1
|
Gao YP, Shi DX, Li YH, He XZ, Wang XY, Lin K, Zheng XL. Development of Biphasic Culture System for an Entomopathogenic Fungus Beauveria bassiana PfBb Strain and Its Virulence on a Defoliating Moth Phauda flammans (Walker). J Fungi (Basel) 2025; 11:202. [PMID: 40137240 PMCID: PMC11943346 DOI: 10.3390/jof11030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Beauveria bassiana PfBb is a new strain with high host specificity to the target pest Phauda flammans. We conducted a series of experiments to optimize the biphasic fermentation system of B. bassiana PfBb by screening the medium compositions and fermentation environmental conditions in both liquid and solid fermentations. In the liquid fermentation, glucose and yeast extract with a C:N ratio of 17:1 were the optimal carbon and nitrogen sources, respectively, for B. bassiana PfBb mycelium growth and blastospore production, and liquid fermentation with an inoculation concentration of 1 × 108/mL and an inoculum content of 50 mL conidial suspension, at 180 rpm/min rotation speed, pH 7 and 26 °C, favored mycelium growth. However, additional trace elements did not significantly improve liquid fermentation. In the solid fermentation, wheat bran and chaff at a ratio of 8:2 were identified as the best substrates that facilitated B. bassiana PfBb sporulation and conidial germination, and optimal substrates with 20% inoculum content, 50% water content, and 3-day fermentation in darkness had the highest conidia yield. The resulting conidia, stored at -20, 4, and 20 °C for one year, did not significantly change the water content, and with prolonged storage duration, conidial germination was significantly higher at -20 and 4 °C. Moreover, conidia stored at 4 °C for one year maintained its validity and virulence, which were toxic to all instar larvae of P. flammans. Our results provide essential support for the commercial production of B. bassiana PfBb-based biopesticides.
Collapse
Affiliation(s)
- Yi-Ping Gao
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| | - De-Xiang Shi
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| | - Yuan-Hao Li
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| | - Xiong Zhao He
- School of Agriculture and Environment, Massey University, Private Bag, Palmerston North 4410, New Zealand;
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| | - Kai Lin
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China; (Y.-P.G.); (D.-X.S.); (Y.-H.L.); (X.-Y.W.); (K.L.)
| |
Collapse
|
2
|
Belardi I, De Francesco G, Alfeo V, Bravi E, Sileoni V, Marconi O, Marrocchi A. Advances in the valorization of brewing by-products. Food Chem 2025; 465:141882. [PMID: 39541688 DOI: 10.1016/j.foodchem.2024.141882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Beer is the most consumed alcoholic beverage worldwide, and its production involves the generation of a huge volume of by-products (i.e., spent grain, spent hop, and spent yeast). This review aims to highlight the main properties of these by-products as a valuable source of biomolecules (i.e., proteins, cellulose, hemicellulose, lignin, phenolic compounds, and lipids) and the biorefining methods used in the last decade for their valorization. The pros and cons of the technologies employed will be shown, highlighting which of them could be more ready for the transition to an industrial scale, and which applications (e.g., food and feed, bioenergy, biochemicals, and biomaterials) are the most feasible.
Collapse
Affiliation(s)
- Ilary Belardi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Giovanni De Francesco
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy
| | - Vincenzo Alfeo
- Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy
| | - Elisabetta Bravi
- Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy
| | - Valeria Sileoni
- Universitas Mercatorum, Piazza Mattei, 10, 00186 Rome, Italy
| | - Ombretta Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; Italian Brewing Research Centre (CERB), University of Perugia, 06126 Perugia, Italy.
