Hui Wang
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2E1, Canada
| | - Sahil D Patel
- Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106, United States of America
| | - Philip Winter
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Maral Aminpour
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States of America
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2E1, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
| | - Bernhard Rieger
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Alkiviathes Meldrum
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
20
|
Gutierrez BC, Pita Almenar MR, Martínez LJ, Siñeriz Louis M, Albarracín VH, Cantero MDR, Cantiello HF. Honeybee Brain Oscillations Are Generated by Microtubules. The Concept of a Brain Central Oscillator. Front Mol Neurosci 2021; 14:727025. [PMID: 34658784 PMCID: PMC8511451 DOI: 10.3389/fnmol.2021.727025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
Microtubules (MTs) are important structures of the cytoskeleton in neurons. Mammalian brain MTs act as biomolecular transistors that generate highly synchronous electrical oscillations. However, their role in brain function is largely unknown. To gain insight into the MT electrical oscillatory activity of the brain, we turned to the honeybee (Apis mellifera) as a useful model to isolate brains and MTs. The patch clamp technique was applied to MT sheets of purified honeybee brain MTs. High resistance seal patches showed electrical oscillations that linearly depended on the holding potential between ± 200 mV and had an average conductance in the order of ~9 nS. To place these oscillations in the context of the brain, we also explored local field potential (LFP) recordings from the Triton X-permeabilized whole honeybee brain unmasking spontaneous oscillations after but not before tissue permeabilization. Frequency domain spectral analysis of time records indicated at least two major peaks at approximately ~38 Hz and ~93 Hz in both preparations. The present data provide evidence that MT electrical oscillations are a novel signaling mechanism implicated in brain wave activity observed in the insect brain.
Collapse
Affiliation(s)
- Brenda C. Gutierrez
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| | - Marcelo R. Pita Almenar
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| | - Luciano J. Martínez
- Centro Integral de Microscopía Electrónica (CIME-CONICET-UNT), Tucumán, Argentina
| | - Manuel Siñeriz Louis
- Centro Integral de Microscopía Electrónica (CIME-CONICET-UNT), Tucumán, Argentina
| | | | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), Santiago del Estero, Argentina
| |
Collapse
|
21
|
Vissol-Gaudin E, Pearson C, Groves C, Zeze DA, Cantiello HF, Cantero MDR, Petty MC. Electrical behaviour and evolutionary computation in thin films of bovine brain microtubules. Sci Rep 2021; 11:10776. [PMID: 34031499 PMCID: PMC8144580 DOI: 10.1038/s41598-021-90260-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
We report on the electrical behaviour of thin films of bovine brain microtubules (MTs). For samples in both their dried and hydrated states, the measured currents reveal a power law dependence on the applied DC voltage. We attribute this to the injection of space-charge from the metallic electrode(s). The MTs are thought to form a complex electrical network, which can be manipulated with an applied voltage. This feature has been exploited to undertake some experiments on the use of the MT mesh as a medium for computation. We show that it is possible to evolve MT films into binary classifiers following an evolution in materio approach. The accuracy of the system is, on average, similar to that of early carbon nanotube classifiers developed using the same methodology.
Collapse
Affiliation(s)
| | - Chris Pearson
- Department of Engineering, Durham University, South Road, Durham, DH1 3LE, UK
| | - Chris Groves
- Department of Engineering, Durham University, South Road, Durham, DH1 3LE, UK
| | - Dagou A Zeze
- Department of Engineering, Durham University, South Road, Durham, DH1 3LE, UK
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología Y Desarrollo (IMSaTeD, CONICET-UNSE), Villa El Zanjón, 4206, Santiago del Estero, Argentina
| | - María Del Rocio Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología Y Desarrollo (IMSaTeD, CONICET-UNSE), Villa El Zanjón, 4206, Santiago del Estero, Argentina
| | - Michael C Petty
- Department of Engineering, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
22
|
Similar Theory of Mind Deficits in Community Dwelling Older Adults with Vascular Risk Profile and Patients with Mild Cognitive Impairment: The Case of Paradoxical Sarcasm Comprehension. Brain Sci 2021; 11:brainsci11050627. [PMID: 34068226 PMCID: PMC8153105 DOI: 10.3390/brainsci11050627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/29/2022] Open
Abstract
Recent studies deal with disorders and deficits caused by vascular syndrome in efforts for prediction and prevention. Cardiovascular health declines with age due to vascular risk factors, and this leads to an increasing risk of cognitive decline. Mild cognitive impairment (MCI) is defined as the negative cognitive changes beyond what is expected in normal aging. The purpose of the study was to compare older adults with vascular risk factors (VRF), MCI patients, and healthy controls (HC) in social cognition and especially in theory of mind ability (ToM). The sample comprised a total of 109 adults, aged 50 to 85 years (M = 66.09, SD = 9.02). They were divided into three groups: (a) older adults with VRF, (b) MCI patients, and (c) healthy controls (HC). VRF and MCI did not differ significantly in age, educational level or gender as was the case with HC. Specifically, for assessing ToM, a social inference test was used, which was designed to measure sarcasm comprehension. Results showed that the performance of the VRF group and MCI patients is not differentiated, while HC performed higher compared to the other two groups. The findings may imply that the development of a vascular disorder affecting vessels of the brain is associated from its “first steps” to ToM decline, at least regarding specific aspects of it, such as paradoxical sarcasm understanding.
