1
|
Corell-Sierra J, Marquez-Molins J, Marqués MC, Hernandez-Azurdia AG, Montagud-Martínez R, Cebriá-Mendoza M, Cuevas JM, Albert E, Navarro D, Rodrigo G, Gómez G. SARS-CoV-2 remodels the landscape of small non-coding RNAs with infection time and symptom severity. NPJ Syst Biol Appl 2024; 10:41. [PMID: 38632240 PMCID: PMC11024147 DOI: 10.1038/s41540-024-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has significantly impacted global health, stressing the necessity of basic understanding of the host response to this viral infection. In this study, we investigated how SARS-CoV-2 remodels the landscape of small non-coding RNAs (sncRNA) from a large collection of nasopharyngeal swab samples taken at various time points from patients with distinct symptom severity. High-throughput RNA sequencing analysis revealed a global alteration of the sncRNA landscape, with abundance peaks related to species of 21-23 and 32-33 nucleotides. Host-derived sncRNAs, including microRNAs (miRNAs), transfer RNA-derived small RNAs (tsRNAs), and small nucleolar RNA-derived small RNAs (sdRNAs) exhibited significant differential expression in infected patients compared to controls. Importantly, miRNA expression was predominantly down-regulated in response to SARS-CoV-2 infection, especially in patients with severe symptoms. Furthermore, we identified specific tsRNAs derived from Glu- and Gly-tRNAs as major altered elements upon infection, with 5' tRNA halves being the most abundant species and suggesting their potential as biomarkers for viral presence and disease severity prediction. Additionally, down-regulation of C/D-box sdRNAs and altered expression of tinyRNAs (tyRNAs) were observed in infected patients. These findings provide valuable insights into the host sncRNA response to SARS-CoV-2 infection and may contribute to the development of further diagnostic and therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Julia Corell-Sierra
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - María-Carmen Marqués
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | | | - Roser Montagud-Martínez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, 46010, Valencia, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain.
| | - Gustavo Gómez
- Institute for Integrative Systems Biology (I2SysBio), CSIC - University of Valencia, 46980, Paterna, Spain.
| |
Collapse
|
2
|
Marquez‐Molins J, Hernandez‐Azurdia AG, Urrutia‐Perez M, Pallas V, Gomez G. A circular RNA vector for targeted plant gene silencing based on an asymptomatic viroid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:284-293. [PMID: 35916236 PMCID: PMC9804161 DOI: 10.1111/tpj.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Gene silencing for functional studies in plants has been largely facilitated by manipulating viral genomes with inserts from host genes to trigger virus-induced gene silencing (VIGS) against the corresponding mRNAs. However, viral genomes encode multiple proteins and can disrupt plant homeostasis by interfering with endogenous cell mechanisms. To try to circumvent this functional limitation, we have developed a silencing method based on the minimal autonomously-infectious nucleic acids currently known: viroids, which lack proven coding capability. The genome of Eggplant latent viroid, an asymptomatic viroid, was manipulated with insertions ranging between 21 and 42 nucleotides. Our results show that, although larger insertions might be tolerated, the maintenance of the secondary structure appears to be critical for viroid genome stability. Remarkably, these modified ELVd molecules are able to induce systemic infection promoting the silencing of target genes in eggplant. Inspired by the design of artificial microRNAs, we have developed a simple and standardized procedure to generate stable insertions into the ELVd genome capable of silencing a specific target gene. Analogously to VIGS, we have termed our approach viroid-induced gene silencing, and demonstrate that it is a promising tool for dissecting gene functions in eggplant.