| | - Assunta Marrocchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
3
|
Gutierrez A, Rébufa C, Farnet Da Silva AM, Davidson S, Foli L, Combet-Blanc Y, Martinez M, Christen P. Biochemical and microbial characterization of a forest litter-based bio-fertilizer produced in batch culture by fermentation under different initial oxygen concentrations. World J Microbiol Biotechnol 2024; 40:353. [PMID: 39419849 DOI: 10.1007/s11274-024-04155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
This work focused on the physico-chemical, biochemical and microbiological characterization of a new organic fertilizer based on fermented forest litter (FFL) mixed with agro-industrial by-products, on the culture realized in airtight glass bottle. Under strict anaerobiosis (0% initial oxygen concentration (IOC)), after a 16-day batch culture, the bottle-headspace analysis showed that the specific CO2 production rate was low (0.014 mL/h.g dry matter) compared to those reached under aerobic conditions (e.g. 0.464 mL/h.g dm at 21% IOC). Moreover, the culture displayed a slight fermented fruity odour, mainly due to ethanol and ethyl acetate detected in the headspace (335 µL and 58.6 µL accumulated, respectively). The FFL organic matter degradation followed by infrared spectroscopy and catabolic potential and diversity characterized by BIOLOG® EcoPlates were poor and pH dropped to 4.54. The microbiome's metabolism was oriented toward lactic fermentation with medium acidification, enrichment in lactic acid bacteria (LAB), depletion in fungi and absence of pathogens. By increasing IOC from 0 to 21%, the respirometric activity, and the catabolic potential and diversity increased. However, some enterobacteria were detected above 5% IOC. Ethanol and ethyl acetate decreased strongly with IOC, and aromatics and proteins contained in the solid matrix remained in the culture. This study showed the importance of oxygen on the final product. A 2% IOC was found to ensure an optimal balance between LAB development, preservation of functional catabolic diversity and bio-product free of microbial pathogens.
Collapse
Affiliation(s)
| | - Catherine Rébufa
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Marseille, France
| | | | - Sylvain Davidson
- MIO, Aix Marseille Univ, Univ Toulon, CNRS, IRD, Marseille, France
| | - Lisa Foli
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Marseille, France
| | | | - Martine Martinez
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Marseille, France
| | - Pierre Christen
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Marseille, France.
| |
Collapse
|
4
|
Xie Z, Dan M, Zhao G, Wang D. Recent advances in microbial high-value utilization of brewer's spent grain. BIORESOURCE TECHNOLOGY 2024; 408:131197. [PMID: 39097237 DOI: 10.1016/j.biortech.2024.131197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Mitigating the adverse impacts of agricultural and industrial by-products on human populations and the environment is essential. It is crucial to continually explore methods to upgrade and reengineer these by-products. Brewer's Spent Grain (BSG), the primary by-product of the beer brewing process, constitutes approximately 85% of these by-products. Its high moisture content and rich nutritional profile make BSG a promising candidate for microbial utilization. Consequently, valorizing high-yield, low-cost BSG through microbial fermentation adds significant value. This paper provides a comprehensive overview of two valorization pathways for BSG via microbial processing, tailored to the desired end products: utilizing fermented BSG as a nutritional supplement in human or animal diets, or cultivating edible fungi using BSG as a substrate. The review also explores the microbial fermentation of BSG to produce valuable metabolites, laying a theoretical foundation for its high-value utilization.
Collapse
Affiliation(s)
- Zhengjie Xie
- Yibin Academy of Southwest University, Yibin 644000, China; College of Food Science, Southwest University, Chongqing 400715, China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- Yibin Academy of Southwest University, Yibin 644000, China; College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Kostecki J, Greinert A. Possibility of brewery wastes application to soil as an organic improver of biological and chemical properties. Sci Rep 2024; 14:17198. [PMID: 39060354 PMCID: PMC11282282 DOI: 10.1038/s41598-024-67668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Soil degradation, marked by declining organic matter, threatens global food security. The impact of brewer's spent yeast (BSY) on clay and sand was analysed at varying application rates to assess its effectiveness in improving soil quality. A randomized complete block design with three replicates was employed. One kilogram of soil were mixed with BSY at application rates of 2 t/ha and 5 t/ha. The samples were incubated at 26 °C for 5 months with daily watering. We analysed pH, total nitrogen, organic carbon, total phosphorus, and electrical conductivity (EC); microbial activity (total heterotrophic bacteria, actinobacteria, and fungi) and soil enzyme activity (dehydrogenase, catalase, protease). BSY application improved soil quality, particularly in clay. Clay showed increased in pH, EC, N and C. BSY significantly boosted microbial populations (bacteria, fungi) in clay with a lesser effect in sand. Enzyme activity and a fertility index also improved in BSY-treated clay, while sand displayed increased activity of a different enzyme. Results suggest BSY holds promise as an organic fertilizer, especially for clay soils. Further research is needed to optimize application, understand long-term effects, and evaluate economic feasibility and social acceptance. This study contributes to the search for sustainable, local solutions to improve soil health and agricultural practices.
