1
|
Kang J, Li F, Xu Z, Chen X, Sun M, Li Y, Yang X, Guo L. How Amorphous Nanomaterials Enhanced Electrocatalytic, SERS, and Mechanical Properties. JACS AU 2023; 3:2660-2676. [PMID: 37885575 PMCID: PMC10598560 DOI: 10.1021/jacsau.3c00418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
There is ever-growing research interest in nanomaterials because of the unique properties that emerge on the nanometer scale. While crystalline nanomaterials have received a surge of attention for exhibiting state-of-the-art properties in various fields, their amorphous counterparts have also attracted attention in recent years owing to their unique structural features that crystalline materials lack. In short, amorphous nanomaterials only have short-range order at the atomic scale, and their atomic packing lacks long-range periodic arrangement, in which the coordinatively unsaturated environment, isotropic atomic structure, and modulated electron state all contribute to their outstanding performance in various applications. Given their intriguing characteristics, we herein present a series of representative works to elaborate on the structural advantages of amorphous nanomaterials as well as their enhanced electrocatalytic, surface-enhanced Raman scattering (SERS), and mechanical properties, thereby elucidating the underlying structure-function relationship. We hope that this proposed relationship will be universally applicable, thus encouraging future work in the design of amorphous materials that show promising performance in a wide range of fields.
Collapse
Affiliation(s)
- Jianxin Kang
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Fengshi Li
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
- Research
Institute for Frontier Science, Beihang
University, Beijing 100191, China
| | - Ziyan Xu
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Xiangyu Chen
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Mingke Sun
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Yanhong Li
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Xiuyi Yang
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Lin Guo
- School
of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering,
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Engineering of Novel Fe-Based Bulk Metallic Glasses Using a Machine Learning-Based Approach. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05966-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|