Collapse
|
23
|
Eakins BB, Patel SD, Kalra AP, Rezania V, Shankar K, Tuszynski JA. Modeling Microtubule Counterion Distributions and Conductivity Using the Poisson-Boltzmann Equation. Front Mol Biosci 2021; 8:650757. [PMID: 33842549 PMCID: PMC8027483 DOI: 10.3389/fmolb.2021.650757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Microtubules are highly negatively charged proteins which have been shown to behave as bio-nanowires capable of conducting ionic currents. The electrical characteristics of microtubules are highly complicated and have been the subject of previous work; however, the impact of the ionic concentration of the buffer solution on microtubule electrical properties has often been overlooked. In this work we use the non-linear Poisson Boltzmann equation, modified to account for a variable permittivity and a Stern Layer, to calculate counterion concentration profiles as a function of the ionic concentration of the buffer. We find that for low-concentration buffers ([KCl] from 10 μM to 10 mM) the counterion concentration is largely independent of the buffer's ionic concentration, but for physiological-concentration buffers ([KCl] from 100 to 500 mM) the counterion concentration varies dramatically with changes in the buffer's ionic concentration. We then calculate the conductivity of microtubule-counterion complexes, which are found to be more conductive than the buffer when the buffer's ionic concentrations is less than ≈100 mM and less conductive otherwise. These results demonstrate the importance of accounting for the ionic concentration of the buffer when analyzing microtubule electrical properties both under laboratory and physiological conditions. We conclude by calculating the basic electrical parameters of microtubules over a range of ionic buffer concentrations applicable to nanodevice and medical applications.
Collapse
Affiliation(s)
- Boden B Eakins
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Sahil D Patel
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Aarat P Kalra
- Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, AB, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada.,Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Department of Oncology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Kalra AP, Patel SD, Eakins BB, Riddell S, Kumar P, Winter P, Preto J, Carlson KW, Lewis JD, Rezania V, Tuszyński JA, Shankar K. Revealing and Attenuating the Electrostatic Properties of Tubulin and Its Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003560. [PMID: 33295102 DOI: 10.1002/smll.202003560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/17/2020] [Indexed: 06/12/2023]
Abstract
Tubulin is an electrostatically negative protein that forms cylindrical polymers termed microtubules, which are crucial for a variety of intracellular roles. Exploiting the electrostatic behavior of tubulin and microtubules within functional microfluidic and optoelectronic devices is limited due to the lack of understanding of tubulin behavior as a function of solvent composition. This work displays the tunability of tubulin surface charge using dimethyl sulfoxide (DMSO) for the first time. Increasing the DMSO volume fractions leads to the lowering of tubulin's negative surface charge, eventually causing it to become positive in solutions >80% DMSO. As determined by electrophoretic mobility measurements, this change in surface charge is directionally reversible, i.e., permitting control between -1.5 and + 0.2 cm2 (V s)-1 . When usually negative microtubules are exposed to these conditions, the positively charged tubulin forms tubulin sheets and aggregates, as revealed by an electrophoretic transport assay. Fluorescence-based experiments also indicate that tubulin sheets and aggregates colocalize with negatively charged g-C3 N4 sheets while microtubules do not, further verifying the presence of a positive surface charge. This study illustrates that tubulin and its polymers, in addition to being mechanically robust, are also electrically tunable.
