1
|
Payne LA, Seidman LC, Napadow V, Nickerson LD, Kumar P. Functional connectivity associations with menstrual pain characteristics in adolescents: an investigation of the triple network model. Pain 2025; 166:338-346. [PMID: 39037861 PMCID: PMC11723811 DOI: 10.1097/j.pain.0000000000003334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
ABSTRACT Menstrual pain is associated with deficits in central pain processing, yet neuroimaging studies to date have all been limited by focusing on group comparisons of adult women with vs without menstrual pain. This study aimed to investigate the role of the triple network model (TNM) of brain networks in adolescent girls with varied menstrual pain severity ratings. One hundred participants (ages 13-19 years) completed a 6-min resting state functional magnetic resonance imaging (fMRI) scan and rated menstrual pain severity, menstrual pain interference, and cumulative menstrual pain exposure. Imaging analyses included age and gynecological age (years since menarche) as covariates. Menstrual pain severity was positively associated with functional connectivity between the cingulo-opercular salience network (cSN) and the sensory processing regions, limbic regions, and insula, and was also positively associated with connectivity between the left central executive network (CEN) and posterior regions. Menstrual pain interference was positively associated with connectivity between the cSN and widespread brain areas. In addition, menstrual pain interference was positively associated with connectivity within the left CEN, whereas connectivity both within the right CEN and between the right CEN and cortical areas outside the network (including the insula) were negatively associated with menstrual pain interference. Cumulative menstrual pain exposure shared a strong negative association with connectivity between the default mode network and other widespread regions associated with large-scale brain networks. These findings support a key role for the involvement of TNM brain networks in menstrual pain characteristics and suggest that alterations in pain processing exist in adolescents with varying levels of menstrual pain.
Collapse
Affiliation(s)
- Laura A Payne
- McLean Hospital, Belmont, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | - Vitaly Napadow
- Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Lisa D Nickerson
- McLean Hospital, Belmont, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Poornima Kumar
- McLean Hospital, Belmont, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Chen RB, Zhong MY, Zhong YL. Abnormal Topological Organization of Human Brain Connectome in Primary Dysmenorrhea Patients Using Graph Theoretical Analysis. J Pain Res 2024; 17:2789-2799. [PMID: 39220222 PMCID: PMC11365530 DOI: 10.2147/jpr.s470194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Background Accumulating studies have revealed altered brain function and structure in regions linked to sensory, pain and emotion in individuals with primary dysmenorrhea (PD). However, the changes in the topological properties of the brain's functional connectome in patients with PD experiencing chronic pain remain poorly understood. Purpose Our study aimed to explore the mechanism of functional brain network impairment in individuals withPD through a graph-theoretic analysis. Material and Methods This study was a randomized controlled trial that included individuals with PD and healthy controls (HC) from June 2021 to June 2022. The experiment took place in the magnetic resonance imaging facility at Jiangxi Provincial People's Hospital. Static MRI scans were conducted on 23 female patients with PD and 23 healthy female controls. A two-sample t-test was conducted to compare the global and nodal indices between the two groups, while the Network-Based Statistics (NBS) method was utilized to explore the functional connectivity alterations between the groups. Results In the global index, The PD group exhibited decreased Sigma (p = 0.0432) and Gamma (p = 0.0470) compared to the HC group among the small-world network properties.(p<0.05) In the nodal index, the PD group displayed reduced betweenness centrality and increased degree centrality in the default mode network (DMN), along with decreased nodal efficiency and increased degree centrality in the visual network (VN). (P < 0.05, Bonferroni-corrected) Furthermore, in the connection analysis, PD patients showed altered functional connectivity in the basal ganglia network (BGN), VN, and DMN.(NBS corrected). Conclusion Our results indicate that individuals with PD showed abnormal brain network efficiency and abnormal connection within DMN, VN and BGN related to pain matrix. These findings have important references for understanding the neural mechanism of pain in PD.