Collapse
Affiliation(s)
- Joan Marquez‐Molins
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat Politècnica de ValènciaCPI 8E, Av. de los Naranjos s/n46022ValenciaSpain
| | - Andrea Gabriela Hernandez‐Azurdia
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| | - María Urrutia‐Perez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat Politècnica de ValènciaCPI 8E, Av. de los Naranjos s/n46022ValenciaSpain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas (CSIC) ‐ Universitat de València (UV)Parc Científic, Cat. Agustín Escardino 946980PaternaSpain
| |
Collapse
|
3
|
MicroRNAs Mediated Plant Responses to Salt Stress. Cells 2022; 11:cells11182806. [PMID: 36139379 PMCID: PMC9496875 DOI: 10.3390/cells11182806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 12/17/2022] Open
Abstract
One of the most damaging issues to cultivatable land is soil salinity. While salt stress influences plant growth and yields at low to moderate levels, severe salt stress is harmful to plant growth. Mineral shortages and toxicities frequently exacerbate the problem of salinity. The growth of many plants is quantitatively reduced by various levels of salt stress depending on the stage of development and duration of stress. Plants have developed various mechanisms to withstand salt stress. One of the key strategies is the utilization of microRNAs (miRNAs) that can influence gene regulation at the post-transcriptional stage under different environmental conditions, including salinity. Here, we have reviewed the miRNA-mediated adaptations of various plant species to salt stress and other abiotic variables. Moreover, salt responsive (SR)-miRNAs, their targets, and corresponding pathways have also been discussed. The review article concludes by suggesting that the utilization of miRNAs may be a vital strategy to generate salt tolerant crops ensuring food security in the future.
Collapse
|
4
|
Wu X, Ma Y, Wu J, Wang P, Zhang Z, Xie R, Liu J, Fan B, Wei W, Nie LZ, Liu X. Identification of microRNAs and their target genes related to the accumulation of anthocyanin in purple potato tubers ( Solanum tuberosum). PLANT DIRECT 2022; 6:e418. [PMID: 35865074 PMCID: PMC9289217 DOI: 10.1002/pld3.418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) are types of endogenous non-coding small RNAs found in eukaryotes that are 18-25 nucleotides long. miRNAs are considered to be key regulatory factors of the expression of target mRNA. The roles of miRNAs involved in the regulation of anthocyanin accumulation in pigmented potatoes have not been systematically reported. In this study, the differentially expressed miRNAs and their target genes involved in the accumulation of anthocyanin during different developmental stages in purple potato (Solanum tuberosum L.) were identified using small RNA (sRNA) and degradome sequencing. A total of 275 differentially expressed miRNAs were identified in the sRNA libraries. A total of 69,387,200 raw reads were obtained from three degradome libraries. The anthocyanin responsive miRNA-mRNA modules were analyzed, and 37 miRNAs and 23 target genes were obtained. Different miRNAs regulate the key enzymes of anthocyanin synthesis in purple potato. The structural genes included phenylalanine ammonia lyase, chalcone isomerase, flavanone 3-hydroxylase, and anthocyanidin 3-O-glucosyltransferase. The regulatory genes included WD40, MYB, and SPL9. stu-miR172e-5p_L-1R-1, stu-miR828a, stu-miR29b-4-5p, stu-miR8019-5p_L-4R-3, stu-miR396b-5p, stu-miR5303f_L-7R + 2, stu-miR7997a_L-3, stu-miR7997b_L-3, stu-miR7997c_L + 3R-5_2ss2TA3AG, stu-miR156f-5p_L + 1, stu-miR156a, stu-miR156a_R-1, stu-miR156e, stu-miR858, stu-miR5021, stu-miR828 and their target genes were validated by qRT-PCR. They play important roles in the coloration and accumulation of purple potatoes. These results provide new insights into the biosynthesis of anthocyanins in pigmented potatoes.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| | - Yanhong Ma
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| | - Juan Wu
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| | - Peijie Wang
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| | - Zhicheng Zhang
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
- Wulanchabu Academy of Agricultural and Forest SciencesWulanchabuChina
| | - Rui Xie
- Inner Mongolia Academy of Agricultural & Animal Husbandry SciencesHohhotChina
| | - Jie Liu
- HuaSong Seed Industry (Beijing) co. LTDBeijingChina
| | - Bobo Fan
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| | - Wei Wei
- HuaSong Seed Industry (Beijing) co. LTDBeijingChina
| | - Li Zhen Nie
- Inner Mongolia Academy of Agricultural & Animal Husbandry SciencesHohhotChina
| | - Xuting Liu
- Agricultural CollegeInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
5
|
Abbas A, Shah AN, Tanveer M, Ahmed W, Shah AA, Fiaz S, Waqas MM, Ullah S. MiRNA fine tuning for crop improvement: using advance computational models and biotechnological tools. Mol Biol Rep 2022; 49:5437-5450. [PMID: 35182321 DOI: 10.1007/s11033-022-07231-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
MiRNAs modulate target genes expression at post-transcriptional levels, by reducing spatial abundance of mRNAs. MiRNAs regulats plant metabolism, and emerged as regulators of plant stress responses. Which make miRNAs promising candidates for fine tuning to affectively alter crop stress tolerance and other important traits. With recent advancements in the computational biology and biotechnology miRNAs structure and target prediction is possible resulting in pin point editing; miRNA modulation can be done by up or down regulating miRNAs using recently available biotechnological tools (CRISPR Cas9, TALENS and RNAi). In this review we have focused on miRNA biogenesis, miRNA roles in plant development, plant stress responses and roles in signaling pathways. Additionally we have discussed latest computational prediction models for miRNA to target gene interaction and biotechnological systems used recently for miRNA modulation. We have also highlighted setbacks and limitations in the way of miRNA modulation; providing entirely a new direction for improvement in plant genomics primarily focusing miRNAs.