Collapse
Affiliation(s)
- Aarat P Kalra
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2M9, Canada
| | - Sahil D Patel
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2M9, Canada
| | - Boden B Eakins
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2M9, Canada
| | - Saralyn Riddell
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta, T6G 2V4, Canada
| | - Pawan Kumar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta, T6G 2V4, Canada
| | - Philip Winter
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jordane Preto
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Université Claude Bernard Lyon 1, Lyon, 69008, France
| | - Kris W Carlson
- Department of Neurosurgery, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, 02215, USA
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta, T5J 4S2, Canada
| | - Jack A Tuszyński
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta, T6G 2M9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta, T6G 2V4, Canada
| |
Collapse
|
25
|
Kalra AP, Eakins BB, Patel SD, Ciniero G, Rezania V, Shankar K, Tuszynski JA. All Wired Up: An Exploration of the Electrical Properties of Microtubules and Tubulin. ACS NANO 2020; 14:16301-16320. [PMID: 33213135 DOI: 10.1021/acsnano.0c06945] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microtubules are hollow, cylindrical polymers of the protein α, β tubulin, that interact mechanochemically with a variety of macromolecules. Due to their mechanically robust nature, microtubules have gained attention as tracks for precisely directed transport of nanomaterials within lab-on-a-chip devices. Primarily due to the unusually negative tail-like C-termini of tubulin, recent work demonstrates that these biopolymers are also involved in a broad spectrum of intracellular electrical signaling. Microtubules and their electrostatic properties are discussed in this Review, followed by an evaluation of how these biopolymers respond mechanically to electrical stimuli, through microtubule migration, electrorotation and C-termini conformation changes. Literature focusing on how microtubules act as nanowires capable of intracellular ionic transport, charge storage, and ionic signal amplification is reviewed, illustrating how these biopolymers attenuate ionic movement in response to electrical stimuli. The Review ends with a discussion on the important questions, challenges, and future opportunities for intracellular microtubule-based electrical signaling.
Collapse
Affiliation(s)
- Aarat P Kalra
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
| | - Boden B Eakins
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Sahil D Patel
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Gloria Ciniero
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
26
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
27
|
Mozneb M, Mirtaheri E, Sanabria AO, Li CZ. Bioelectronic properties of DNA, protein, cells and their applications for diagnostic medical devices. Biosens Bioelectron 2020; 167:112441. [PMID: 32763825 DOI: 10.1016/j.bios.2020.112441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/25/2023]
Abstract
From a couple of centuries ago, understanding physical properties of biological material, their interference with their natural host and their potential manipulation for employment as a conductor in medical devices, has gathered substantial interest in the field of bioelectronics. With the fast-emerging technologies for fabrication of diagnostic modalities, wearable biosensors and implantable devices, which electrical components are of essential importance, a need for developing novel conductors within such devices has evolved over the past decades. As the possibility of electron transport within small biological molecules, such as DNA and proteins, as well as larger elements such as cells was established, several discoveries of the modern charge characterization technologies were evolved. Development of Electrochemical Scanning Tunneling Microscopy and Nuclear Magnetic Resonance among many other techniques were of vital importance, following the discoveries made in sub-micron scales of biological material. This review covers the most recent understandings of electronic properties within different scale of biological material starting from nanometer range to millimeter-sized organs. We also discuss the state-of-the-art technology that's been made taking advantage of electronic properties of biological material for addressing diseases like Parkinson's Disease and Epilepsy.
Collapse
Affiliation(s)
- Maedeh Mozneb
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Elnaz Mirtaheri
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Arianna Ortega Sanabria
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| | - Chen-Zhong Li
- Florida International University, Biomedical Engineering Department, 10555 West Flagler Street, Miami, FL, 33174, USA.