Collapse
Affiliation(s)
- Ri-Bo Chen
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Mei-Yi Zhong
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, People’s Republic of China
| |
Collapse
|
3
|
Mu J, Wu L, Wang C, Dun W, Hong Z, Feng X, Zhang M, Liu J. Individual differences of white matter characteristic along the anterior insula-based fiber tract circuit for pain empathy in healthy women and women with primary dysmenorrhea. Neuroimage 2024; 293:120624. [PMID: 38657745 DOI: 10.1016/j.neuroimage.2024.120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024] Open
Abstract
Pain empathy, defined as the ability of one person to understand another person's pain, shows large individual variations. The anterior insula is the core region of the pain empathy network. However, the relationship between white matter (WM) properties of the fiber tracts connecting the anterior insula with other cortical regions and an individual's ability to modulate pain empathy remains largely unclear. In this study, we outline an automatic seed-based fiber streamline (sFS) analysis method and multivariate pattern analysis (MVPA) to predict the levels of pain empathy in healthy women and women with primary dysmenorrhoea (PDM). Using the sFS method, the anterior insula-based fiber tract network was divided into five fiber cluster groups. In healthy women, interindividual differences in pain empathy were predicted only by the WM properties of the five fiber cluster groups, suggesting that interindividual differences in pain empathy may rely on the connectivity of the anterior insula-based fiber tract network. In women with PDM, pain empathy could be predicted by a single cluster group. The mean WM properties along the anterior insular-rostroventral area of the inferior parietal lobule further mediated the effect of pain on empathy in patients with PDM. Our results suggest that chronic periodic pain may lead to maladaptive plastic changes, which could further impair empathy by making women with PDM feel more pain when they see other people experiencing pain. Our study also addresses an important gap in the analysis of the microstructural characteristics of seed-based fiber tract network.
Collapse
Affiliation(s)
- Junya Mu
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Leiming Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Chenxi Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Wanghuan Dun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zilong Hong
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Xinyue Feng
- Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Jixin Liu
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Center for Brain Imaging, School of Life Science and Technology, Xidian University, Xi'an 710126, PR China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an 710126, PR China.
| |
Collapse
|
4
|
Fang X, Liu H, Wang M, Wang G. Scientific Knowledge Graph of Dysmenorrhea: A Bibliometric Analysis from 2001 to 2021. J Pain Res 2023; 16:2883-2897. [PMID: 37638206 PMCID: PMC10460176 DOI: 10.2147/jpr.s418602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Purpose This study aims to help researchers master the most active hotspots and trends quickly through bibliometric analysis in the field of dysmenorrhea. Methods We retrieved literature on Web of Science from 2001 to 2021, and bibliometric analysis software CiteSpace was used in combination with VOSviewer. Results We finally acquired 944 papers and an upward trend in articles continued in this field overall. Through the map, China contributed the most, followed by the USA and Turkey. For institutions, Beijing University of Chinese Medicine in China contributed the most, followed by National Yang-Ming University in Taiwan, China. Hsieh JC and Hellman KM were both the most prolific authors with 14 articles. Five major research groups, respectively, with Hsieh JC, Hellman KM, Zhu J, Liang F and Dun W were the key group. Dawood MY was the most dominant author and most frequently cited author. The Cochrane Database of Systematic Reviews Journal was the most productive, and the Fertility and Sterility Journal was the most cited. Advances in pathogenesis and management for primary dysmenorrhea written by Dawood MY was most cited and influential. Pathophysiology, the potential central mechanism, syndrome, evaluation index, diagnosis of adenomyosis-associated dysmenorrhea, treatment, etc., were the main trends and hotspots. Conclusion Dysmenorrhea research has received a lot of attention from scholars. Strengthening international cooperation may promote the development of this field. The pathophysiology of dysmenorrhea, its impact on public health and its treatment are current research hotspots and are likely to be the focus of future study.
