1
|
Ogbu CP, Mandriota AM, Liu X, de Las Alas M, Kapoor S, Choudhury J, Kossiakoff AA, Duffey ME, Vecchio AJ. Biophysical Basis of Paracellular Barrier Modulation by a Pan-Claudin-Binding Molecule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.10.622873. [PMID: 39605593 PMCID: PMC11601404 DOI: 10.1101/2024.11.10.622873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Claudins are a 27-member protein family that form and fortify specialized cell contacts in endothelium and epithelium called tight junctions. Tight junctions restrict paracellular transport across tissues by forming molecular barriers between cells. Claudin-binding molecules thus hold promise for modulating tight junction permeability to deliver drugs or as therapeutics to treat tight junction-linked disease. The development of claudin-binding molecules, however, is hindered by their intractability and small targetable surfaces. Here, we determine that a synthetic antibody fragment (sFab) we developed binds directly to 10 claudin subtypes with nanomolar affinity by targeting claudin's paracellular-exposed surface. Application of this sFab to cells that model intestinal epithelium show that it opens the paracellular barrier comparable to a known, but application limited, tight junction modulator. This novel pan-claudin-binding molecule can probe claudin or tight junction structure and holds potential as a broad modulator of tight junction permeability for basic or translational applications.
Collapse
|
2
|
Zhu X, Shi Z, Mao Y, Lächelt U, Huang R. Cell Membrane Perforation: Patterns, Mechanisms and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310605. [PMID: 38344881 DOI: 10.1002/smll.202310605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Cell membrane is crucial for the cellular activities, and any disruption to it may affect the cells. It is demonstrated that cell membrane perforation is associated with some biological processes like programmed cell death (PCD) and infection of pathogens. Specific developments make it a promising technique to perforate the cell membrane controllably and precisely. The pores on the cell membrane provide direct pathways for the entry and exit of substances, and can also cause cell death, which means reasonable utilization of cell membrane perforation is able to assist intracellular delivery, eliminate diseased or cancerous cells, and bring about other benefits. This review classifies the patterns of cell membrane perforation based on the mechanisms into 1) physical patterns, 2) biological patterns, and 3) chemical patterns, introduces the characterization methods and then summarizes the functions according to the characteristics of reversible and irreversible pores, with the aim of providing a comprehensive summary of the knowledge related to cell membrane perforation and enlightening broad applications in biomedical science.
Collapse
Affiliation(s)
- Xinran Zhu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Ulrich Lächelt
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Rongqin Huang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
3
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
4
|
Waldow A, Beier LS, Arndt J, Schallenberg S, Vollbrecht C, Bischoff P, Farrera-Sal M, Loch FN, Bojarski C, Schumann M, Winkler L, Kamphues C, Ehlen L, Piontek J. cCPE Fusion Proteins as Molecular Probes to Detect Claudins and Tight Junction Dysregulation in Gastrointestinal Cell Lines, Tissue Explants and Patient-Derived Organoids. Pharmaceutics 2023; 15:1980. [PMID: 37514167 PMCID: PMC10385049 DOI: 10.3390/pharmaceutics15071980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Claudins regulate paracellular permeability, contribute to epithelial polarization and are dysregulated during inflammation and carcinogenesis. Variants of the claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) are highly sensitive protein ligands for generic detection of a broad spectrum of claudins. Here, we investigated the preferential binding of YFP- or GST-cCPE fusion proteins to non-junctional claudin molecules. Plate reader assays, flow cytometry and microscopy were used to assess the binding of YFP- or GST-cCPE to non-junctional claudins in multiple in vitro and ex vivo models of human and rat gastrointestinal epithelia and to monitor formation of a tight junction barrier. Furthermore, YFP-cCPE was used to probe expression, polar localization and dysregulation of claudins in patient-derived organoids generated from gastric dysplasia and gastric cancer. Live-cell imaging and immunocytochemistry revealed cell polarity and presence of tight junctions in glandular organoids (originating from intestinal-type gastric cancer and gastric dysplasia) and, in contrast, a disrupted diffusion barrier for granular organoids (originating from discohesive tumor areas). In sum, we report the use of cCPE fusion proteins as molecular probes to specifically and efficiently detect claudin expression, localization and tight junction dysregulation in cell lines, tissue explants and patient-derived organoids of the gastrointestinal tract.
