1
|
Zhou X, Bao Q, Cui Y, Li X, Yang C, Yang Y, Gao Y, Chen D, Huang J. Life destiny of erythrocyte in high altitude erythrocytosis: mechanisms underlying the progression from physiological (moderate) to pathological (excessive) high-altitude erythrocytosis. Front Genet 2025; 16:1528935. [PMID: 40242475 PMCID: PMC12000012 DOI: 10.3389/fgene.2025.1528935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
High-altitude polycythemia (HAPC) represents a pathological escalation of the physiological erythrocytosis induced by chronic hypoxia exposure. While moderate erythroid expansion enhances oxygen delivery, HAPC manifests as hematologic disorder characterized by hemoglobin thresholds (≥21 g/dL males; ≥19 g/dL females) and multi-organ complications including microcirculatory thrombosis, right ventricular hypertrophy, and uric acid dysmetabolism. This review critically evaluates the continuum between adaptive and maladaptive polycythemia through multiscale analysis of erythrocyte biology. We integrate genomic predisposition patterns, bone marrow erythroid kinetic studies, and peripheral erythrocyte pathophenotypes revealed by multi-omics profiling (iron-redox proteome, hypoxia-metabolome crosstalk). Current diagnostic limitations are highlighted, particularly the oversimplification of hemoglobin cutoffs that neglect transitional dynamics in erythrocyte turnover. By reconstructing the erythroid life cycle-from hypoxia-sensitive progenitor commitment to senescent cell clearance-we propose a phase transition model where cumulative epigenetic-metabolic derangements overcome homeostatic buffers, triggering pathological erythroid amplification. These insights reframe HAPC as a systems biology failure of erythroid adaptation, informing predictive biomarkers and targeted interventions to preserve hematological homeostasis in hypoxic environments.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Quanwei Bao
- Department of Emergency Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Cui
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Xiaoxu Li
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Chengzhong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yidong Yang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Yuqi Gao
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
- College of High Altitude Military Medicine, Army Medical University, Chongqing, China
| | - Dewei Chen
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| | - Jian Huang
- Department of High Altitude Physiology and Pathology, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education, Chongqing, China
| |
Collapse
|
2
|
Ferraretti G, Rill A, Abondio P, Smith K, Ojeda-Granados C, De Fanti S, Alberti M, Izzi M, Sherpa PT, Cocco P, Tiriticco M, Di Marcello M, Dezi A, Gnecchi-Ruscone GA, Natali L, Corcelli A, Marinelli G, Garagnani P, Peluzzi D, Luiselli D, Pettener D, Sarno S, Sazzini M. Convergent evolution of complex adaptive traits modulates angiogenesis in high-altitude Andean and Himalayan human populations. Commun Biol 2025; 8:377. [PMID: 40050470 PMCID: PMC11885840 DOI: 10.1038/s42003-025-07813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Convergent adaptations represent paradigmatic examples of the capacity of natural selection to influence organisms' biology. However, the possibility to investigate the genetic determinants underpinning convergent complex adaptive traits has been offered only recently by methods for inferring polygenic adaptations from genomic data. Relying on this approach, we demonstrate how high-altitude Andean human groups experienced pervasive selective events at angiogenic pathways, which resemble those previously attested for Himalayan populations despite partial convergence at the single-gene level was observed. This provides additional evidence for the drivers of convergent evolution of enhanced blood perfusion in populations exposed to hypobaric hypoxia for thousands of years.
Collapse
Affiliation(s)
- Giulia Ferraretti
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Aina Rill
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Josep Carreras Leukaemia Research Institute, PhD Programme in Biomedicine, University of Barcelona, Barcelona, Spain
| | - Paolo Abondio
- Department of Cultural Heritage, Ravenna Campus, University of Bologna, Ravenna, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Kyra Smith
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudia Ojeda-Granados
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Catania, Italy
| | - Sara De Fanti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marta Alberti
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Massimo Izzi
- Complex Operative Unit of Endocrinology and Diabetes Care, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Paolo Cocco
- Explora Nunaat International, Montorio al Vomano, Teramo, Italy
| | | | | | - Agnese Dezi
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Guido Alberto Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences & Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Luca Natali
- Explora Nunaat International, Montorio al Vomano, Teramo, Italy
- Italian Institute of Human Paleontology, Rome, Italy
| | - Angela Corcelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Bari, Italy
| | | | - Paolo Garagnani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Peluzzi