Collapse
Affiliation(s)
- Xiaoting Fang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Haijuan Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Guohua Wang
- Gynecology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
5
|
Hsu PS, Cheng CM, Chao HT, Lin MW, Li WC, Lee LC, Liu CH, Chen LF, Hsieh JC. OPRM1 A118G polymorphism modulating motor pathway for pain adaptability in women with primary dysmenorrhea. Front Neurosci 2023; 17:1179851. [PMID: 37378013 PMCID: PMC10291086 DOI: 10.3389/fnins.2023.1179851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Primary dysmenorrhea (PDM) is a common condition among women of reproductive age, characterized by menstrual pain in the absence of any organic causes. Previous research has established a link between the A118G polymorphism in the mu-opioid receptor (OPRM1) gene and pain experience in PDM. Specifically, carriers of the G allele have been found to exhibit maladaptive functional connectivity between the descending pain modulatory system and the motor system in young women with PDM. This study aims to explore the potential relationship between the OPRM1 A118G polymorphism and changes in white matter in young women with PDM. Methods The study enrolled 43 individuals with PDM, including 13 AA homozygotes and 30 G allele carriers. Diffusion tensor imaging (DTI) scans were performed during both the menstrual and peri-ovulatory phases, and tract-based spatial statistics (TBSS) and probabilistic tractography were used to explore variations in white matter microstructure related to the OPRM1 A118G polymorphism. The short-form McGill Pain Questionnaire (MPQ) was used to access participants' pain experience during the MEN phase. Results Two-way ANOVA on TBSS analysis revealed a significant main effect of genotype, with no phase effect or phase-gene interaction detected. Planned contrast analysis showed that during the menstrual phase, G allele carriers had higher fractional anisotropy (FA) and lower radial diffusivity in the corpus callosum and the left corona radiata compared to AA homozygotes. Tractographic analysis indicated the involvement of the left internal capsule, left corticospinal tract, and bilateral medial motor cortex. Additionally, the mean FA of the corpus callosum and the corona radiata was negatively correlated with MPQ scales in AA homozygotes, but this correlation was not observed in G allele carriers. No significant genotype difference was found during the pain-free peri-ovulary phase. Discussion OPRM1 A118G polymorphism may influence the connection between structural integrity and dysmenorrheic pain, where the G allele could impede the pain-regulating effects of the A allele. These novel findings shed light on the underlying mechanisms of both adaptive and maladaptive structural neuroplasticity in PDM, depending on the specific OPRM1 polymorphism.
Collapse
Affiliation(s)
- Pei-Shan Hsu
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chou-Ming Cheng
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tai Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chi Li
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Lin-Chien Lee
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ching-Hsiung Liu
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
6
|
Lee LC, Chen YY, Li WC, Yang CJ, Liu CH, Low I, Chao HT, Chen LF, Hsieh JC. Adaptive neuroplasticity in the default mode network contributing to absence of central sensitization in primary dysmenorrhea. Front Neurosci 2023; 17:1094988. [PMID: 36845415 PMCID: PMC9947468 DOI: 10.3389/fnins.2023.1094988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Primary dysmenorrhea (PDM), the most prevalent gynecological problem among women of reproductive age, presents as a regular pattern of cyclic menstrual pain. The presence or absence of central sensitization (i.e., pain hypersensitivity) in cases of PDM is a contentious issue. Among Caucasians, the presence of dysmenorrhea is associated with pain hypersensitivity throughout the menstrual cycle, indicating pain amplification mediated by the central nervous system. We previously reported on the absence of central sensitization to thermal pain among Asian PDM females. In this study, functional magnetic resonance imaging was used to reveal mechanisms underlying pain processing with the aim of explaining the absence of central sensitization in this population. Methods Brain responses to noxious heat applied to the left inner forearm of 31 Asian PDM females and 32 controls during their menstrual and periovulatory phases were analyzed. Results and discussion Among PDM females experiencing acute menstrual pain, we observed a blunted evoked response and de-coupling of the default mode network from the noxious heat stimulus. The fact that a similar response was not observed in the non-painful periovulatory phase indicates an adaptive mechanism aimed at reducing the impact of menstrual pain on the brain with an inhibitory effect on central sensitization. Here we propose that adaptive pain responses in the default mode network may contribute to the absence of central sensitization among Asian PDM females. Variations in clinical manifestations among different PDM populations can be attributed to differences in central pain processing.