Collapse
Affiliation(s)
- Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Arndt
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Simon Schallenberg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Claudia Vollbrecht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Philip Bischoff
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martí Farrera-Sal
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Florian N Loch
- Department of General and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Christian Bojarski
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Michael Schumann
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Lars Winkler
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin, Germany
| | - Carsten Kamphues
- Park-Klinik Weißensee, Department of General-Visceral and Minimally-Invasive Surgery, 13086 Berlin, Germany
| | - Lukas Ehlen
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| |
Collapse
|
5
|
Jaschke M, Plenge M, Kunkel M, Lehrich T, Schmidt J, Stöckemann K, Heinemann D, Siroky S, Ngezahayo A, Polarz S. Surfactant Semiconductors as Trojan Horses in Cell-Membranes for On-Demand and Spatial Regulation of Oxidative Stress. Adv Healthc Mater 2023; 12:e2202290. [PMID: 36564363 PMCID: PMC11468338 DOI: 10.1002/adhm.202202290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Indexed: 12/25/2022]
Abstract
Oxidative stress is a cause for numerous diseases and aging processes. Thus, researchers are keen to tune the level of intracellular stress and to learn from that. An unusual approach is presented here. The methodology involves multifunctional surfactants. Although their molecular design is nonbiological-a fullerenol head group attached covalently to pi-conjugated dyes-the surfactants possess superior biocompatibility. Using an intrinsic fluorescence signal as a probe, it is shown that the amphiphiles become incorporated into the Caco-2 cells. There, they are able to exhibit additional functions. The compound reduces cellular stress in dark reaction pathways. The antagonistic property is activated under irradiation, the photocatalytic production of reactive oxygen species (ROS), resulting in cell damage. The feature is activated even by near-infrared light (NIR-light) via a two-photon process. The properties as molecular semiconductors lead to a trojan horse situation and allows the programming of the spatial distribution of cytotoxicity.
Collapse
Affiliation(s)
- Marian Jaschke
- Institute for Inorganic ChemistryLeibniz University HannoverCallinstrasse 930167HannoverGermany
| | - Masina Plenge
- Institute for Cell Biology and BiophysicsLeibniz University HannoverHerrenhäuser Str. 230419HannoverGermany
| | - Marius Kunkel
- Department of ChemistryUniversity of KonstanzUniversitaetsstrasse 1078457KonstanzGermany
| | - Tina Lehrich
- Institute for Cell Biology and BiophysicsLeibniz University HannoverHerrenhäuser Str. 230419HannoverGermany
| | - Julia Schmidt
- Institute for Cell Biology and BiophysicsLeibniz University HannoverHerrenhäuser Str. 230419HannoverGermany
| | - Kilian Stöckemann
- Institute of Horticultural Production Systems and the Cluster of Excellence PhoenixDLeibniz University HannoverWelfengarten 130167HannoverGermany
| | - Dag Heinemann
- Institute of Horticultural Production Systems and the Cluster of Excellence PhoenixDLeibniz University HannoverWelfengarten 130167HannoverGermany
| | - Stephan Siroky
- Institute for Inorganic ChemistryLeibniz University HannoverCallinstrasse 930167HannoverGermany
| | - Anaclet Ngezahayo
- Institute for Cell Biology and BiophysicsLeibniz University HannoverHerrenhäuser Str. 230419HannoverGermany
| | - Sebastian Polarz
- Institute for Inorganic ChemistryLeibniz University HannoverCallinstrasse 930167HannoverGermany
| |
Collapse
|
6
|
Bajracharya R, Song JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Seo SH, Park JW, Jeong SH, Lee CH, Han HK. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 2022; 29:1959-1970. [PMID: 35762636 PMCID: PMC9246174 DOI: 10.1080/10717544.2022.2089296] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Conventional chemotherapy lacking target selectivity often leads to severe side effects, limiting the effectiveness of chemotherapy. Therefore, drug delivery systems ensuring both selective drug release and efficient intracellular uptake at the target sites are highly demanded in chemotherapy to improve the quality of life of patients with low toxicity. One of the effective approaches for tumor-selective drug delivery is the adoption of functional ligands that can interact with specific receptors overexpressed in malignant cancer cells. Various functional ligands including folic acid, hyaluronic acid, transferrin, peptides, and antibodies, have been extensively explored to develop tumor-selective drug delivery systems. Furthermore, cell-penetrating peptides or ligands for tight junction opening are also actively pursued to improve the intracellular trafficking of anticancer drugs. Sometimes, multiple ligands with different roles are used in combination to enhance the cellular uptake as well as target selectivity of anticancer drugs. In this review, the current status of various functional ligands applicable to improve the effectiveness of cancer chemotherapy is overviewed with a focus on their roles, characteristics, and preclinical/clinical applications.