Collapse
Grants
- UMO2018/29/Z/ST10/02986 NCN, Poland, 71961137011 NSFC, China, 870234 FFG, Austria JPI Urban Europe/China collaboration
- UMO2018/29/Z/ST10/02986 NCN, Poland, 71961137011 NSFC, China, 870234 FFG, Austria JPI Urban Europe/China collaboration
Collapse
Affiliation(s)
- Jakub Kostecki
- University of Zielona Gora, Institute of Environmental Engineering, Zielona Góra, Zielona Góra, Poland.
| | - Andrzej Greinert
- University of Zielona Gora, Institute of Environmental Engineering, Zielona Góra, Zielona Góra, Poland
| |
Collapse
|
6
|
Miché L, Dries A, Ammar IB, Davidson S, Cagnacci L, Combet-Blanc Y, Abecassis V, Penton Fernandez G, Christen P. Changes in chemical properties and microbial communities' composition of a forest litter-based biofertilizer produced through aerated solid-state culture under different oxygen conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33629-8. [PMID: 38755473 DOI: 10.1007/s11356-024-33629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Fermented forest litter (FFL) is a bioproduct used as biofertilizer for several decades in Eastern Asia and Latin America. It is locally handcrafted by farmers in anaerobic conditions by fermenting forest litter added with agricultural by-products such as whey, cereal bran, and molasses. The aim of this study was to characterize the FFL process and product through gas and liquid chromatography analyses. It also provides some highlights on the influence of O2 on this solid-state culture. Under anoxic condition, a maximum CO2 production rate (CDPR) of 0.41 mL/h∙g dry matter (dm) was reached after 8 days. The main volatile organic compounds (VOCs) were ethanol and ethyl acetate, with a production rate profile similar to CDPR. After 21 days of culture, no residual sucrose nor lactose was detected. Lactic and acetic acids reached 58.8 mg/g dm and 10.2 mg/g dm, respectively, ensuring the acidification of the matrix to a final pH of 4.72. A metabarcoding analysis revealed that heterolactic acid bacteria (Lentilactobacillus, Leuconostoc), homolactic acid bacteria (Lactococcus), and yeasts (Saccharomyces, Clavispora) were predominant. Predicted genes in the microbiome confirmed the potential link between detected bacteria and acids and VOCs produced. When O2 was fed to the cultures, final pH reached values up to 8.5. No significant amounts of lactic nor acetic acid were found. In addition, a strong shift in microbial communities was observed, with a predominance of Proteobacteria and molds, among which are potential pathogens like Fusarium species. This suggests that particular care must be brought to maintain anoxic conditions throughout the process.
Collapse
Affiliation(s)
- Lucie Miché
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, Marseille, IRD, France
| | - Alizée Dries
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, Marseille, IRD, France
| | - Inès Ben Ammar
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, Marseille, IRD, France
| | - Sylvain Davidson
- MIO, Aix Marseille Univ, Univ Toulon, CNRS, Marseille, IRD, France
| | - Loris Cagnacci
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, Marseille, IRD, France
| | | | | | | | - Pierre Christen
- IMBE, Aix Marseille Univ, Avignon Univ, CNRS, Marseille, IRD, France.
| |
Collapse
|
7
|
Zhou Q, Feng L. Identification of avaC from Human Gut Microbial Isolates that Converts 5AVA to 2-Piperidone. J Microbiol 2024; 62:367-379. [PMID: 38884693 PMCID: PMC11196342 DOI: 10.1007/s12275-024-00141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 06/18/2024]
Abstract
2-piperidone is a crucial industrial raw material of high-value nylon-5 and nylon-6,5. Currently, a major bottleneck in the biosynthesis of 2-piperidone is the identification of highly efficient 2-piperidone synthases. In this study, we aimed to identify specific strains among 51 human gut bacterial strains capable of producing 2-piperidone and to elucidate its synthetic mechanism. Our findings revealed that four gut bacterial strains, namely Collinsella aerofaciens LFYP39, Collinsella intestinalis LFYP54, Clostridium bolteae LFYP116, and Clostridium hathewayi LFYP18, could produce 2-piperidone from 5-aminovaleric acid (5AVA). Additionally, we observed that 2-piperidone could be synthesized from proline through cross-feeding between Clostridium difficile LFYP43 and one of the four 2-piperidone producing strains, respectively. To identify the enzyme responsible for catalyzing the conversion of 5AVA to 2-piperidone, we utilized a gain-of-function library and identified avaC (5-aminovaleric acid cyclase) in C. intestinalis LFYP54. Moreover, homologous genes of avaC were validated in the other three bacterial strains. Notably, avaC were found to be widely distributed among environmental bacteria. Overall, our research delineated the gut bacterial strains and genes involved in 2-piperidone production, holding promise for enhancing the efficiency of industrial biosynthesis of this compound.