Collapse
Affiliation(s)
- Lin-Chien Lee
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ya-Yun Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Chi Li
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Hsiung Liu
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Department of Neurology, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Intan Low
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tai Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan,Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan,Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan,*Correspondence: Jen-Chuen Hsieh,
| |
Collapse
|
7
|
Variant brain-derived neurotrophic factor val66met polymorphism engages memory-associated systems to augment olfaction. Sci Rep 2022; 12:20007. [PMID: 36411369 PMCID: PMC9678911 DOI: 10.1038/s41598-022-24365-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The neurogenetic basis of variability in human olfactory function remains elusive. This study examined olfactory performance and resting-state functional neuroimaging results from healthy volunteers within the context of the brain-derived neurotrophic factor (BDNF) val66met polymorphism with the aim of unraveling the genotype-associated intrinsic reorganization of the olfactory network. We found that the presence of the Met allele is associated with better olfactory identification and additional engagement of semantic memory system within the olfactory network, in an allele dosage-dependent manner. This suggests that the Met allele may promote adaptive neural reorganization to augment olfactory capacity.
Collapse
|
8
|
Yi SJ, Chen RB, Zhong YL, Huang X. The Effect of Long-Term Menstrual Pain on Large-Scale Brain Network in Primary Dysmenorrhea Patients. J Pain Res 2022; 15:2123-2131. [PMID: 35923844 PMCID: PMC9342881 DOI: 10.2147/jpr.s366268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose Primary dysmenorrhea (PD) is a common gynecological disease, characterized by crampy and suprapubic pain occurring with menses. Growing evidences demonstrated that PD patients were associated with abnormalities in brain function and structure. However, little is known regarding whether the large-scale brain network changes in PD patients. The purpose of this study was to investigate the effect of long-term menstrual pain on large-scale brain network in PD patients using independent component analysis (ICA) method. Methods Twenty-eight PD patients (female, mean age, 24.25±1.00 years) and twenty-eight healthy controls (HCs) (mean age, 24.46±1.31 years), closely matched for age, sex, and education, underwent resting-state magnetic resonance imaging scans. ICA was applied to extract the resting-state networks (RSNs) in two groups. Then, two-sample t-tests were conducted to investigate different intranetwork FCs within RSNs and interactions among RSNs between two groups. Results Compared to the HC group, PD patients showed significant increased intra-network FCs within the auditory network (AN), sensorimotor network (SMN), right executive control network (RECN). However, PD patients showed significant decreased intra-network FCs within ventral default mode network (vDMN) and salience network (SN). Moreover, FNC analysis showed increased VN-AN and decreased VN-SMN functional connectivity between two groups. Conclusion Our study highlighted that PD patients had abnormal brain networks related to auditory, sensorimotor and higher cognitive network. Our results offer important insights into the altered large-scale brain network neural mechanisms of pain in PD patients.