Collapse
Affiliation(s)
| | - Jae Geun Song
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | | | - Sang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hye-Mi Noh
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Da-Hyun Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Gyu-Lin Kim
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Soo-Hwa Seo
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Ji-Won Park
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | | | - Chang Hoon Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
7
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
8
|
Uthayanan L, El-Bahrawy M. Potential roles of claudin-3 and claudin-4 in ovarian cancer management. J Egypt Natl Canc Inst 2022; 34:24. [PMID: 35665865 DOI: 10.1186/s43046-022-00125-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ovarian cancer has the highest mortality amongst all gynaecological malignancies, with around two-thirds of patients diagnosed with advanced disease due to late presentation. Furthermore, around 90% of patients develop recurrence and eventually become chemoresistant. Therefore, there is a high demand to identify biomarkers specific to this disease for screening for early detection, as well as new therapeutic targets. Tight junctions (TJs) regulate paracellular permeability and are vital in establishing epithelial cell polarity. One hallmark of tumorigenesis is the loss of TJs, with loss of cell-to-cell adhesion. Claudins are integral TJ membrane proteins, which have been found to play a critical role in maintaining the TJ's barrier function. Furthermore, claudin-3 (CLDN3) and claudin-4 (CLDN4) are overexpressed in ovarian cancer. This article aims to explore the biological role of CLDN3 and CLDN4 and their potential in different aspects of the management of ovarian cancer. MAIN BODY CLDN3 and CLDN4 have been shown to be effective markers for the early detection of ovarian cancer. Whilst there is difficulty in screening for both claudins in serum, their assessment by gene expression analysis and immunohistochemical methods shows promising potential as diagnostic and prognostic biomarkers for ovarian cancer. The localisation and overexpression of claudins, such as CLDN3, have been shown to correlate with poorer survival outcomes. The added value of combining claudins with other markers such as CA125 for diagnosis has also been highlighted. Therapeutically, CLDN3 and more so CLDN4 have been shown to be effective targets of Clostridium perfringens enterotoxin (CPE). Interestingly, CPE has also been shown to resensitise chemoresistant tumours to therapy. CONCLUSIONS This review presents the diagnostic and prognostic potential of CLDN3 and CLDN4 and their emerging role as therapeutic targets in ovarian cancer. Clinical trials are required to validate the promising results of the in vitro and in vivo studies for CLDN3 and CLDN4, possibly adding onto current ovarian cancer management.
Collapse
Affiliation(s)
- Leshanth Uthayanan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Mona El-Bahrawy
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK.
- Department of Pathology, Alexandria Faculty of Medicine, Alexandria, Egypt.
| |
Collapse
|
9
|
Eroglu E, Yen CYT, Tsoi YL, Witman N, Elewa A, Joven Araus A, Wang H, Szattler T, Umeano CH, Sohlmér J, Goedel A, Simon A, Chien KR. Epicardium-derived cells organize through tight junctions to replenish cardiac muscle in salamanders. Nat Cell Biol 2022; 24:645-658. [PMID: 35550612 PMCID: PMC9106584 DOI: 10.1038/s41556-022-00902-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The contribution of the epicardium, the outermost layer of the heart, to cardiac regeneration has remained controversial due to a lack of suitable analytical tools. By combining genetic marker-independent lineage-tracing strategies with transcriptional profiling and loss-of-function methods, we report here that the epicardium of the highly regenerative salamander species Pleurodeles waltl has an intrinsic capacity to differentiate into cardiomyocytes. Following cryoinjury, CLDN6+ epicardium-derived cells appear at the lesion site, organize into honeycomb-like structures connected via focal tight junctions and undergo transcriptional reprogramming that results in concomitant differentiation into de novo cardiomyocytes. Ablation of CLDN6+ differentiation intermediates as well as disruption of their tight junctions impairs cardiac regeneration. Salamanders constitute the evolutionarily closest species to mammals with an extensive ability to regenerate heart muscle and our results highlight the epicardium and tight junctions as key targets in efforts to promote cardiac regeneration.