- Explora Nunaat International, Montorio al Vomano, Teramo, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, Ravenna Campus, University of Bologna, Ravenna, Italy
| | - Davide Pettener
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Stefania Sarno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Sazzini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
- Interdepartmental Centre Alma Mater Research Institute on Global Changes and Climate Change, University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
González-Buenfil R, Vieyra-Sánchez S, Quinto-Cortés CD, Oppenheimer SJ, Pomat W, Laman M, Cervantes-Hernández MC, Barberena-Jonas C, Auckland K, Allen A, Allen S, Phipps ME, Huerta-Sanchez E, Ioannidis AG, Mentzer AJ, Moreno-Estrada A. Genetic Signatures of Positive Selection in Human Populations Adapted to High Altitude in Papua New Guinea. Genome Biol Evol 2024; 16:evae161. [PMID: 39173139 PMCID: PMC11339866 DOI: 10.1093/gbe/evae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Papua New Guinea (PNG) hosts distinct environments mainly represented by the ecoregions of the Highlands and Lowlands that display increased altitude and a predominance of pathogens, respectively. Since its initial peopling approximately 50,000 years ago, inhabitants of these ecoregions might have differentially adapted to the environmental pressures exerted by each of them. However, the genetic basis of adaptation in populations from these areas remains understudied. Here, we investigated signals of positive selection in 62 highlanders and 43 lowlanders across 14 locations in the main island of PNG using whole-genome genotype data from the Oceanian Genome Variation Project (OGVP) and searched for signals of positive selection through population differentiation and haplotype-based selection scans. Additionally, we performed archaic ancestry estimation to detect selection signals in highlanders within introgressed regions of the genome. Among highland populations we identified candidate genes representing known biomarkers for mountain sickness (SAA4, SAA1, PRDX1, LDHA) as well as candidate genes of the Notch signaling pathway (PSEN1, NUMB, RBPJ, MAML3), a novel proposed pathway for high altitude adaptation in multiple organisms. We also identified candidate genes involved in oxidative stress, inflammation, and angiogenesis, processes inducible by hypoxia, as well as in components of the eye lens and the immune response. In contrast, candidate genes in the lowlands are mainly related to the immune response (HLA-DQB1, HLA-DQA2, TAAR6, TAAR9, TAAR8, RNASE4, RNASE6, ANG). Moreover, we find two candidate regions to be also enriched with archaic introgressed segments, suggesting that archaic admixture has played a role in the local adaptation of PNG populations.
Collapse
Affiliation(s)
- Ram González-Buenfil
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Sofía Vieyra-Sánchez
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Consuelo D Quinto-Cortés
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - William Pomat
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Mayté C Cervantes-Hernández
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Carmina Barberena-Jonas
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - Angela Allen
- Department of Molecular Haematology, MRC Weatherall Institute of Molecular Medicine, Headley Way, Headington, Oxford, OX3 9DS, UK
| | - Stephen Allen
- Department of Clinical Sciences,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Emilia Huerta-Sanchez
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Alexander G Ioannidis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, USA
| | | | - Andrés Moreno-Estrada
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| |
Collapse
|
4
|
Parobek CM, Zemet R, Shanahan MA, Burnett BA, Mizerik E, Rosenfeld JA, Vossaert L, Clark SL, Hunter JV, Lalani SR. Clinical exome sequencing uncovers genetic disorders in neonates with suspected hypoxic-ischemic encephalopathy: A retrospective analysis. Clin Genet 2024; 106:95-101. [PMID: 38545656 PMCID: PMC11147704 DOI: 10.1111/cge.14522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) occurs in up to 7 out of 1000 births and accounts for almost a quarter of neonatal deaths worldwide. Despite the name, many newborns with HIE have little evidence of perinatal hypoxia. We hypothesized that some infants with HIE have genetic disorders that resemble encephalopathy. We reviewed genetic results for newborns with HIE undergoing exome or genome sequencing at a clinical laboratory (2014-2022). Neonates were included if they had a diagnosis of HIE and were delivered ≥35 weeks. Neonates were excluded for cardiopulmonary pathology resulting in hypoxemia or if neuroimaging suggested postnatal hypoxic-ischemic injury. Of 24 patients meeting inclusion criteria, six (25%) were diagnosed with a genetic condition. Four neonates had variants at loci linked to conditions with phenotypic features resembling HIE, including KIF1A, GBE1, ACTA1, and a 15q13.3 deletion. Two additional neonates had variants in genes not previously associated with encephalopathy, including DUOX2 and PTPN11. Of the six neonates with a molecular diagnosis, two had isolated HIE without apparent comorbidities to suggest a genetic disorder. Genetic diagnoses were identified among neonates with and without sentinel labor events, abnormal umbilical cord gasses, and low Apgar scores. These results suggest that genetic evaluation is clinically relevant for patients with perinatal HIE.