Collapse
Affiliation(s)
- Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan.
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| | - Waseem Ahmed
- Department of Horticulture, The University of Haripur, Hatatr Road, Haripur, 22620, Pakistan
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
6
|
Villalba-Bermell P, Marquez-Molins J, Marques MC, Hernandez-Azurdia AG, Corell-Sierra J, Picó B, Monforte AJ, Elena SF, Gomez GG. Combined Stress Conditions in Melon Induce Non-additive Effects in the Core miRNA Regulatory Network. FRONTIERS IN PLANT SCIENCE 2021; 12:769093. [PMID: 34899791 PMCID: PMC8656716 DOI: 10.3389/fpls.2021.769093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Climate change has been associated with a higher incidence of combined adverse environmental conditions that can promote a significant decrease in crop productivity. However, knowledge on how a combination of stresses might affect plant development is still scarce. MicroRNAs (miRNAs) have been proposed as potential targets for improving crop productivity. Here, we have combined deep-sequencing, computational characterization of responsive miRNAs and validation of their regulatory role in a comprehensive analysis of response of melon to several combinations of four stresses (cold, salinity, short day, and infection with a fungus). Twenty-two miRNA families responding to double and/or triple stresses were identified. The regulatory role of the differentially expressed miRNAs was validated by quantitative measurements of the expression of the corresponding target genes. A high proportion (ca. 60%) of these families (mainly highly conserved miRNAs targeting transcription factors) showed a non-additive response to multiple stresses in comparison with that observed under each one of the stresses individually. Among those miRNAs showing non-additive response to stress combinations, most interactions were negative, suggesting the existence of functional convergence in the miRNA-mediated response to combined stresses. Taken together, our results provide compelling pieces of evidence that the response to combined stresses cannot be easily predicted from the study individual stresses.
Collapse
Affiliation(s)
- Pascual Villalba-Bermell
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| | - Joan Marquez-Molins
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| | - María-Carmen Marques
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| | - Andrea G. Hernandez-Azurdia
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| | - Julia Corell-Sierra
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| | - Belén Picó
- Instituto de Conservacióny Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Valencia, Spain
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
- The Santa Fe Institute, Santa Fe, NM, United States
| | - Gustavo G. Gomez
- Instituto de Biología Integrativa de Sistemas (ISysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Valencia, Spain
| |
Collapse
|
7
|
Distinct Evolutionary Profiles and Functions of microRNA156 and microRNA529 in Land Plants. Int J Mol Sci 2021; 22:ijms222011100. [PMID: 34681763 PMCID: PMC8541648 DOI: 10.3390/ijms222011100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
MicroRNA156 (miR156) and miR529 have high sequence similarity and recognize overlapping sites in the same target genes, SQUAMOSA promoter binding protein-like (SPL or SBP box) genes, making it difficult to accurately distinguish their roles in regulatory networks that affect numerous biological functions. Here, we collected data about miR156 and miR529 family members from representative land plants and performed sequence comparisons, phylogenetic analysis, small RNA sequencing, and parallel analysis of RNA ends (PARE) analysis to dissect their evolutionary and functional differences. Although miR156 and miR529 are highly similar, there are differences in their mismatch-sensitive regions, which are essential for target recognition. In land plants, miR156 precursors are conserved mainly within the hairpin region, whereas miR529 precursors are conserved outside the hairpin region, including both the 5’ and 3’ arms. Phylogenetic analysis showed that MIR156 and MIR529 evolved independently, through divergent evolutionary patterns. The two genes also exhibit different expression patterns, with MIR529 preferentially expressed in reproductive tissues and MIR156 in other tissues. PARE analysis revealed that miR156 and miR529 possess specific targets in addition to common targets in maize, pointing to functional differences between them. Based on our findings, we developed a method for the rapid identification of miR529 and miR156 family members and uncovered the evolutionary divergence of these families, providing insights into their different regulatory roles in plant growth and development.