Collapse
Affiliation(s)
- Elif Eroglu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Christopher Y T Yen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yat-Long Tsoi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed Elewa
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heng Wang
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tamara Szattler
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chimezie H Umeano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Gene Therapy, Lunds Universitet, Lund, Sweden
| | - Jesper Sohlmér
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Goedel
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Disruption of Claudin-Made Tight Junction Barriers by Clostridium perfringens Enterotoxin: Insights from Structural Biology. Cells 2022; 11:cells11050903. [PMID: 35269525 PMCID: PMC8909277 DOI: 10.3390/cells11050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Claudins are a family of integral membrane proteins that enable epithelial cell/cell interactions by localizing to and driving the formation of tight junctions. Via claudin self-assembly within the membranes of adjoining cells, their extracellular domains interact, forming barriers to the paracellular transport of small molecules and ions. The bacterium Clostridium perfringens causes prevalent gastrointestinal disorders in mammals by employing an enterotoxin (CpE) that targets claudins. CpE binds to claudins at or near tight junctions in the gut and disrupts their barrier function, potentially by disabling their assembly or via cell signaling means—the mechanism(s) remain unclear. CpE ultimately destroys claudin-expressing cells through the formation of a cytotoxic membrane-penetrating β-barrel pore. Structures obtained by X-ray crystallography of CpE, claudins, and claudins in complex with CpE fragments have provided the structural bases of claudin and CpE functions, revealing potential mechanisms for the CpE-mediated disruption of claudin-made tight junctions. This review highlights current progress in this space—what has been discovered and what remains unknown—toward efforts to elucidate the molecular mechanism of CpE disruption of tight junction barriers. It further underscores the key insights obtained through structure that are being applied to develop CpE-based therapeutics that combat claudin-overexpressing cancers or modulate tight junction barriers.
Collapse
|
11
|
Khatun S, Appidi T, Rengan AK. The role played by bacterial infections in the onset and metastasis of cancer. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100078. [PMID: 34841367 PMCID: PMC8610348 DOI: 10.1016/j.crmicr.2021.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 02/09/2023] Open
Abstract
Understanding various responses of cells towards change in their external environment, presence of other species and is important in identifying and correlating the mechanisms leading to malignant transformations and cancer development. Although uncovering and comprehending the association between bacteria and cancer is highly challenging, it promises excellent perspectives and approaches for successful cancer therapy. This review introduces various bacterial species, their virulence factors, and their role in cell transformations leading to cancer (particularly gastric, oral, colon, and breast cancer). Bacterial dysbiosis permutates host cells, causes inflammation, and results in tumorigenesis. This review explored bacterial-mediated host cell transformation causing chronic inflammation, immune receptor hyperactivation/absconding immune recognition, and genomic instability. Bacterial infections downregulate E-cadherin, leading to loosening of epithelial tight junction polarity and triggers metastasis. In addition to understanding the role of bacterial infections in cancer development, we have also reviewed the application of bacteria for cancer therapy. The emergence of bacteriotherapy combined with conventional therapies led to new and effective ways of overcoming challenges associated with available treatments. This review discusses the application of bacterial minicells, microswimmers, and outer cell membrane vesicles (OMV) for drug delivery applications.
