1
|
Qiliqiangxin Capsule Modulates Calcium Transients and Calcium Sparks in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9361077. [PMID: 36082183 PMCID: PMC9448542 DOI: 10.1155/2022/9361077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022]
Abstract
Background The therapeutic effects of Qiliqiangxin capsule (QLQX), a Chinese patent medicine, in patients with chronic heart failure are well established. However, whether QLQX modulates cardiac calcium (Ca2+) signals, which are crucial for the heart function, remains unclear. Aim of the Study. This study aimed to evaluate the role of QLQX in modulating Ca2+ signals in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Materials and Methods Fluorescence imaging was used to monitor Ca2+ signals in the cytosol and nuclei of hiPSC-CMs. For Ca2+ spark measurements, the line-scan mode of a confocal microscope was used. Results The QLQX treatment substantially decreased the frequency of spontaneous Ca2+ transients, whereas the amplitude of Ca2+ transients elicited by electrical stimulation did not change. QLQX increased the Ca2+ spark frequency in both the cytosol and nuclei without changing the sarcoplasmic reticulum Ca2+ content. Interestingly, QLQX ameliorated abnormal Ca2+ transients in CMs differentiated from hiPSCs derived from patients with long-QT syndrome. Conclusions Our findings provide the first line of evidence that QLQX directly modulates cardiac Ca2+ signals in a human cardiomyocyte model.
Collapse
|
2
|
Zeng Y, Du X, Yao X, Qiu Y, Jiang W, Shen J, Li L, Liu X. Mechanism of cell death of endothelial cells regulated by mechanical forces. J Biomech 2021; 131:110917. [PMID: 34952348 DOI: 10.1016/j.jbiomech.2021.110917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Cell death of endothelial cells (ECs) is a common devastating consequence of various vascular-related diseases. Atherosclerosis, hypertension, sepsis, diabetes, cerebral ischemia and cardiac ischemia/reperfusion injury, and chronic kidney disease remain major causes of morbidity and mortality worldwide, in which ECs are constantly subjected to a great amount of dynamic changed mechanical forces including shear stress, extracellular matrix stiffness, mechanical stretch and microgravity. A thorough understanding of the regulatory mechanisms by which the mechanical forces controlled the cell deaths including apoptosis, autophagy, and pyroptosis is crucial for the development of new therapeutic strategies. In the present review, experimental and clinical data highlight that nutrient depletion, oxidative stress, tumor necrosis factor-α, high glucose, lipopolysaccharide, and homocysteine possess cytotoxic effects in many tissues and induce apoptosis of ECs, and that sphingosine-1-phosphate protects ECs. Nevertheless, EC apoptosis in the context of those artificial microenvironments could be enhanced, reduced or even reversed along with the alteration of patterns of shear stress. An appropriate level of autophagy diminishes EC apoptosis to some extent, in addition to supporting cell survival upon microenvironment challenges. The intervention of pyroptosis showed a profound effect on atherosclerosis. Further cell and animal studies are required to ascertain whether the alterations in the levels of cell deaths and their associated regulatory mechanisms happen at local lesion sites with considerable mechanical force changes, for preventing senescence and cell deaths in the vascular-related diseases.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoqiang Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Horváth M, Hájek P, Štěchovský C, Honěk J, Veselka J. Carotid artery plaque composition and distribution: near-infrared spectroscopy and intravascular ultrasound analysis. Eur Heart J Suppl 2020; 22:F38-F43. [PMID: 32694952 PMCID: PMC7361666 DOI: 10.1093/eurheartj/suaa097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 11/22/2022]
Abstract
Most atherosclerotic plaques (APs) form in typical predilection areas of low endothelial shear stress (ESS). On the contrary, previous data hinted that plaques rupture in their proximal parts where accelerated blood flow causes high ESS. It was postulated that high ESS plays an important role in the latter stages of AP formation and in its destabilization. Here, we used near-infrared spectroscopy (NIRS) to analyse the distribution of lipid core based on the presumed exposure to ESS. A total of 117 carotid arteries were evaluated using NIRS and intravascular ultrasound (IVUS) prior to carotid artery stenting. The point of minimal luminal area (MLA) was determined using IVUS. A stepwise analysis of the presence of lipid core was then performed using NIRS. The lipid core presence was quantified as the lipid core burden index (LCBI) within 2 mm wide segments both proximally and distally to the MLA. The analysed vessel was then divided into three 20 mm long thirds (proximal, middle, and distal) for further analysis. The maximal value of LCBI (231.9 ± 245.7) was noted in the segment localized just 2 mm proximally to MLA. The mean LCBI in the middle third was significantly higher than both the proximal (121.4 ± 185.6 vs. 47.0 ± 96.5, P < 0.01) and distal regions (121.4 ± 185.6 vs. 32.4 ± 89.6, P < 0.01). Lipid core was more common in the proximal region when compared with the distal region (mean LCBI 47.0 ± 96.5 vs. 32.4 ± 89.6, P < 0.01).
Collapse
Affiliation(s)
- Martin Horváth
- Department of Cardiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Petr Hájek
- Department of Cardiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Cyril Štěchovský
- Department of Cardiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Jakub Honěk
- Department of Cardiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| | - Josef Veselka
- Department of Cardiology, Charles University in Prague, 2nd Faculty of Medicine and Motol University Hospital, V Úvalu 84, 150 06 Prague 5, Czech Republic
| |
Collapse
|
4
|
Zhou Y, Wang J, Meng Z, Zhou S, Peng J, Chen S, Wang Q, Sun K. Pharmacology of Ivabradine and the Effect on Chronic Heart Failure. Curr Top Med Chem 2019; 19:1878-1901. [PMID: 31400267 DOI: 10.2174/1568026619666190809093144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/02/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022]
Abstract
Chronic Heart Failure (CHF) is a complex clinical syndrome with a high incidence worldwide. Although various types of pharmacological and device therapies are available for CHF, the prognosis is not ideal, for which, the control of increased Heart Rate (HR) is critical. Recently, a bradycardic agent, ivabradine, is found to reduce HR by inhibiting the funny current (If). The underlying mechanism states that ivabradine can enter the Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels and bind to the intracellular side, subsequently inhibiting the If. This phenomenon can prolong the slow spontaneous phase in the diastolic depolarization, and thus, reduce HR. The clinical trials demonstrated the significant effects of the drug on reducing HR and improving the symptoms of CHF with fewer adverse effects. This review primarily introduces the chemical features and pharmacological characteristics of ivabradine and the mechanism of treating CHF. Also, some expected therapeutic effects on different diseases were also concluded. However, ivabradine, as a typical If channel inhibitor, necessitates additional research to verify its pharmacological functions.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jian Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhuo Meng
- Department of Pediatric Cardiology, the Second Affiliated Hospital&Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shuang Zhou
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiayu Peng
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Sun Chen
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qingjie Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|