Collapse
Affiliation(s)
- Si-Jie Yi
- Department of Gynecology and Obstetrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, People’s Republic of China
| | - Ri-Bo Chen
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, People’s Republic of China
| | - Yu-Lin Zhong
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, People’s Republic of China
| | - Xin Huang
- Department of Ophthalmology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, People’s Republic of China
- Correspondence: Xin Huang, Department of Ophthalmology, Jiangxi Provincial People’s Hospital, No. 152, Ai Guo Road, Dong Hu District, Nanchang, Jiangxi, 330006, People’s Republic of China, Tel +86 15879215294, Email
| |
Collapse
|
9
|
Wu X, Yu W, Hu H, Su Y, Liang Z, Bai Z, Tian X, Yang L, Shen J. Dynamic network topological properties for classifying primary dysmenorrhoea in the pain-free phase. Eur J Pain 2021; 25:1912-1924. [PMID: 34008281 DOI: 10.1002/ejp.1808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Primary dysmenorrhoea (PDM) is known to alter brain static functional activity. This study aimed to explore the dynamic topological properties (DTP) of dynamic brain functional network in women with PDM in the pain-free phase and their performance in distinguishing PDM in the pain-free phase from healthy controls. METHODS Thirty-five women with PDM and 38 healthy women without PDM were included. A dynamic brain functional network was constructed using the slide-window approach. The stability (TP-Stab) and variability (TP-Var) of the DTP of the dynamic functional network were computed using the graph-theory method. A support vector machine (SVM) was used to evaluate the performance of DTP in identifying PDM in the pain-free phase. RESULTS Compared with healthy controls, women with PDM had not only lower TP-Stab in global DTP, which included cluster clustering coefficient (Cp ), characteristic path length (Lp ), global efficiency (Eg ) and local efficiency (Eloc ), but also lower TP-Stab and higher TP-Var in nodal DTP (nodal efficiency, Enod ), mainly in the prefrontal cortex, anterior cingulate cortex, parahippocampal regions and insula. The TP-Stab and TP-Var were significantly correlated with psychological variables, that is positive emotions, sense of control and meaningful existence. SVM analysis showed that the DTP could identify PDM in the pain-free phase from healthy controls with an accuracy of 79.31%, sensitivity of 82.61% and specificity of 76%. CONCLUSIONS Women with PDM in the pain-free phase have altered global DTP and nodal DTP, mainly involving pain-related neurocircuits. The highly variable brain network is helpful for identifying PDM in the pain-free phase. SIGNIFICANCE This study shows that women with primary dysmenorrhoea (PDM) have decreased stability of dynamic network topological properties (DTP) and increased DTP variability in the pain-free phase. The altered DTP can be used to identify PDM in the pain-free phase. These findings demonstrate the presence of unstable characteristics in the whole network and disrupted pain-related neurocircuits, which might be used as potential classifiers for PDM in the pain-free phase. This study improves our knowledge of the brain mechanisms underlying PDM.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- School of Psychology, South China Normal University, Guangzhou, China
| | - Wenjun Yu
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
- School of Education, Jinggangshan University, Jiangxi, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yun Su
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiying Liang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiqiang Bai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuwei Tian
- Department of Radiology, First People's Hospital of Kashgar, Xinjiang, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Altered resting-state functional networks in patients with premenstrual syndrome: a graph-theoretical based study. Brain Imaging Behav 2021; 16:435-444. [PMID: 34417967 DOI: 10.1007/s11682-021-00518-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
Premenstrual syndrome (PMS) is a menstrual cycle-related disorder. Previous studies have indicated alterations of brain functional connectivity in PMS patients. However, little is known about the overall organization of brain network in PMS patients. Functional magnetic resonance imaging data deriving from 20 PMS patients and 21 healthy controls (HCs). Pearson correlation between mean time-series was used to estimate connectivity matrix between each paired regions of interest, and the connectivity matrix for each participant was then binarized. Graph theory analysis was applied to assess each participant's global and local topological properties of brain functional network. Correlation analysis was performed to evaluate relationships between the daily rating of severity of problems (DRSP) and abnormal network properties. PMS patients had lower small-worldness values than HCs. PMS-related alterations of nodal properties were mainly found in the posterior cingulate cortex, precuneus and angular gyrus. The PMS-related abnormal connectivity components were mainly associated with the thalamus, putamen and middle cingulate cortex. In the PMS group, the DRSP score were negatively correlated with the area under the curves of nodal local efficiency in the posterior cingulate cortex. Our study suggests that the graph-theory method may be one potential tool to detect disruptions of brain connections and may provide important evidence for understanding the PMS from the disrupted network organization perspective.