Collapse
Affiliation(s)
- Sajmina Khatun
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Tejaswini Appidi
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
12
|
Li J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am J Cancer Res 2021; 11:3406-3424. [PMID: 34354852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation, suggesting their promise as biomarkers for diagnosis and prognosis or targets for treatment. Claudin binders (Clostridium perfringens enterotoxin and monoclonal antibody) have been tested in preclinical experiments, and some of them have progressed into clinical trials involving patients with certain cancers. However, the clinical development of many of these agents has not advanced to clinical applications. Herein, I review the current status of preclinical and clinical investigations of agents targeting claudins for diagnosis, prognosis and therapy. I also discuss the potential of combining claudin binders with other currently approved therapeutic agents.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center Mianyang 621000, Sichuan, China
| |
Collapse
|
13
|
Aires A, Maestro D, Ruiz Del Rio J, Palanca AR, Lopez-Martinez E, Llarena I, Geraki K, Sanchez-Cano C, Villar AV, Cortajarena AL. Engineering multifunctional metal/protein hybrid nanomaterials as tools for therapeutic intervention and high-sensitivity detection. Chem Sci 2020; 12:2480-2487. [PMID: 34164014 PMCID: PMC8179251 DOI: 10.1039/d0sc05215a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Protein-based hybrid nanomaterials have recently emerged as promising platforms to fabricate tailored multifunctional biologics for biotechnological and biomedical applications. This work shows a simple, modular, and versatile strategy to design custom protein hybrid nanomaterials. This approach combines for the first time the engineering of a therapeutic protein module with the engineering of a nanomaterial-stabilizing module within the same molecule, resulting in a multifunctional hybrid nanocomposite unachievable through conventional material synthesis methodologies. As the first proof of concept, a multifunctional system was designed ad hoc for the therapeutic intervention and monitoring of myocardial fibrosis. This hybrid nanomaterial combines a designed Hsp90 inhibitory domain and a metal nanocluster stabilizing module resulting in a biologic drug labelled with a metal nanocluster. The engineered nanomaterial actively reduced myocardial fibrosis and heart hypertrophy in an animal model of cardiac remodeling. In addition to the therapeutic effect, the metal nanocluster allowed for in vitro, ex vivo, and in vivo detection and imaging of the fibrotic disease under study. This study evidences the potential of combining protein engineering and protein-directed nanomaterial engineering approaches to design custom nanomaterials as theranostic tools, opening up unexplored routes to date for the next generation of advanced nanomaterials in medicine. Engineering protein-based hybrids by combining protein engineering and nanotechnology: a protein-nanocluster hybrid for theranostic use in myocardial fibrosis shows the potential to create tailored multifunctional biologics for biomedicine.![]()
Collapse
Affiliation(s)
- Antonio Aires
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia-San Sebastián Spain
| | - David Maestro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria Albert Einstein 22 39011 Santander Spain
| | - Jorge Ruiz Del Rio
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria Albert Einstein 22 39011 Santander Spain
| | - Ana R Palanca
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria Albert Einstein 22 39011 Santander Spain .,Departamento de Anatomía y Biología Celular, Universidad de Cantabria Avd. Herrera Oria s/n 39011 Santander Spain
| | - Elena Lopez-Martinez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia-San Sebastián Spain
| | - Irantzu Llarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia-San Sebastián Spain
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus RG20 6RE, UK England
| | - Carlos Sanchez-Cano
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia-San Sebastián Spain
| | - Ana V Villar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria Albert Einstein 22 39011 Santander Spain .,Departamento de Fisiología y Farmacología, Universidad de Cantabria Avd. Herrera Oria s/n 39011 Santander Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 194 20014 Donostia-San Sebastián Spain .,Ikerbasque, Basque Foundation for Science Mª Díaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
14
|
Riesenberg C, Iriarte-Valdez CA, Becker A, Dienerowitz M, Heisterkamp A, Ngezahayo A, Torres-Mapa ML. Probing Ligand-Receptor Interaction in Living Cells Using Force Measurements With Optical Tweezers. Front Bioeng Biotechnol 2020; 8:598459. [PMID: 33282853 PMCID: PMC7705203 DOI: 10.3389/fbioe.2020.598459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023] Open
Abstract
This work probes the binding kinetics of COOH-terminus of Clostridium perfringens enterotoxin (c-CPE) and claudin expressing MCF-7 cells using force spectroscopy with optical tweezers. c-CPE is of high biomedical interest due to its ability to specifically bind to claudin with high affinity as well as reversibly disrupt tight junctions whilst maintaining cell viability. We observed single-step rupture events between silica particles functionalized with c-CPE and MCF-7 cells. Extensive calibration of the optical tweezers' trap stiffness and displacement of the particle from trap center extracted a probable bond rupture force of ≈ 18 pN. The probability of rupture events with c-CPE functionalized silica particles increased by 50% compared to unfunctionalized particles. Additionally, rupture events were not observed when probing cells not expressing claudin with c-CPE coated particles. Overall, this work demonstrates that optical tweezers are invaluable tools to probe ligand-receptor interactions and their potential to study dynamic molecular events in drug-binding scenarios.