| |
Collapse
|
28
|
Satarić MV, Nemeš T, Satarić B, Sekulić D, Zdravković S. Calcium ions tune the beats of cilia and flagella. Biosystems 2020; 196:104172. [DOI: 10.1016/j.biosystems.2020.104172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/19/2023]
|
29
|
Kordestani-Moghadam P, Assari S, Nouriyengejeh S, Mohammadipour F, Pourabbasi A. Cognitive Impairments and Associated Structural Brain Changes in Metabolic Syndrome and Implications of Neurocognitive Intervention. J Obes Metab Syndr 2020; 29:174-179. [PMID: 32747611 PMCID: PMC7539347 DOI: 10.7570/jomes20021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/29/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, metabolic syndrome has become a global health problem. Alterations in neurocognitive functions among patients with metabolic syndrome are important issues in this disorder. In this paper, studies on metabolic syndrome were reviewed and their importance emphasized for the benefit of experts and policy makers. Metabolic syndrome activates inflammatory mediators that disrupt brain metabolism. These mediators can be activated by metabolic inflammation and microvascular disorders and may further cause damage to the white matter and impair cognitive function. These alterations can result in serious changes in cognitive abilities. The association between cognitive changes and metabolic syndrome has been independently evaluated in several studies. In addition, some areas of research in the field of metabolic syndrome include the effectiveness of neurocognitive interventions to enhance normal behaviors or reduce risky behaviors in patients. Structural brain correlates of health-related behaviors provide a basis for designing more effective behavioral interventions by identifying the corresponding brain regions and using behavioral interventions.
Collapse
Affiliation(s)
| | - Shervin Assari
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Nouriyengejeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohammadipour
- Student Research Committee, Lorestan University of Medical Science, Khorramabad, Iran
| | - Ata Pourabbasi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Kowacz M, Pollack GH. Cells in New Light: Ion Concentration, Voltage, and Pressure Gradients across a Hydrogel Membrane. ACS OMEGA 2020; 5:21024-21031. [PMID: 32875239 PMCID: PMC7450609 DOI: 10.1021/acsomega.0c02595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The ionic compositions of the intra- and extracellular environments are distinct from one another, with K+ being the main cation in the cytosol and Na+ being the most abundant cation outside of the cell. Specific ions can permeate into and out of the cell at different rates, bringing about uneven distribution of charges and development of negative electric potential inside the cell. Each healthy cell must maintain a specific ion concentration gradient and voltage. To account for these functions, various ionic pumps and channels located within the cell membrane have been invoked. In this work, we use a porous alginate hydrogel as a model gelatinous network representing the plant cell wall or cytoskeleton of the animal cell. We show that the gel barrier is able to maintain a stable separation of ionic solutions of different ionic strengths and chemical compositions without any pumping activity. For the Na+/K+ concentration gradient sustained across the barrier, a negative electric potential develops within the K+-rich side. The situation is reminiscent of that in the cell. Furthermore, also the advective flow of water molecules across the gel barrier is restricted, despite the gel's large pores and the osmotic or hydrostatic pressure gradients across it. This feature has important implications for osmoregulation. We propose a mechanism in which charge separation and electric fields developing across the permselective (gel) membrane prevent ion and bulk fluid flows ordinarily driven by chemical and pressure gradients.
Collapse
|
31
|
Cantero M, Gutierrez BC, Cantiello HF. Actin filaments modulate electrical activity of brain microtubule protein two‐dimensional sheets. Cytoskeleton (Hoboken) 2020; 77:167-177. [DOI: 10.1002/cm.21596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/09/2023]
Affiliation(s)
- María Cantero
- Laboratorio de Canales IónicosInstituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, UNSE‐CONICET) Santiago del Estero Argentina
| | - Brenda C. Gutierrez
- Laboratorio de Canales IónicosInstituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, UNSE‐CONICET) Santiago del Estero Argentina
| | - Horacio F. Cantiello
- Laboratorio de Canales IónicosInstituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, UNSE‐CONICET) Santiago del Estero Argentina
| |
Collapse
|
32
|
Minnis H, Posserud MB, Thompson L, Gillberg C. Hypothesis: The highly folded brain surface might be structured and located so as to facilitate inter-brain synchronization. RESEARCH IDEAS AND OUTCOMES 2020. [DOI: 10.3897/rio.6.e48887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We integrate recent findings from neuro-anatomy, electroencephalography, quantum biology and social/neurodevelopment to propose that the brain surface might be specialised for communication with other brains.
Ground breaking, but still small-scale, research has demonstrated that human brains can act in synchrony and detect the brain activity of other human brains. Group aggregation, in all species, maximises community support and safety but does not depend on verbal or visual interaction. The morphology of the brain’s outermost layers, across a wide range of species, exhibits a highly folded fractal structure that is likely to maximise exchange at the surface: in humans, a reduced brain surface area is associated with disorders of social communication. The brain sits in a vulnerable exposed location where it is prone to damage, rather than being housed in a central location such as within the ribcage.