Collapse
|
11
|
Liu Y, Yao L, Yan B, Jiang H, Zhao J, Cao J, Li M, Liu X, Ha L, Tie L, Liu C, Wang F. The effectiveness of acupoint application of traditional Chinese medicine in treating primary dysmenorrhea: A protocol for meta-analysis and data mining. Medicine (Baltimore) 2021; 100:e26398. [PMID: 34128904 PMCID: PMC8213294 DOI: 10.1097/md.0000000000026398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Primary dysmenorrhea (PD) is a functional disease of the female reproductive system, which has adverse effects on patients' physical and mental health and quality of life. At present, acupoint application of traditional Chinese medicine (TCM) as adjuvant therapy is undergoing clinical trials in different medical centers. However, there is no systematic review or meta-analysis to evaluate the efficacy of acupoint application of TCM in the treatment of PD. There is also a lack of systematic evaluation and analysis of acupoints and herbs. METHODS All randomized controlled trials related to acupoint catgut embedding therapy on PD will be searched in the following electronic databases: Cochrane Central Registry of controlled trials, PubMed, Wed of Science, EMBASE, Science Net, China Biomedical Literature Database, China Science Journal Database, China National Knowledge Infrastructure and Wan-Fang Database, from inception to May, 2021 were searched without language restrictions. The primary outcomes contain visual analog score, The Cox Menstrual Symptom Scale, while the secondary outcomes consist of adverse events and the recurrence rate. Two reviewers will independently perform data selection, data synthesis, and quality assessment. Data meeting the inclusion criteria will be extracted and analyzed by Revman v.5.3 software. Two reviewers will evaluate the study using the Cochrane collaborative bias risk tool. We will use the scoring method to assess the overall quality of the evidence supporting the main results. We will also use Spass software (version 19.0) for complex network analysis to explore the potential core prescription of acupoint application of traditional Chinese medicine in the treatment of PD. RESULTS This study will analyze the clinical effective rate, functional outcomes, quality of life, improvement of clinical symptoms of PD, and effective prescriptions of acupoint application for patients with PD. CONCLUSION Our findings will provide evidence for the effectiveness and potential treatment prescriptions of acupoint application for patients with PD.PROSPERO registration number: CRD 42021244357.
Collapse
|
12
|
Wang C, Liu Y, Dun W, Zhang T, Yang J, Wang K, Mu J, Zhang M, Liu J. Effects of repeated menstrual pain on empathic neural responses in women with primary dysmenorrhea across the menstrual cycle. Hum Brain Mapp 2021; 42:345-356. [PMID: 33030796 PMCID: PMC7775997 DOI: 10.1002/hbm.25226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 12/24/2022] Open
Abstract
Primary dysmenorrhea (PDM) is cyclic menstrual pain in the absence of pelvic anomalies, and it is thought to be a sex-hormone related disorder. Existing study has focused on the effects of menstrual cramps on brain function and structure, ignoring the psychological changes associated with menstrual pain. Here we examined whether pain empathy in PDM differs from healthy controls (HC) using task-based functional magnetic resonance imaging (fMRI). Fifty-seven PDM women and 53 matched HC were recruited, and data were collected at the luteal and menstruation phases, respectively. During fMRI scans, participants viewed pictures displaying exposure to painful situations and pictures without any pain cues and assessed the level of pain experienced by the person in the picture. Regarding the main effect of the pain pictures, our results showed that compared to viewing neutral pictures, viewing pain pictures caused significantly higher activation in the anterior insula (AI), anterior cingulate cortex, and the left inferior parietal lobule; and only the right AI exhibited a significant interaction effect (group × picture). Post-hoc analyses confirmed that, relative to neutral pictures, the right AI failed to be activated in PDM women viewing painsss pictures. Additionally, there was no significant interaction effect between the luteal and menstruation phases. It suggests that intermittent pain can lead to abnormal empathy in PDM women, which does not vary with the pain or pain-free phase. Our study may deepen the understanding of the relationship between recurrent spontaneous pain and empathy in a clinical disorder characterized by cyclic episodes of pain.