Collapse
|
8
|
Anwar A, Kim JK. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. Int J Mol Sci 2020; 21:E2695. [PMID: 32295026 PMCID: PMC7216248 DOI: 10.3390/ijms21082695] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
The recent rapid climate changes and increasing global population have led to an increased incidence of abiotic stress and decreased crop productivity. Environmental stresses, such as temperature, drought, nutrient deficiency, salinity, and heavy metal stresses, are major challenges for agriculture, and they lead to a significant reduction in crop growth and productivity. Abiotic stress is a very complex phenomenon, involving a variety of physiological and biochemical changes in plant cells. Plants exposed to abiotic stress exhibit enhanced levels of ROS (reactive oxygen species), which are highly reactive and toxic and affect the biosynthesis of chlorophyll, photosynthetic capacity, and carbohydrate, protein, lipid, and antioxidant enzyme activities. Transgenic breeding offers a suitable alternative to conventional breeding to achieve plant genetic improvements. Over the last two decades, genetic engineering/transgenic breeding techniques demonstrated remarkable developments in manipulations of the genes for the induction of desired characteristics into transgenic plants. Transgenic approaches provide us with access to identify the candidate genes, miRNAs, and transcription factors (TFs) that are involved in specific plant processes, thus enabling an integrated knowledge of the molecular and physiological mechanisms influencing the plant tolerance and productivity. The accuracy and precision of this phenomenon assures great success in the future of plant improvements. Hence, transgenic breeding has proven to be a promising tool for abiotic stress improvement in crops. This review focuses on the potential and successful applications, recent progress, and future perspectives of transgenic breeding for improving abiotic stress tolerance and productivity in plants.
Collapse
Affiliation(s)
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea;
| |
Collapse
|
9
|
Sanz-Carbonell A, Marques MC, Martinez G, Gomez G. Dynamic architecture and regulatory implications of the miRNA network underlying the response to stress in melon. RNA Biol 2019; 17:292-308. [PMID: 31766933 DOI: 10.1080/15476286.2019.1697487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
miRNAs are small RNAs that regulate mRNAs at both transcriptional and posttranscriptional level. In plants, miRNAs are involved in the regulation of different processes including development and stress-response. Elucidating how stress-responsive miRNAs are regulated is key to understand the global response to stress but also to develop efficient biotechnological tools that could help to cope with stress. Here, we describe a computational approach based on sRNA sequencing, transcript quantification and degradome data to analyse the accumulation, function and structural organization of melon miRNAs reactivated under seven biotic and abiotic stress conditions at two and four days post-treatment. Our pipeline allowed us to identify fourteen stress-responsive miRNAs (including evolutionary conserved such as miR156, miR166, miR172, miR319, miR398, miR399, miR894 and miR408) at both analysed times. According to our analysis miRNAs were categorized in three groups showing a broad-, intermediate- or narrow- response range. miRNAs reactive to a broad range of environmental cues appear as central components in the stress-response network. The strictly coordinated response of miR398 and miR408 (broad response-range) to the seven stress treatments during the period analysed here reinforces this notion. Although both, the amplitude and diversity of the miRNA-related response to stress changes during the exposition time, the architecture of the miRNA-network is conserved. This organization of miRNA response to stress is also conserved in rice and soybean supporting the conservation of miRNA-network organization in other crops. Overall, our work sheds light into how miRNA networks in plants organize and function during stress.