These observations have led us to the hypothesis that the brain surface might be specialised for interacting with other brains at its surface, allowing synchronous non-verbal interaction. To our knowledge, this has not previously been proposed or investigated.
Collapse
|
33
|
Investigation of the Electrical Properties of Microtubule Ensembles under Cell-Like Conditions. NANOMATERIALS 2020; 10:nano10020265. [PMID: 32033331 PMCID: PMC7075204 DOI: 10.3390/nano10020265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/01/2023]
Abstract
Microtubules are hollow cylindrical polymers composed of the highly negatively-charged (~23e), high dipole moment (1750 D) protein α, β- tubulin. While the roles of microtubules in chromosomal segregation, macromolecular transport, and cell migration are relatively well-understood, studies on the electrical properties of microtubules have only recently gained strong interest. Here, we show that while microtubules at physiological concentrations increase solution capacitance, free tubulin has no appreciable effect. Further, we observed a decrease in electrical resistance of solution, with charge transport peaking between 20-60 Hz in the presence of microtubules, consistent with recent findings that microtubules exhibit electric oscillations at such low frequencies. We were able to quantify the capacitance and resistance of the microtubules (MT) network at physiological tubulin concentrations to be 1.27 × 10-5 F and 9.74 × 104 Ω. Our results show that in addition to macromolecular transport, microtubules also act as charge storage devices through counterionic condensation across a broad frequency spectrum. We conclude with a hypothesis of an electrically tunable cytoskeleton where the dielectric properties of tubulin are polymerisation-state dependent.
Collapse
|
34
|
Weiß I, Bohrmann J. Electrochemical gradients are involved in regulating cytoskeletal patterns during epithelial morphogenesis in the Drosophila ovary. BMC DEVELOPMENTAL BIOLOGY 2019; 19:22. [PMID: 31718540 PMCID: PMC6852995 DOI: 10.1186/s12861-019-0203-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND During Drosophila oogenesis, the follicular epithelium differentiates into several morphologically distinct follicle-cell populations. Characteristic bioelectrical properties make this tissue a suitable model system for studying connections between electrochemical signals and the organisation of the cytoskeleton. Recently, we have described stage-specific transcellular antero-posterior and dorso-ventral gradients of intracellular pH (pHi) and membrane potential (Vmem) depending on the asymmetrical distribution and/or activity of various ion-transport mechanisms. In the present study, we analysed the patterns of basal microfilaments (bMF) and microtubules (MT) in relation to electrochemical signals. RESULTS The bMF- and MT-patterns in developmental stages 8 to 12 were visualised using labelled phalloidin and an antibody against acetylated α-tubulin as well as follicle-cell specific expression of GFP-actin and GFP-α-tubulin. Obviously, stage-specific changes of the pHi- and Vmem-gradients correlate with modifications of the bMF- and MT-organisation. In order to test whether cytoskeletal modifications depend directly on bioelectrical changes, we used inhibitors of ion-transport mechanisms that have previously been shown to modify pHi and Vmem as well as the respective gradients. We inhibited, in stage 10b, Na+/H+-exchangers and Na+-channels with amiloride, V-ATPases with bafilomycin, ATP-sensitive K+-channels with glibenclamide, voltage-dependent L-type Ca2+-channels with verapamil, Cl--channels with 9-anthroic acid and Na+/K+/2Cl--cotransporters with furosemide, respectively. The correlations between pHi, Vmem, bMF and MT observed in different follicle-cell types are in line with the correlations resulting from the inhibition experiments. While relative alkalisation and/or hyperpolarisation stabilised the parallel transversal alignment of bMF, acidification led to increasing disorder and to condensations of bMF. On the other hand, relative acidification as well as hyperpolarisation stabilised the longitudinal orientation of MT, whereas alkalisation led to loss of this arrangement and to partial disintegration of MT. CONCLUSIONS We conclude that the pHi- and Vmem-changes induced by inhibitors of ion-transport mechanisms simulate bioelectrical changes occurring naturally and leading to the cytoskeletal changes observed during differentiation of the follicle-cell epithelium. Therefore, gradual modifications of electrochemical signals can serve as physiological means to regulate cell and tissue architecture by modifying cytoskeletal patterns.