Collapse
Affiliation(s)
- Christian M Parobek
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Roni Zemet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Matthew A Shanahan
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brian A Burnett
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Liesbeth Vossaert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Steven L Clark
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Lawrence ES, Gu W, Bohlender RJ, Anza-Ramirez C, Cole AM, Yu JJ, Hu H, Heinrich EC, O’Brien KA, Vasquez CA, Cowan QT, Bruck PT, Mercader K, Alotaibi M, Long T, Hall JE, Moya EA, Bauk MA, Reeves JJ, Kong MC, Salem RM, Vizcardo-Galindo G, Macarlupu JL, Figueroa-Mujíca R, Bermudez D, Corante N, Gaio E, Fox KP, Salomaa V, Havulinna AS, Murray AJ, Malhotra A, Powel FL, Jain M, Komor AC, Cavalleri GL, Huff CD, Villafuerte FC, Simonson TS. Functional EPAS1/ HIF2A missense variant is associated with hematocrit in Andean highlanders. SCIENCE ADVANCES 2024; 10:eadj5661. [PMID: 38335297 PMCID: PMC10857371 DOI: 10.1126/sciadv.adj5661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Hypoxia-inducible factor pathway genes are linked to adaptation in both human and nonhuman highland species. EPAS1, a notable target of hypoxia adaptation, is associated with relatively lower hemoglobin concentration in Tibetans. We provide evidence for an association between an adaptive EPAS1 variant (rs570553380) and the same phenotype of relatively low hematocrit in Andean highlanders. This Andean-specific missense variant is present at a modest frequency in Andeans and absent in other human populations and vertebrate species except the coelacanth. CRISPR-base-edited human cells with this variant exhibit shifts in hypoxia-regulated gene expression, while metabolomic analyses reveal both genotype and phenotype associations and validation in a lowland population. Although this genocopy of relatively lower hematocrit in Andean highlanders parallels well-replicated findings in Tibetans, it likely involves distinct pathway responses based on a protein-coding versus noncoding variants, respectively. These findings illuminate how unique variants at EPAS1 contribute to the same phenotype in Tibetans and a subset of Andean highlanders despite distinct evolutionary trajectories.
Collapse
Affiliation(s)
- Elijah S. Lawrence
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wanjun Gu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ryan J. Bohlender
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cecilia Anza-Ramirez
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Amy M. Cole
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James J. Yu
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hao Hu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erica C. Heinrich
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Katie A. O’Brien
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Carlos A. Vasquez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Quinn T. Cowan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Patrick T. Bruck
- Department of Anthropology and Global Health, University of California, San Diego, La Jolla, CA, USA
| | - Kysha Mercader
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Tao Long
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Sapient Bioanalytics, LLC, San Diego, CA, USA
| | - James E. Hall
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Marco A. Bauk
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer J. Reeves
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mitchell C. Kong
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Rany M. Salem
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Gustavo Vizcardo-Galindo
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jose-Luis Macarlupu
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Rómulo Figueroa-Mujíca
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Daniela Bermudez
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Noemi Corante
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Eduardo Gaio
- Laboratório de Fisiologia Respiratória, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Keolu P. Fox
- Department of Anthropology and Global Health, University of California, San Diego, La Jolla, CA, USA
| | - Veikko Salomaa
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki S. Havulinna
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM-HiLIFE), Helsinki, Finland
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Frank L. Powel
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mohit Jain
- Department of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Sapient Bioanalytics, LLC, San Diego, CA, USA
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Chad D. Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco C. Villafuerte
- Laboratorio de Fisiología Comparada/Fisiología de del Transporte de Oxígeno-LID, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, Sleep Medicine, and Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Li L, Shen S, Bickler P, Jacobson MP, Wu LF, Altschuler SJ. Searching for molecular hypoxia sensors among oxygen-dependent enzymes. eLife 2023; 12:e87705. [PMID: 37494095 PMCID: PMC10371230 DOI: 10.7554/elife.87705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023] Open
Abstract
The ability to sense and respond to changes in cellular oxygen levels is critical for aerobic organisms and requires a molecular oxygen sensor. The prototypical sensor is the oxygen-dependent enzyme PHD: hypoxia inhibits its ability to hydroxylate the transcription factor HIF, causing HIF to accumulate and trigger the classic HIF-dependent hypoxia response. A small handful of other oxygen sensors are known, all of which are oxygen-dependent enzymes. However, hundreds of oxygen-dependent enzymes exist among aerobic organisms, raising the possibility that additional sensors remain to be discovered. This review summarizes known and potential hypoxia sensors among human O2-dependent enzymes and highlights their possible roles in hypoxia-related adaptation and diseases.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Susan Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Department of Psychiatry, University of California, San FranciscoSan FranciscoUnited States
| | - Philip Bickler
- Hypoxia Research Laboratory, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Center for Health Equity in Surgery and Anesthesia, University of California San Francisco, San FranciscoSan FranciscoUnited States
- Anesthesia and Perioperative Care, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San FranciscoSan FranciscoUnited States
| |
Collapse
|
7
|
Voskarides K, Giannopoulou N. The Role of TP53 in Adaptation and Evolution. Cells 2023; 12:cells12030512. [PMID: 36766853 PMCID: PMC9914165 DOI: 10.3390/cells12030512] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The TP53 gene is a major player in cancer formation, and it is considered the most important tumor suppressor gene. The p53 protein acts as a transcription factor, and it is involved in DNA repair, senescence, cell-cycle control, autophagy, and apoptosis. Beyond cancer, there is evidence that TP53 is associated with fertility, aging, and longevity. Additionally, more evidence exists that genetic variants in TP53 are associated with environmental adaptation. Special TP53 amino-acid residues or pathogenic TP53 mutations seem to be adaptive for animals living in hypoxic and cold environments or having been exposed to starvation, respectively. At the somatic level, it has recently been proven that multiple cancer genes, including TP53, are under positive selection in healthy human tissues. It is not clear why these driver mutations do not transform these tissues into cancerous ones. Other studies have shown that elephants have multiple TP53 copies, probably this being the reason for the very low cancer incidence in these large animals. This may explain the famous Peto's paradox. This review discusses in detail the multilevel role of TP53 in adaptation, according to the published evidence. This role is complicated, and it extends from cells to individuals and to populations.