Collapse
Affiliation(s)
- Alejandro Sanz-Carbonell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Paterna, Spain.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Maria Carmen Marques
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Paterna, Spain.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - German Martinez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Paterna, Spain.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Paterna, Spain.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
10
|
Cervera-Seco L, Marques MAC, Sanz-Carbonell A, Marquez-Molins J, Carbonell A, Darï S JA, Gomez G. Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon. PLANT & CELL PHYSIOLOGY 2019; 60:2382-2393. [PMID: 31290971 DOI: 10.1093/pcp/pcz131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/27/2019] [Indexed: 05/27/2023]
Abstract
Small interfering RNAs (siRNA) are key regulators of gene expression that play essential roles in diverse biological processes. Trans-acting siRNAs (tasiRNAs) are a class of plant-endogenous siRNAs that lead the cleavage of nonidentical transcripts. TasiRNAs are usually involved in fine-tuning development. However, increasing evidence supports that tasiRNAs may be involved in stress response. Melon is a crop of great economic importance extensively cultivated in semiarid regions frequently exposed to changing environmental conditions that limit its productivity. However, knowledge of the precise role of siRNAs in general, and of tasiRNAs in particular, in regulating the response to adverse environmental conditions is limited. Here, we provide the first comprehensive analysis of computationally inferred melon-tasiRNAs responsive to two biotic (viroid-infection) and abiotic (cold treatment) stress conditions. We identify two TAS3-loci encoding to length (TAS3-L) and short (TAS3-S) transcripts. The TAS candidates predicted from small RNA-sequencing data were characterized according to their chromosome localization and expression pattern in response to stress. The functional activity of cmTAS genes was validated by transcript quantification and degradome assays of the tasiRNA precursors and their predicted targets. Finally, the functionality of a representative cmTAS3-derived tasiRNA (TAS3-S) was confirmed by transient assays showing the cleavage of ARF target transcripts.
Collapse
Affiliation(s)
- Luis Cervera-Seco
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Marï A Carmen Marques
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Alejandro Sanz-Carbonell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Alberto Carbonell
- Instituto de Biolog�a Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cient�ficas (CSIC) Universitat Polit�cnica de Val�ncia, CPI 8E, Av. de los Naranjos s/n, Valencia, Spain
| | - Josï-Antonio Darï S
- Instituto de Biolog�a Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cient�ficas (CSIC) Universitat Polit�cnica de Val�ncia, CPI 8E, Av. de los Naranjos s/n, Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| |
Collapse
|
11
|
Vargas-Asencio JA, Perry KL. A Small RNA-Mediated Regulatory Network in Arabidopsis thaliana Demonstrates Connectivity Between phasiRNA Regulatory Modules and Extensive Co-Regulation of Transcription by miRNAs and phasiRNAs. FRONTIERS IN PLANT SCIENCE 2019; 10:1710. [PMID: 32082334 PMCID: PMC7001039 DOI: 10.3389/fpls.2019.01710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/05/2019] [Indexed: 05/19/2023]
Abstract
Gene regulation involves the orchestrated action of multiple regulators to fine-tune the expression of genes. Hierarchical interactions and co-regulation among regulators are commonly observed in biological systems, leading to complex regulatory networks. Small RNA (sRNAs) have been shown to be important regulators of gene expression due to their involvement in multiple cellular processes. In plants, microRNA (miRNAs) and phased small interfering RNAs (phasiRNAs) correspond to two well-characterized types of sRNAs involved in the regulation of posttranscriptional gene expression, although information about their targets and interactions with other gene expression regulators is limited. We describe an extended sRNA-mediated regulatory network in Arabidopsis thaliana that provides a reference frame to understand sRNA biogenesis and activity at the genome-wide level. This regulatory network combines a comprehensive evaluation of phasiRNA production and sRNA targets supported by degradome data. The network includes ~17% of genes in the A. thaliana genome, representing ~50% annotated gene ontology (GO) functional categories. Approximately 14% of genes with GO annotations corresponding to regulation of gene expression were found to be under sRNA control. The unbiased bioinformatic approach used to produce the network was able to detect 107 PHAS loci (regions of phasiRNA production), 5,047 active phasiRNAs (~70% of which were non-canonical), and reconstruct 17 regulatory modules resulting from complex regulatory interactions between different sRNA-regulatory pathways. Known regulatory modules like miR173-TAS-PPR/TPR and miR390-TAS3-ARF/F-box were faithfully reconstructed and expanded, illustrating the accuracy and sensitivity of the methods and providing confidence for the validity of findings of previously unrecognized modules. The network presented here includes a 2X increase in the number of identified PHAS loci, a large complement (~70%) of non-canonical phasiRNAs, and the most comprehensive evaluation of sRNA cleavage activity in A. thaliana to date. Structural analysis showed similarities to networks of other biological systems and demonstrated connectivity between phasiRNA regulatory modules with extensive co-regulation of transcripts by miRNAs and phasiRNAs. The described regulatory network provides a reference that will facilitate global analyses of individual plant regulatory programs such as those that control homeostasis, development, and responses to biotic and abiotic environmental changes.
Collapse
|