Collapse
Affiliation(s)
- Qiudi Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lihui Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
8
|
Bianco A, Zara G, Garau M, Castaldi P, Atzori AS, Deroma MA, Coronas R, Budroni M. Microbial community assembly and chemical dynamics of raw brewers' spent grain during inoculated and spontaneous solid-state fermentation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:518-527. [PMID: 38134539 DOI: 10.1016/j.wasman.2023.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Solid-state fermentation (SSF) carried out by microbial bioinoculants is an environmentally friendly technology for the sustainable recovery and valorization of agri-food wastes. Particularly, mesophilic SSF processes allows the production of bio-organic fertilizers enriched with beneficial soil microorganisms. However, the establishment of microbial consortia and the interaction with native waste microbiota still require thoughtful investigations. Here, raw brewers' spent grain (BSG), the main waste from the brewing industry, was subjected to two mesophilic SSF processes (maximum temperature of 35 °C) carried out by a multi-kingdom microbial bioinoculant and the BSG spontaneous microbiota. After 90 days, both SSF processes led to stable organic soil amendments, as indicated by the C:N ratio (10.00 ± 1.4), pH (6.66 ± 0.09), and DOC (8.45 ± 1.2 mg/g) values. Additionally, the fermented BSG showed a high nitrogen content (42.2 ± 3.4 mg/Kg) and biostimulating activities towardLepidium sativumseeds. The monitoring of microbial communities by high-throughput sequencing of 16S and ITS rRNA indicated that BSG samples were enriched in microbial genera with interesting agronomic applications (i.e.,Devosia, Paenibacillum, Trichoderma, Mucor, etc.). Microbial cross-kingdom network analyses suggested that the microbial assembly of BSG was significantly influenced by the bioinoculant, despite the inoculated microbial genera being able to persist in BSG samples only the first week of SSF. This suggests that the study of microbial interactions between exogenous microbial inoculants and waste resident microbiota is required to optimize SSF processes aimed at the recovery and valorization of unprocessed wastes.
Collapse
Affiliation(s)
- Angela Bianco
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy; Associated Member of the JRU MIRRI-IT, Italy
| | - Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy; Associated Member of the JRU MIRRI-IT, Italy.
| | - Matteo Garau
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Paola Castaldi
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Alberto S Atzori
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Mario A Deroma
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Roberta Coronas
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy; Associated Member of the JRU MIRRI-IT, Italy
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Sassari, 07100, Italy; Associated Member of the JRU MIRRI-IT, Italy
| |
Collapse
|
9
|
Mattedi A, Sabbi E, Farda B, Djebaili R, Mitra D, Ercole C, Cacchio P, Del Gallo M, Pellegrini M. Solid-State Fermentation: Applications and Future Perspectives for Biostimulant and Biopesticides Production. Microorganisms 2023; 11:1408. [PMID: 37374910 PMCID: PMC10304952 DOI: 10.3390/microorganisms11061408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
With the expansion of the green products market and the worldwide policies and strategies directed toward a green revolution and ecological transition, the demand for innovative approaches is always on the rise. Among the sustainable agricultural approaches, microbial-based products are emerging over time as effective and feasible alternatives to agrochemicals. However, the production, formulation, and commercialization of some products can be challenging. Among the main challenges are the industrial production processes that ensure the quality of the product and its cost on the market. In the context of a circular economy, solid-state fermentation (SSF) might represent a smart approach to obtaining valuable products from waste and by-products. SSF enables the growth of various microorganisms on solid surfaces in the absence or near absence of free-flowing water. It is a valuable and practical method and is used in the food, pharmaceutical, energy, and chemical industries. Nevertheless, the application of this technology in the production of formulations useful in agriculture is still limited. This review summarizes the literature dealing with SSF agricultural applications and the future perspective of its use in sustainable agriculture. The survey showed good potential for SSF to produce biostimulants and biopesticides useful in agriculture.