Collapse
Affiliation(s)
- Konstantinos Voskarides
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414 Nicosia, Cyprus
- School of Veterinary Medicine, University of Nicosia, 2414 Nicosia, Cyprus
- Correspondence: ; Tel.: +357-22-471-819
| | - Nefeli Giannopoulou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414 Nicosia, Cyprus
| |
Collapse
|
8
|
De Loma J, Vicente M, Tirado N, Ascui F, Vahter M, Gardon J, Schlebusch CM, Broberg K. Human adaptation to arsenic in Bolivians living in the Andes. CHEMOSPHERE 2022; 301:134764. [PMID: 35490756 DOI: 10.1016/j.chemosphere.2022.134764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Humans living in the Andes Mountains have been historically exposed to arsenic from natural sources, including drinking water. Enzymatic methylation of arsenic allows it to be excreted more efficiently by the human body. Adaptation to high-arsenic environments via enhanced methylation and excretion of arsenic was first reported in indigenous women in the Argentinean Andes, but whether adaptation to arsenic is a general phenomenon across native populations from the Andes Mountains remains unclear. Therefore, we evaluated whether adaptation to arsenic has occurred in the Bolivian Andes by studying indigenous groups who belong to the Aymara-Quechua and Uru ethnicities and have lived in the Bolivian Andes for generations. Our population genetics methods, including genome-wide selection scans based on linkage disequilibrium patterns and allele frequency differences, in combination with targeted and whole-genome sequencing and genotype-phenotype association analyses, detected signatures of positive selection near the gene encoding arsenite methyltransferase (AS3MT), the main arsenic methylating enzyme. This was among the strongest selection signals (top 0.5% signals via locus-specific branch length and extended haplotype homozygosity tests) at a genome-wide level in the Bolivian study groups. We found a large haplotype block of 676 kb in the AS3MT region and identified candidate functional variants for further analysis. Moreover, our analyses revealed associations between AS3MT variants and the fraction of mono-methylated arsenic in urine and showed that the Bolivian study groups had the highest frequency of alleles associated with more efficient arsenic metabolism reported so far. Our data support the idea that arsenic exposure has been a driver for human adaptation to tolerate arsenic through more efficient arsenic detoxification in different Andean populations.
Collapse
Affiliation(s)
- Jessica De Loma
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mário Vicente
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Noemi Tirado
- Genetics Institute, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Franz Ascui
- Programa de Salud Familiar Comunitaria e Intercultural, Ministerio de Salud Bolivia, La Paz, Bolivia
| | - Marie Vahter
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jacques Gardon
- Hydrosciences Montpellier, Université de Montpellier, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Montpellier, France
| | - Carina M Schlebusch
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden; Palaeo-Research Institute, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa; SciLifeLab Uppsala, Sweden
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Caro-Consuegra R, Nieves-Colón MA, Rawls E, Rubin-de-Celis V, Lizárraga B, Vidaurre T, Sandoval K, Fejerman L, Stone AC, Moreno-Estrada A, Bosch E. Uncovering signals of positive selection in Peruvian populations from three ecological regions. Mol Biol Evol 2022; 39:6647595. [PMID: 35860855 PMCID: PMC9356722 DOI: 10.1093/molbev/msac158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perú hosts extremely diverse ecosystems which can be broadly classified into three major ecoregions: the Pacific desert coast, the Andean highlands, and the Amazon rainforest. Since its initial peopling approximately 12,000 years ago, the populations inhabiting such ecoregions might have differentially adapted to their contrasting environmental pressures. Previous studies have described several candidate genes underlying adaptation to hypobaric hypoxia among Andean highlanders. However, the adaptive genetic diversity of coastal and rainforest populations has been less studied. Here, we gathered genome-wide SNP-array data from 286 Peruvians living across the three ecoregions and analysed signals of recent positive selection through population differentiation and haplotype-based selection scans. Among highland populations, we identify candidate genes related to cardiovascular function (TLL1, DUSP27, TBX5, PLXNA4, SGCD), to the Hypoxia-Inducible Factor pathway (TGFA, APIP), to skin pigmentation (MITF), as well as to glucose (GLIS3) and glycogen metabolism (PPP1R3C, GANC). In contrast, most signatures of adaptation in coastal and rainforest populations comprise candidate genes related to the immune system (including SIGLEC8, TRIM21, CD44 and ICAM1 in the coast; CBLB and PRDM1 in rainforest and the BRD2- HLA-DOA- HLA-DPA1 region in both), possibly as a result of strong pathogen-driven selection. This study identifies candidate genes related to human adaptation to the diverse environments of South America.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Maria A Nieves-Colón