Collapse
Affiliation(s)
- Isabel Weiß
- Institut für Biologie II, Abt. Zoologie und Humanbiologie, RWTH Aachen University, Worringerweg 3, 52056, Aachen, Germany
| | - Johannes Bohrmann
- Institut für Biologie II, Abt. Zoologie und Humanbiologie, RWTH Aachen University, Worringerweg 3, 52056, Aachen, Germany.
| |
Collapse
|
35
|
Cantero MDR, Perez PL, Scarinci N, Cantiello HF. Two-Dimensional Brain Microtubule Structures Behave as Memristive Devices. Sci Rep 2019; 9:12398. [PMID: 31455820 PMCID: PMC6711987 DOI: 10.1038/s41598-019-48677-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/06/2019] [Indexed: 02/03/2023] Open
Abstract
Microtubules (MTs) are cytoskeletal structures that play a central role in a variety of cell functions including cell division and cargo transfer. MTs are also nonlinear electrical transmission lines that produce and conduct electrical oscillations elicited by changes in either electric field and/or ionic gradients. The oscillatory behavior of MTs requires a voltage-sensitive gating mechanism to enable the electrodiffusional ionic movement through the MT wall. Here we explored the electrical response of non-oscillating rat brain MT sheets to square voltage steps. To ascertain the nature of the possible gating mechanism, the electrical response of non-oscillating rat brain MT sheets (2D arrays of MTs) to square pulses was analyzed under voltage-clamping conditions. A complex voltage-dependent nonlinear charge movement was observed, which represented the summation of two events. The first contribution was a small, saturating, voltage-dependent capacitance with a maximum charge displacement in the range of 4 fC/μm2. A second, major contribution was a non-saturating voltage-dependent charge transfer, consistent with the properties of a multistep memristive device. The memristive capabilities of MTs could drive oscillatory behavior, and enable voltage-driven neuromorphic circuits and architectures within neurons.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), UNSE-CONICET, El Zanjón, Santiago del Estero, Argentina.
| | - Paula L Perez
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), UNSE-CONICET, El Zanjón, Santiago del Estero, Argentina
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), UNSE-CONICET, El Zanjón, Santiago del Estero, Argentina
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), UNSE-CONICET, El Zanjón, Santiago del Estero, Argentina
| |
Collapse
|
36
|
Facchin F, Canaider S, Tassinari R, Zannini C, Bianconi E, Taglioli V, Olivi E, Cavallini C, Tausel M, Ventura C. Physical energies to the rescue of damaged tissues. World J Stem Cells 2019; 11:297-321. [PMID: 31293714 PMCID: PMC6600852 DOI: 10.4252/wjsc.v11.i6.297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores. We discuss the novel perspectives disclosed by mechanobiology, bioelectromagnetism, and photobiomodulation, both in term of fundamental basic science and in light of the biomedical implication of using physical energies to govern (stem) cell fate. We focus on the feasibility of exploiting atomic force microscopy and hyperspectral imaging to detect signatures of nanomotions and electromagnetic radiation (light), respectively, generated by the stem cells across the specification of their multilineage repertoire. The chance is reported of using these signatures and the diffusive features of physical waves to direct specifically the differentiation program of stem cells in situ, where they already are resident in all the tissues of the human body. We discuss how this strategy may pave the way to a regenerative and precision medicine without the needs for (stem) cell or tissue transplantation. We describe a novel paradigm based upon boosting our inherent ability for self-healing.
Collapse
Affiliation(s)
- Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Silvia Canaider
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Eva Bianconi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy
| | | | - Carlo Ventura
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), School of Medicine, University of Bologna, Bologna 40100, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, CNR, Bologna 40100, Italy.
| |
Collapse
|
37
|
Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 2018; 234:7923-7937. [PMID: 30536951 DOI: 10.1002/jcp.27978] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Microtubules (MT) and actin microfilaments are dynamic cytoskeleton components involved in a range of intracellular processes. MTs play a role in cell division, beating of cilia and flagella, and intracellular transport. Over the past decades, much knowledge has been gained regarding MT function and structure, and its role in underlying disease progression. This makes MT potential therapeutic targets for various disorders. Disturbances in MT and their associated proteins are the underlying cause of diseases such as Alzheimer's disease, cancer, and several genetic diseases. Some of the advances in the field of MT research, as well as the potenti G beta gamma, is needed al uses of MT-targeting agents in various conditions have been reviewed here.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|