Collapse
Affiliation(s)
- Alessandro Mattedi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Enrico Sabbi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Beatrice Farda
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Rihab Djebaili
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj 733134, India;
| | - Claudia Ercole
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Paola Cacchio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Maddalena Del Gallo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| | - Marika Pellegrini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy; (A.M.); (E.S.); (B.F.); (R.D.); (C.E.); (P.C.); (M.D.G.)
| |
Collapse
|
10
|
Characterization of Streptomyces Species and Validation of Antimicrobial Activity of Their Metabolites through Molecular Docking. Processes (Basel) 2022. [DOI: 10.3390/pr10102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Finding new antibacterial agents from natural products is urgently necessary to address the growing cases of antibiotic-resistant pathogens. Actinomycetes are regarded as an excellent source of therapeutically important secondary metabolites including antibiotics. However, they have not yet been characterized and explored in great detail for their utility in developing countries such as Nepal. In silico molecular docking in addition to antimicrobial assays have been used to examine the efficacy of chemical scaffolds biosynthesized by actinomycetes. This paper depicts the characterization of actinomycetes based on their morphology, biochemical tests, and partial molecular sequencing. Furthermore, antimicrobial assays and mass spectrometry-based metabolic profiling of isolates were studied. Seventeen actinomycete-like colonies were isolated from ten soil samples, of which three isolates showed significant antimicrobial activities. Those isolates were subsequently identified to be Streptomyces species by partial 16S rRNA gene sequencing. The most potent Streptomyces species_SB10 has exhibited an MIC and MBC of 1.22 μg/mL and 2.44 μg/mL, respectively, against each Staphylococcus aureus and Shigella sonnei. The extract of S. species_SB10 showed the presence of important metabolites such as albumycin. Ten annotated bioactive metabolites (essramycin, maculosin, brevianamide F, cyclo (L-Phe-L-Ala), cyclo (L-Val-L-Phe), cyclo (L-Leu-L-Pro), cyclo (D-Ala-L-Pro), N6, N6-dimethyladenosine, albumycin, and cyclo (L-Tyr-L-Leu)) were molecularly docked against seven antimicrobial target proteins. Studies on binding energy, docking viability, and protein-ligand molecular interactions showed that those metabolites are responsible for conferring antimicrobial properties. These findings indicate that continuous research on the isolation of the Streptomyces species from Nepal could lead to the discovery of novel and therapeutically relevant antimicrobial agents in the future.
Collapse
|
11
|
Zeko-Pivač A, Tišma M, Žnidaršič-Plazl P, Kulisic B, Sakellaris G, Hao J, Planinić M. The Potential of Brewer’s Spent Grain in the Circular Bioeconomy: State of the Art and Future Perspectives. Front Bioeng Biotechnol 2022; 10:870744. [PMID: 35782493 PMCID: PMC9247607 DOI: 10.3389/fbioe.2022.870744] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Brewer’s spent grain (BSG) accounts for approximately 85% of the total mass of solid by-products in the brewing industry and represents an important secondary raw material of future biorefineries. Currently, the main application of BSG is limited to the feed and food industry. There is a strong need to develop sustainable pretreatment and fractionation processes to obtain BSG hydrolysates that enable efficient biotransformation into biofuels, biomaterials, or biochemicals. This paper aims to provide a comprehensive insight into the availability of BSG, chemical properties, and current and potential applications juxtaposed with the existing and emerging markets of the pyramid of bio-based products in the context of sustainable and circular bioeconomy. An economic evaluation of BSG for the production of highly valuable products is presented in the context of sustainable and circular bioeconomy targeting the market of Central and Eastern European countries (BIOEAST region).