Collapse
Affiliation(s)
- Carolin Riesenberg
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Christian Alejandro Iriarte-Valdez
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Annegret Becker
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Maria Dienerowitz
- Single-Molecule Microscopy Group, Jena University Hospital, Jena, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Anaclet Ngezahayo
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Maria Leilani Torres-Mapa
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
15
|
Role of Claudin Proteins in Regulating Cancer Stem Cells and Chemoresistance-Potential Implication in Disease Prognosis and Therapy. Int J Mol Sci 2019; 21:ijms21010053. [PMID: 31861759 PMCID: PMC6982342 DOI: 10.3390/ijms21010053] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Claudins are cell–cell adhesion proteins, which are expressed in tight junctions (TJs), the most common apical cell-cell adhesion. Claudin proteins help to regulate defense and barrier functions, as well as differentiation and polarity in epithelial and endothelial cells. A series of studies have now reported dysregulation of claudin proteins in cancers. However, the precise mechanisms are still not well understood. Nonetheless, studies have clearly demonstrated a causal role of multiple claudins in the regulation of epithelial to mesenchymal transition (EMT), a key feature in the acquisition of a cancer stem cell phenotype in cancer cells. In addition, claudin proteins are known to modulate therapy resistance in cancer cells, a feature associated with cancer stem cells. In this review, we have focused primarily on highlighting the causal link between claudins, cancer stem cells, and therapy resistance. We have also contemplated the significance of claudins as novel targets in improving the efficacy of cancer therapy. Overall, this review provides a much-needed understanding of the emerging role of claudin proteins in cancer malignancy and therapeutic management.
Collapse
|
16
|
Parameters for Optoperforation-Induced Killing of Cancer Cells Using Gold Nanoparticles Functionalized With the C-terminal Fragment of Clostridium Perfringens Enterotoxin. Int J Mol Sci 2019; 20:ijms20174248. [PMID: 31480250 PMCID: PMC6747448 DOI: 10.3390/ijms20174248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, we used a recombinant produced C-terminus (D194-F319) of the Clostridium perfringens enterotoxin (C-CPE) to functionalize gold nanoparticles (AuNPs) for a subsequent specific killing of claudin expressing tumor cells using the gold nanoparticle-mediated laser perforation (GNOME-LP) technique. For a future in vivo application, it will be crucial to know the physical parameters and the biological mechanisms inducing cell death for a rational adaptation of the system to real time situation. Regarding the AuNP functionalization, we observed that a relationship of 2.5 × 10−11 AuNP/mL to 20 µg/mL C-CPE maximized the killing efficiency. Regardingphysical parameters, a laser fluence up to 30 mJ/cm2 increased the killing efficiency. Independent from the applied laser fluence, the maximal killing efficiency was achieved at a scanning velocity of 5 mm/s. In 3D matrigel culture system, the GNOME-LP/C-CPE-AuNP completely destroyed spheroids composed of Caco-2 cells and reduced OE-33 cell spheroid formation. At the biology level, GNOME-LP/C-CPE-AuNP-treated cells bound annexin V and showed reduced mitochondria activity. However, an increased caspase-3/7 activity in the cells was not found. Similarly, DNA analysis revealed no apoptosis-related DNA ladder. The results suggest that the GNOME-LP/C-CPE-AuNP treatment induced necrotic than apoptotic reaction in tumor cells.
Collapse
|
17
|
Gold Nanoparticles and Nanorods in Nuclear Medicine: A Mini Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163232] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the last decade, many innovative nanodrugs have been developed, as well as many nanoradiocompounds that show amazing features in nuclear imaging and/or radiometabolic therapy. Their potential uses offer a wide range of possibilities. It can be possible to develop nondimensional systems of existing radiopharmaceuticals or build engineered systems that combine a nanoparticle with the radiopharmaceutical, a tracer, and a target molecule, and still develop selective nanodetection systems. This review focuses on recent advances regarding the use of gold nanoparticles and nanorods in nuclear medicine. The up-to-date advancements will be shown concerning preparations with special attention on the dimensions and functionalizations that are most used to attain an enhanced performance of gold engineered nanomaterials. Many ideas are offered regarding recent in vitro and in vivo studies. Finally, the recent clinical trials and applications are discussed.
Collapse
|