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Erin Rawls
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Verónica Rubin-de-Celis
- Laboratorio de Genómica Molecular Evolutiva, Instituto de Ciencia y Tecnología, Universidad Ricardo Palma, Lima, Perú
| | - Beatriz Lizárraga
- Emeritus Professor, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | | | - Karla Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Laura Fejerman
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Andrés Moreno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Elena Bosch
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain
| |
Collapse
|
10
|
Sharma V, Varshney R, Sethy NK. Human adaptation to high altitude: a review of convergence between genomic and proteomic signatures. Hum Genomics 2022; 16:21. [PMID: 35841113 PMCID: PMC9287971 DOI: 10.1186/s40246-022-00395-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/17/2022] [Indexed: 12/29/2022] Open
Abstract
Both genomics- and proteomics-based investigations have identified several essential genes, proteins, and pathways that may facilitate human adaptive genotype/phenotype in a population-specific manner. This comprehensive review provides an up-to-date list of genes and proteins identified for human adaptive responses to high altitudes. Genomics studies for indigenous high-altitude populations like Tibetans, Andeans, Ethiopians, and Sherpas have identified 169 genes under positive natural selection. Similarly, global proteomics studies have identified 258 proteins (± 1.2-fold or more) for Tibetan, Sherpa, and Ladakhi highlanders. The primary biological processes identified for genetic signatures include hypoxia-inducible factor (HIF)-mediated oxygen sensing, angiogenesis, and erythropoiesis. In contrast, major biological processes identified for proteomics signatures include 14–3-3 mediated sirtuin signaling, integrin-linked kinase (ILK), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), and integrin signaling. Comparing genetic and protein signatures, we identified 7 common genes/proteins (HBB/hemoglobin subunit beta, TF/serotransferrin, ANGPTL4/angiopoietin-related protein 4, CDC42/cell division control protein 42 homolog, GC/vitamin D-binding protein, IGFBP1/insulin-like growth factor-binding protein 1, and IGFBP2/insulin-like growth factor-binding protein 2) involved in crucial molecular functions like IGF-1 signaling, LXR/RXR activation, ferroptosis signaling, iron homeostasis signaling and regulation of cell cycle. Our combined multi-omics analysis identifies common molecular targets and pathways for human adaptation to high altitude. These observations further corroborate convergent positive selection of hypoxia-responsive molecular pathways in humans and advocate using multi-omics techniques for deciphering human adaptive responses to high altitude.
Collapse
Affiliation(s)
- Vandana Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Rajeev Varshney
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
11
|
Zani ALS, Gouveia MH, Aquino MM, Quevedo R, Menezes RL, Rotimi C, Lwande GO, Ouma C, Mekonnen E, Fagundes NJR. Genetic differentiation in East African ethnicities and its relationship with endurance running success. PLoS One 2022; 17:e0265625. [PMID: 35588128 PMCID: PMC9119534 DOI: 10.1371/journal.pone.0265625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
Since the 1960s, East African athletes, mainly from Kenya and Ethiopia, have dominated long-distance running events in both the male and female categories. Further demographic studies have shown that two ethnic groups are overrepresented among elite endurance runners in each of these countries: the Kalenjin, from Kenya, and the Oromo, from Ethiopia, raising the possibility that this dominance results from genetic or/and cultural factors. However, looking at the life history of these athletes or at loci previously associated with endurance athletic performance, no compelling explanation has emerged. Here, we used a population approach to identify peaks of genetic differentiation for these two ethnicities and compared the list of genes close to these regions with a list, manually curated by us, of genes that have been associated with traits possibly relevant to endurance running in GWAS studies, and found a significant enrichment in both populations (Kalenjin, P = 0.048, and Oromo, P = 1.6x10-5). Those traits are mainly related to anthropometry, circulatory and respiratory systems, energy metabolism, and calcium homeostasis. Our results reinforce the notion that endurance running is a systemic activity with a complex genetic architecture, and indicate new candidate genes for future studies. Finally, we argue that a deterministic relationship between genetics and sports must be avoided, as it is both scientifically incorrect and prone to reinforcing population (racial) stereotyping.