Collapse
Affiliation(s)
- Anđela Zeko-Pivač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Marina Tišma
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- *Correspondence: Marina Tišma,
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Pudong, China
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
12
|
Aynalem B, Muleta D, Jida M, Shemekite F, Aseffa F. Biocontrol competence of Beauveria bassiana, Metarhizium anisopliae and Bacillus thuringiensis against tomato leaf miner, Tuta absoluta Meyrick 1917 under greenhouse and field conditions. Heliyon 2022; 8:e09694. [PMID: 35756136 PMCID: PMC9213718 DOI: 10.1016/j.heliyon.2022.e09694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 06/05/2022] [Indexed: 11/30/2022] Open
Abstract
Tomato is one of the most important crops grown under both greenhouse and field conditions throughout the world. Its production is highly challenged by infestation of leaf miner insect, Tuta absoluta Meyrick regardless of excessive insecticide application. The chemical insecticides results insect resistance, environmental pollution, and health problems and there is urgent need for management options such as integrated pest management (IPM) to obviate these problems. Thus, the present study aims to evaluate the effectiveness of single and combination treatments of entomopathogens; Beauveria bassiana, Metarhizium anisopliae, Bacillus thuringeinsis, and an insecticide against T. absoluta under greenhouse and field conditions. Two varieties (Awash and Venes) of tomato for greenhouse experiment and one (Gellila) variety for field experiment were used with Tutan36%SC (insecticide with active ingredient of Chlorphenapyr 36%SC) and untreated plots as positive and negative controls, respectively. The results showed significant leaf and fruit damage reduction in all the treatments. B. bassiana-AAUB03, M. anisopliae-AAUM78, and B. thuringiensis-AAUF6 showed the highest (93.4%, 89.7% and 90.1%) leaf and (93.5%, 94.4% and 95%) fruit protection under greenhouse condition. The combined treatments improved leaf protection efficacy up to 95.3% under field condition. When the entomopathogens were combined with half or quarter reduced concentrations of Tutan36% SC, it showed 94.4% of pest protection. In all the treatments, 72–96% of marketable fruit was obtained as par insecticide treatment scored 85–93%. All the entomopathogens did not cause any adverse effect on the growth of tomato rather improved shoot length, shoot branching, leaf and fruit numbers. Therefore, application of entomopathogens in single, consortium or in combination reduced the recommended concentration of Tutan36%SC to control T. absoluta.
Collapse
Affiliation(s)
- Birhan Aynalem
- Department of Biotechnology, Collage of Natural and Computational Sciences, Debre Markos University, Ethiopia.,Institute of Biotechnology, Addis Ababa University, Ethiopia
| | - Diriba Muleta
- Institute of Biotechnology, Addis Ababa University, Ethiopia
| | - Mulissa Jida
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | | | - Fassil Aseffa
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Ethiopia
| |
Collapse
|
13
|
Quiroga-Cubides G, García-Riaño L, Grijalba-Bernal EP, Espinel C, Cuartas Otálora PE, Guevara EJ, Gómez-Álvarez MI, Cruz Barrera M. Assessment of a potential bioproduct for controlling Cerotoma arcuata tingomariana (Coleoptera: Chrysomelidae). J Appl Microbiol 2022; 133:1063-1077. [PMID: 35598181 DOI: 10.1111/jam.15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
Abstract
AIMS The leaf-feeding pest Cerotoma arcuata tingomariana (Bechyné) (Coleoptera: Chrysomelidae) produces huge economic losses in different crops. This study aimed to produce conidia by semisolid-state fermentation and to establish the insecticidal activity of two formulation prototypes based on a native Beauveria bassiana isolate for controlling this pest. METHODS AND RESULTS A novel fabric-based semisolid-state fermentation strategy for quick and large-scale conidia production was performed and characterized. Conidia were formulated as an emulsifiable concentrate (EC) and a water-dispersible granulate (WG). Afterwards, the mortality of C. a. tingomariana adults was assessed. A conidia concentration of 2.9 x109 conidia cm-2 was obtained after nine days-course fermentation and a yield of 33.4 g kg-1 dry-substrate. CONCLUSIONS The polyester fabric-based fermentation is an efficient technique for producing and collecting B. bassiana spores. Regarding LC90 , the potency analysis showed that the EC was 21-fold more potent than the non-formulated conidia, and ~2.6-fold more potent than the WG. SIGNIFICANCE AND IMPACT OF STUDY A high throughput fermentation based on polyester fabric as support for B. bassiana conidia production and subsequent formulation as an EC comprises a promising strategy for obtaining a bioproduct to control adults of C. a. tingomariana and other Chrysomelidae pests.