Collapse
Affiliation(s)
- Chen Wang
- Center for Brain Imaging, School of Life Science and TechnologyXidian UniversityXi'anChina
- Engineering Research Center of Molecular & Neuroimaging,Ministry of EducationXi'anChina
| | - Yang Liu
- Center for Brain Imaging, School of Life Science and TechnologyXidian UniversityXi'anChina
- Engineering Research Center of Molecular & Neuroimaging,Ministry of EducationXi'anChina
| | - Wanghuan Dun
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Tian Zhang
- Center for Brain Imaging, School of Life Science and TechnologyXidian UniversityXi'anChina
- Engineering Research Center of Molecular & Neuroimaging,Ministry of EducationXi'anChina
| | - Jing Yang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ke Wang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Junya Mu
- Center for Brain Imaging, School of Life Science and TechnologyXidian UniversityXi'anChina
- Engineering Research Center of Molecular & Neuroimaging,Ministry of EducationXi'anChina
| | - Ming Zhang
- Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Jixin Liu
- Center for Brain Imaging, School of Life Science and TechnologyXidian UniversityXi'anChina
- Engineering Research Center of Molecular & Neuroimaging,Ministry of EducationXi'anChina
| |
Collapse
|
13
|
Li WC, Chao HT, Lin MW, Shen HD, Chen LF, Hsieh JC. Neuroprotective effect of Val variant of BDNF Val66Met polymorphism on hippocampus is modulated by the severity of menstrual pain. NEUROIMAGE-CLINICAL 2021; 30:102576. [PMID: 33561695 PMCID: PMC7873439 DOI: 10.1016/j.nicl.2021.102576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/19/2022]
Abstract
Primary dysmenorrhea (PDM) refers to menstrual pain of which the pathological cause(s) are unknown. This study examined the associations among BDNF Val66Met polymorphisms, menstrual pain severity, and hippocampal volume among young PDM subjects. We recruited 115 PDM subjects, including severe cases (n = 66) and moderate cases (n = 44), and 117 young females (aged 20-30 years) as a control group (CON) for BDNF Val66Met genotyping and MRI examination. The assessment of hippocampal volume involved analysis at various anatomical resolutions, i.e., whole hippocampal volume, hippocampal subfields, and voxel-based morphometry (VBM) volumetric analysis. Two-way ANOVA analyses with planned contrasts and Bonferroni correction were conducted for the assessment of hippocampal volume. Linear regression was used to test for BDNF Val66Met Val allele dosage-dependent effects. We observed no main effects of group, genotype, or group-genotype interactions on bilateral whole hippocampal volumes. Significant interactions between PDM severity and BDNF Val66Met genotype were observed in the right whole hippocampus, subiculum, and molecular layer. Post-hoc analysis revealed that the average hippocampal volume of Val/Val moderate PDM subjects was greater than that of Val/Val severe PDM subjects. Note that right hippocampal volume was greater in the Val/Val group than in the Met/Met group, particularly in the right posterior hippocampal region. Dosage effect analysis revealed a positive dosage-dependent relationship between the Val allele and volume of the right whole hippocampus, subiculum, molecular layer, and VBM-defined right posterior hippocampal region in the moderate PDM subgroup only. These findings indicate that Val/Val PDM subjects are resistant to intermittent moderate pain-related stress, whereas Met carrier PDM subjects are susceptible. When confronted with years of repeated PDM stress, the hippocampus can undergo differential structural changes in accordance with the BDNF genotype and pain severity. This triad study on PDM (i.e., combining genotype with endophenotype imaging results and clinical phenotypes), underscores the potential neurobiological consequences of PDM, which may prefigure in neuroimaging abnormalities associated with various chronic pain disorders. Our results provide evidence for Val allele dosage-dependent protective effects on the hippocampal structure; however, in cases of the Val variant, these effects were modulated in accordance with the severity of menstrual pain.
Collapse
Affiliation(s)
- Wei-Chi Li
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tai Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Horng-Der Shen
- Laboratory of Microbiology, Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jen-Chuen Hsieh
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|