Collapse
Affiliation(s)
- André L. S. Zani
- Postgraduate Program in Genetics and Molecular Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mateus H. Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marla M. Aquino
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Quevedo
- School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo L. Menezes
- School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gerald O. Lwande
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Collins Ouma
- Department of Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Ephrem Mekonnen
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nelson J. R. Fagundes
- Postgraduate Program in Genetics and Molecular Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Postgraduate Program in Animal Biology, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
12
|
Beckman EJ, Martins F, Suzuki TA, Bi K, Keeble S, Good JM, Chavez AS, Ballinger MA, Agwamba K, Nachman MW. The genomic basis of high-elevation adaptation in wild house mice (Mus musculus domesticus) from South America. Genetics 2022; 220:iyab226. [PMID: 34897431 PMCID: PMC9097263 DOI: 10.1093/genetics/iyab226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/04/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding the genetic basis of environmental adaptation in natural populations is a central goal in evolutionary biology. The conditions at high elevation, particularly the low oxygen available in the ambient air, impose a significant and chronic environmental challenge to metabolically active animals with lowland ancestry. To understand the process of adaptation to these novel conditions and to assess the repeatability of evolution over short timescales, we examined the signature of selection from complete exome sequences of house mice (Mus musculus domesticus) sampled across two elevational transects in the Andes of South America. Using phylogenetic analysis, we show that house mice colonized high elevations independently in Ecuador and Bolivia. Overall, we found distinct responses to selection in each transect and largely nonoverlapping sets of candidate genes, consistent with the complex nature of traits that underlie adaptation to low oxygen availability (hypoxia) in other species. Nonetheless, we also identified a small subset of the genome that appears to be under parallel selection at the gene and SNP levels. In particular, three genes (Col22a1, Fgf14, and srGAP1) bore strong signatures of selection in both transects. Finally, we observed several patterns that were common to both transects, including an excess of derived alleles at high elevation, and a number of hypoxia-associated genes exhibiting a threshold effect, with a large allele frequency change only at the highest elevations. This threshold effect suggests that selection pressures may increase disproportionately at high elevations in mammals, consistent with observations of some high-elevation diseases in humans.
Collapse
Affiliation(s)
- Elizabeth J Beckman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felipe Martins
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Taichi A Suzuki
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Andreas S Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Evolution, Ecology, and Organismal Biology and the Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mallory A Ballinger
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kennedy Agwamba
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Basak N, Thangaraj K. High-altitude adaptation: Role of genetic and epigenetic factors. J Biosci 2021. [DOI: 10.1007/s12038-021-00228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Jacovas VC, Michita RT, Bisso-Machado R, Reales G, Tarazona-Santos EM, Sandoval JR, Salazar-Granara A, Chies JAB, Bortolini MC. HLA-G 3'UTR haplotype frequencies in highland and lowland South Native American populations. Hum Immunol 2021; 83:27-38. [PMID: 34563386 DOI: 10.1016/j.humimm.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Human Leukocyte Antigen (HLA)-G participates in several biological processes, including reproduction, vascular remodeling, immune tolerance, and hypoxia response. HLA-G is a potential candidate gene for high altitude adaptation since its expression is modulated in both micro and macro environment under hypoxia and constant cellular stress. Besides the promoter region, the HLA-G 3'untranslated region (UTR) influences HLA-G expression patterns through several post-transcriptional mechanisms. Currently, the 3'UTR genetic diversity in terms of altitude adaptation of Native American populations is still unexplored, particularly at high altitude ecoregions. Here, we evaluated 288 Native Americans from 9 communities located in the Andes [highland (HL); ≥2,500 m (range = 2,838-4,433 m)] and 8 populations located in lowland (LL) regions [<2,500 m (range = 80-431 m); Amazonian tropical forest, Brazilian central plateau, and Chaco] of South America. In total, nine polymorphic sites and ten haplotypes were observed. The most frequent haplotypes (UTR-1, UTR-2, and UTR-3) accounted for ∼ 77% of haplotypes found in LL, while in the HL, the same haplotypes reach ∼ 93%. Also, a remarkable high frequency of putative ancestral UTR-5 haplotype was observed in LL (21.5%), while in HL UTR-2 reaches up to 47%. Further, UTR-2 frequency positively correlates with altitude-related variables, while a negative correlation for UTR-5 was observed. From an evolutionary perspective, we observed a tendency towards balancing selection in HL and LL populations thus suggesting that haplotypes of ancient and more derived alleles may have been co-opted for relatively recent adaptations such as those experienced by modern humans in the highland and lowland of South America. We also discuss how long-term balancing selection can be a reservoir of genetic variants that can be positively selected. Finally, our study provides some pieces of evidence that HLA-G 3'UTR haplotypes may have contributed to high altitude adaptation in the Andes.