Collapse
Affiliation(s)
- Ginna Quiroga-Cubides
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Departamento de Bioproductos, Mosquera, Colombia
| | - Lorena García-Riaño
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Erika P Grijalba-Bernal
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Departamento de Bioproductos, Mosquera, Colombia
| | - Carlos Espinel
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Paola Emilia Cuartas Otálora
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Departamento de Bioproductos, Mosquera, Colombia.,Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Centro de Investigación Tibaitatá, Mosquera, Colombia
| | - Elsa Judith Guevara
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Centro de Investigación La Libertad, Meta, Colombia
| | - Martha Isabel Gómez-Álvarez
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Departamento de Bioproductos, Mosquera, Colombia
| | - Mauricio Cruz Barrera
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Departamento de Bioproductos, Mosquera, Colombia
| |
Collapse
|
14
|
El Sheikha AF, Ray RC. Bioprocessing of Horticultural Wastes by Solid-State Fermentation into Value-Added/Innovative Bioproducts: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2004161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, China
| | - Ramesh C. Ray
- ICAR-Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar, India
- Centre for Food Biology & Environment Studies, Bhubaneswar, India
| |
Collapse
|
15
|
Heenan-Daly D, Coughlan S, Dillane E, Doyle Prestwich B. Volatile Compounds From Bacillus, Serratia, and Pseudomonas Promote Growth and Alter the Transcriptional Landscape of Solanum tuberosum in a Passively Ventilated Growth System. Front Microbiol 2021; 12:628437. [PMID: 34367077 PMCID: PMC8333284 DOI: 10.3389/fmicb.2021.628437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/07/2021] [Indexed: 11/15/2022] Open
Abstract
The interaction of an array of volatile organic compounds (VOCs) termed bacterial volatile compounds (BVCs) with plants is now a major area of study under the umbrella of plant-microbe interactions. Many growth systems have been developed to determine the nature of these interactions in vitro. However, each of these systems have their benefits and drawbacks with respect to one another and can greatly influence the end-point interpretation of the BVC effect on plant physiology. To address the need for novel growth systems in BVC-plant interactions, our study investigated the use of a passively ventilated growth system, made possible via Microbox® growth chambers, to determine the effect of BVCs emitted by six bacterial isolates from the genera Bacillus, Serratia, and Pseudomonas. Solid-phase microextraction GC/MS was utilized to determine the BVC profile of each bacterial isolate when cultured in three different growth media each with varying carbon content. 66 BVCs were identified in total, with alcohols and alkanes being the most abundant. When cultured in tryptic soy broth, all six isolates were capable of producing 2,5-dimethylpyrazine, however BVC emission associated with this media were deemed to have negative effects on plant growth. The two remaining media types, namely Methyl Red-Voges Proskeur (MR-VP) and Murashige and Skoog (M + S), were selected for bacterial growth in co-cultivation experiments with Solanum tuberosum L. cv. ‘Golden Wonder.’ The BVC emissions of Bacillus and Serratia isolates cultured on MR-VP induced alterations in the transcriptional landscape of potato across all treatments with 956 significantly differentially expressed genes. This study has yielded interesting results which indicate that BVCs may not always broadly upregulate expression of defense genes and this may be due to choice of plant-bacteria co-cultivation apparatus, bacterial growth media and/or strain, or likely, a complex interaction between these factors. The multifactorial complexities of observed effects of BVCs on target organisms, while intensely studied in recent years, need to be further elucidated before the translation of lab to open-field applications can be fully realized.
Collapse
Affiliation(s)
- Darren Heenan-Daly
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Simone Coughlan
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
| | - Eileen Dillane
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Barbara Doyle Prestwich
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
16
|
Puligundla P, Mok C. Recent advances in biotechnological valorization of brewers' spent grain. Food Sci Biotechnol 2021; 30:341-353. [PMID: 33868745 DOI: 10.1007/s10068-021-00900-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Brewers' spent grain (BSG) is the most abundant by-product of beer-brewing. BSG is rich in nutrients such as protein, fiber, minerals, and vitamins, and therefore it is conventionally used as low-cost animal feed. On the other hand, alternative utilization of BSG has gained increased attention during recent years due to technological progress in its processing and the emergence of the concept of circular economy. The valorization of BSG through biotechnological approaches is environmentally friendly and sustainable. This review was focused on recent advancements in the conversion of BSG into value-added products, including bioenergy (ethanol, butanol, hydrogen, biodiesel, and biogas), organic acids, enzymes, xylitol, oligosaccharides, and single cell protein, via biotechnological approaches. In addition, the potential applications of BSG as immobilization matrices in bioprocesses have been reviewed.
Collapse
Affiliation(s)
- Pradeep Puligundla
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Republic of Korea
| | - Chulkyoon Mok
- Department of Food Science and Biotechnology, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
17
|
Brewer's Spent Grains-Valuable Beer Industry By-Product. Biomolecules 2020; 10:biom10121669. [PMID: 33322175 PMCID: PMC7764043 DOI: 10.3390/biom10121669] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
The brewing sector is a significant part of the global food industry. Breweries produce large quantities of wastes, including wastewater and brewer’s spent grains. Currently, upcycling of food industry by-products is one of the principles of the circular economy. The aim of this review is to present possible ways to utilize common solid by-product from the brewing sector. Brewer’s spent grains (BSG) is a good material for sorption and processing into activated carbon. Another way to utilize spent grains is to use them as a fuel in raw form, after hydrothermal carbonization or as a feedstock for anaerobic digestion. The mentioned by-products may also be utilized in animal and human nutrition. Moreover, BSG is a waste rich in various substances that may be extracted for further utilization. It is likely that, in upcoming years, brewer’s spent grains will not be considered as a by-product, but as a desirable raw material for various branches of industry.
Collapse
|
18
|
Bianco A, Budroni M, Zara S, Mannazzu I, Fancello F, Zara G. The role of microorganisms on biotransformation of brewers' spent grain. Appl Microbiol Biotechnol 2020; 104:8661-8678. [PMID: 32875363 PMCID: PMC7502439 DOI: 10.1007/s00253-020-10843-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023]
Abstract
Brewers' spent grain (BSG) is the most abundant by-product of brewing. Due to its microbiological instability and high perishability, fresh BSG is currently disposed of as low-cost cattle feed. However, BSG is an appealing source of nutrients to obtain products with high added value through microbial-based transformation. As such, BSG could become a potential source of income for the brewery itself. While recent studies have covered the relevance of BSG chemical composition in detail, this review aims to underline the importance of microorganisms from the stabilization/contamination of fresh BSG to its biotechnological exploitation. Indeed, the evaluation of BSG-associated microorganisms, which include yeast, fungi, and bacteria, can allow their safe use and the best methods for their exploitation. This bibliographical examination is particularly focused on the role of microorganisms in BSG exploitation to (1) produce enzymes and metabolites of industrial interest, (2) supplement human and animal diets, and (3) improve soil fertility. Emerging safety issues in the use of BSG as a food and feed additive is also considered, particularly considering the presence of mycotoxins.Key points• Microorganisms are used to enhance brewers' spent grain nutritional value.• Knowledge of brewers' spent grain microbiota allows the reduction of health risks. Graphical abstract.
Collapse
Affiliation(s)
- Angela Bianco
- Department of Agricultural Science, University of Sassari, Sassari, Italy
| | - Marilena Budroni
- Department of Agricultural Science, University of Sassari, Sassari, Italy.
| | - Severino Zara
- Department of Agricultural Science, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Science, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Science, University of Sassari, Sassari, Italy
| | - Giacomo Zara
- Department of Agricultural Science, University of Sassari, Sassari, Italy
| |
Collapse
|
19
|
Mejias L, Estrada M, Barrena R, Gea T. A novel two-stage aeration strategy for Bacillus thuringiensis biopesticide production from biowaste digestate through solid-state fermentation. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Cerda A, Artola A, Barrena R, Font X, Gea T, Sánchez A. Innovative Production of Bioproducts From Organic Waste Through Solid-State Fermentation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00063] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|