Collapse
Affiliation(s)
- Vanessa Cristina Jacovas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Tomoya Michita
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Human Molecular Genetics Laboratory, Universidade Luterana do Brasil (ULBRA), Canoas, Rio Grande do Sul, Brazil
| | - Rafael Bisso-Machado
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guillermo Reales
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo M Tarazona-Santos
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - José Raul Sandoval
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | | | - José Artur Bogo Chies
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
Pham K, Parikh K, Heinrich EC. Hypoxia and Inflammation: Insights From High-Altitude Physiology. Front Physiol 2021; 12:676782. [PMID: 34122145 PMCID: PMC8188852 DOI: 10.3389/fphys.2021.676782] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
The key regulators of the transcriptional response to hypoxia and inflammation (hypoxia inducible factor, HIF, and nuclear factor-kappa B, NF-κB, respectively) are evolutionarily conserved and share significant crosstalk. Tissues often experience hypoxia and inflammation concurrently at the site of infection or injury due to fluid retention and immune cell recruitment that ultimately reduces the rate of oxygen delivery to tissues. Inflammation can induce activity of HIF-pathway genes, and hypoxia may modulate inflammatory signaling. While it is clear that these molecular pathways function in concert, the physiological consequences of hypoxia-induced inflammation and how hypoxia modulates inflammatory signaling and immune function are not well established. In this review, we summarize known mechanisms of HIF and NF-κB crosstalk and highlight the physiological consequences that can arise from maladaptive hypoxia-induced inflammation. Finally, we discuss what can be learned about adaptive regulation of inflammation under chronic hypoxia by examining adaptive and maladaptive inflammatory phenotypes observed in human populations at high altitude. We aim to provide insight into the time domains of hypoxia-induced inflammation and highlight the importance of hypoxia-induced inflammatory sensitization in immune function, pathologies, and environmental adaptation.
Collapse
Affiliation(s)
| | | | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
16
|
Missaggia BO, Reales G, Cybis GB, Hünemeier T, Bortolini MC. Adaptation and co-adaptation of skin pigmentation and vitamin D genes in native Americans. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:1060-1077. [PMID: 33325159 DOI: 10.1002/ajmg.c.31873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 11/06/2022]
Abstract
We carried out an exhaustive review regarding human skin color variation and how much it may be related to vitamin D metabolism and other photosensitive molecules. We discuss evolutionary contexts that modulate this variability and hypotheses postulated to explain them; for example, a small amount of melanin in the skin facilitates vitamin D production, making it advantageous to have fair skin in an environment with little radiation incidence. In contrast, more melanin protects folate from degradation in an environment with a high incidence of radiation. Some Native American populations have a skin color at odds with what would be expected for the amount of radiation in the environment in which they live, a finding challenging the so-called "vitamin D-folate hypothesis." Since food is also a source of vitamin D, dietary habits should also be considered. Here we argue that a gene network approach provides tools to explain this phenomenon since it indicates potential alleles co-evolving in a compensatory way. We identified alleles of the vitamin D metabolism and pigmentation pathways segregated together, but in different proportions, in agriculturalists and hunter-gatherers. Finally, we highlight how an evolutionary approach can be useful to understand current topics of medical interest.
Collapse
Affiliation(s)
- Bruna Oliveira Missaggia
- Genetics Departament, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guillermo Reales
- Genetics Departament, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela B Cybis
- Statistics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tábita Hünemeier
- Department of Genetics and Evolutionary Biology, Biosciences Institute, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Cátira Bortolini
- Genetics Departament, Biosciences Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
17
|
The genetic structure and adaptation of Andean highlanders and Amazonians are influenced by the interplay between geography and culture. Proc Natl Acad Sci U S A 2020; 117:32557-32565. [PMID: 33277433 DOI: 10.1073/pnas.2013773117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Western South America was one of the worldwide cradles of civilization. The well-known Inca Empire was the tip of the iceberg of an evolutionary process that started 11,000 to 14,000 years ago. Genetic data from 18 Peruvian populations reveal the following: 1) The between-population homogenization of the central southern Andes and its differentiation with respect to Amazonian populations of similar latitudes do not extend northward. Instead, longitudinal gene flow between the northern coast of Peru, Andes, and Amazonia accompanied cultural and socioeconomic interactions revealed by archeology. This pattern recapitulates the environmental and cultural differentiation between the fertile north, where altitudes are lower, and the arid south, where the Andes are higher, acting as a genetic barrier between the sharply different environments of the Andes and Amazonia. 2) The genetic homogenization between the populations of the arid Andes is not only due to migrations during the Inca Empire or the subsequent colonial period. It started at least during the earlier expansion of the Wari Empire (600 to 1,000 years before present). 3) This demographic history allowed for cases of positive natural selection in the high and arid Andes vs. the low Amazon tropical forest: in the Andes, a putative enhancer in HAND2-AS1 (heart and neural crest derivatives expressed 2 antisense RNA1, a noncoding gene related to cardiovascular function) and rs269868-C/Ser1067 in DUOX2 (dual oxidase 2, related to thyroid function and innate immunity) genes and, in the Amazon, the gene encoding for the CD45 protein, essential for antigen recognition by T and B lymphocytes in viral-host interaction.
Collapse
|
18
|
Talaminos-Barroso A, Roa-Romero LM, Ortega-Ruiz F, Cejudo-Ramos P, Márquez-Martín E, Reina-Tosina J. Effects of genetics and altitude on lung function. CLINICAL RESPIRATORY JOURNAL 2020; 15:247-256. [PMID: 33112470 DOI: 10.1111/crj.13300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The aim of this work is to present a review on the impact of genetics and altitude on lung function from classic and recent studies. DATA SOURCE A systematic search has been carried out in different databases of scientific studies, using keywords related to lung volumes, spirometry, altitude and genetics. RESULTS The results of this work have been structured into three parts. First, the relationship between genes and lung function. Next, a review of the genetic predispositions related to respiratory adaptation of people who inhabit high-altitude regions for millennia. Finally, temporary effects and long-term acclimatisation on respiratory physiology at high altitude are presented. CONCLUSIONS The works focused on the influence of genetics and altitude on lung function are currently of interest in terms of studying the interactions between genetic, epigenetic and environmental factors in the configuration of the pathophysiological adaptation patterns.
Collapse
Affiliation(s)
| | | | - Francisco Ortega-Ruiz
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocio, Seville, Spain.,Spanish Networking Center on Biomedical Research, Area of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Pilar Cejudo-Ramos
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocio, Seville, Spain.,Spanish Networking Center on Biomedical Research, Area of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Eduardo Márquez-Martín
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocio, Seville, Spain
| | | |
Collapse
|
19
|
Ziliotto M, Rodrigues RM, Chies JAB. Controlled hypobaric hypoxia increases immunological tolerance by modifying HLA-G expression, a potential therapy to inflammatory diseases. Med Hypotheses 2020; 140:109664. [PMID: 32155542 DOI: 10.1016/j.mehy.2020.109664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022]
Abstract
One of the most striking characteristics of human beings is the incredible capacity to adapt to different environments. This capacity allowed humans to spread all over our planet, occupying habitats as diverse as deserts, tropical forests or tundra regions. Interactions with the environment, climate, food and water availability shaped our evolution and define our survival. Essential to human life, oxygen availability also controls human dispersion and adaptation. For example, low oxygen availability can lead to physiological adaptations in populations living in highlands. Moreover, the consequences of differential oxygen availability (or even exposure to hypoxia) are evident in process as fine-tuned controlled as gene regulation. Physiological responses to fluctuations in oxygen availability are crucial already from the early days of life, since the human fetal environment is characterized by hypoxia. Hypoxia-Inducible Factors (HIFs) act as major regulators of pathways involved in glycolysis, erythropoiesis, angiogenesis, cell proliferation and stem cells function. Here we explore the physiological consequences of hypoxia in the human organism. In this sense, and considering the existence of HIF sequences in promoter regions of genes important to immune regulation, we hypothesize that exposure to induced hypoxia through the use of hypobaric chambers can be used as a complementary therapy to control chronic inflammation in several diseases characterized by systemic inflammatory conditions. Among these inflammatory conditions we highlight autoimmune diseases and chronic inflammation in HIV infected individuals under antiretroviral treatment. Several experiments, including arthritis animal models, the evaluation of athletes that already use hypobaric chambers to induce erythropoiesis, and the potential consequences of hypoxia as an immunotolerogenic inducer in the HIV infection context are approached and discussed here.
Collapse
Affiliation(s)
- Marina Ziliotto
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Raul Marques Rodrigues
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
20
|
Human Genetic Adaptation to High Altitude: Evidence from the Andes. Genes (Basel) 2019; 10:genes10020150. [PMID: 30781443 PMCID: PMC6410003 DOI: 10.3390/genes10020150] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Whether Andean populations are genetically adapted to high altitudes has long been of interest. Initial studies focused on physiological changes in the O₂ transport system that occur with acclimatization in newcomers and their comparison with those of long-resident Andeans. These as well as more recent studies indicate that Andeans have somewhat larger lung volumes, narrower alveolar to arterial O₂ gradients, slightly less hypoxic pulmonary vasoconstrictor response, greater uterine artery blood flow during pregnancy, and increased cardiac O2 utilization, which overall suggests greater efficiency of O₂ transfer and utilization. More recent single nucleotide polymorphism and whole-genome sequencing studies indicate that multiple gene regions have undergone recent positive selection in Andeans. These include genes involved in the regulation of vascular control, metabolic hemostasis, and erythropoiesis. However, fundamental questions remain regarding the functional links between these adaptive genomic signals and the unique physiological attributes of highland Andeans. Well-designed physiological and genome association studies are needed to address such questions. It will be especially important to incorporate the role of epigenetic processes (i.e.; non-sequence-based features of the genome) that are vital for transcriptional responses to hypoxia and are potentially heritable across generations. In short, further exploration of the interaction among genetic, epigenetic, and environmental factors in shaping patterns of adaptation to high altitude promises to improve the understanding of the mechanisms underlying human adaptive potential and clarify its implications for human health.
Collapse
|