1
|
Liu Z, Xiang C, Zhao X, Aizawa T, Niu R, Zhao J, Guo F, Li Y, Luo W, Liu W, Gu R. Regulation of dynamic spatiotemporal inflammation by nanomaterials in spinal cord injury. J Nanobiotechnology 2024; 22:767. [PMID: 39696584 DOI: 10.1186/s12951-024-03037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/24/2024] [Indexed: 12/20/2024] Open
Abstract
Spinal cord injury (SCI) is a common clinical condition of the central nervous system that can lead to sensory and motor impairment below the injury level or permanent loss of function in severe cases. Dynamic spatiotemporal neuroinflammation is vital to neurological recovery, which is collectively constituted by the dynamic changes in a series of inflammatory cells, including microglia, neutrophils, and astrocytes, among others. Immunomodulatory nanomaterials can readily improve the therapeutic effects and simultaneously overcome various drawbacks associated with treatment, such as the off-target side effects and loss of bioactivity of immune agents during circulation. In this review, we discuss the role of dynamic spatiotemporal inflammation in secondary injuries after SCI, elaborate on the mechanism of action and effect of existing nanomaterials in treating SCI, and summarize the mechanism(s) whereby they regulate inflammation. Finally, the challenges and prospects associated with using nanotechnology to modulate immunotherapy are discussed to provide new insights for future treatment. Deciphering the intricate spatiotemporal mechanisms of neuroinflammation in SCI requires further in-depth studies. Therefore, SCI continues to represent a formidable challenge.
Collapse
Affiliation(s)
- Zeping Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Chunyu Xiang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Xu Zhao
- Department of Orthopedics, Third Military Medical University, Xinqiao Hosp, 83 Xinqiao Main St, Chongqing, 400037, PR China
| | - Toshimi Aizawa
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Renrui Niu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Jianhui Zhao
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Fengshuo Guo
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Yueying Li
- Department of Hand & Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China
| | - Wenqi Luo
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| | - Wanguo Liu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| | - Rui Gu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, PR China.
| |
Collapse
|
2
|
Xu Y, Geng Y, Wang H, Zhang H, Qi J, Li F, Hu X, Chen Y, Si H, Li Y, Wang X, Xu H, Kong J, Cai Y, Wu A, Ni W, Xiao J, Zhou K. Cyclic helix B peptide alleviates proinflammatory cell death and improves functional recovery after traumatic spinal cord injury. Redox Biol 2023; 64:102767. [PMID: 37290302 DOI: 10.1016/j.redox.2023.102767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Necroptosis and pyroptosis, two types of proinflammatory programmed cell death, were recently found to play important roles in spinal cord injury (SCI). Moreover, cyclic helix B peptide (CHBP) was designed to maintain erythropoietin (EPO) activity and protect tissue against the adverse effects of EPO. However, the protective mechanism of CHBP following SCI is still unknown. This research explored the necroptosis- and pyroptosis-related mechanism underlying the neuroprotective effect of CHBP after SCI. METHODS Gene Expression Omnibus (GEO) datasets and RNA sequencing were used to identify the molecular mechanisms of CHBP for SCI. A mouse model of contusion SCI was constructed, and HE staining, Nissl staining, Masson staining, footprint analysis and the Basso Mouse Scale (BMS) were applied for histological and behavioural analyses. qPCR, Western blot analysis, immunoprecipitation and immunofluorescence were utilized to analyse the levels of necroptosis, pyroptosis, autophagy and molecules associated with the AMPK signalling pathway. RESULTS The results revealed that CHBP significantly improved functional restoration, elevated autophagy, suppressed pyroptosis, and mitigated necroptosis after SCI. 3-Methyladenine (3-MA), an autophagy inhibitor, attenuated these beneficial effects of CHBP. Furthermore, CHBP-triggered elevation of autophagy was mediated by the dephosphorylation and nuclear translocation of TFEB, and this effect was due to stimulation of the AMPK-FOXO3a-SPK2-CARM1 and AMPK-mTOR signalling pathways. CONCLUSION CHBP acts as a powerful regulator of autophagy that improves functional recovery by alleviating proinflammatory cell death after SCI and thus might be a prospective therapeutic agent for clinical application.
Collapse
Affiliation(s)
- Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College (Yi jishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haipeng Si
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jianzhong Kong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yuepiao Cai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Planta D, Gerwinn T, Salemi S, Horst M. Neurogenic Lower Urinary Tract Dysfunction in Spinal Dysraphism: Morphological and Molecular Evidence in Children. Int J Mol Sci 2023; 24:ijms24043692. [PMID: 36835106 PMCID: PMC9959703 DOI: 10.3390/ijms24043692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Spinal dysraphism, most commonly myelomeningocele, is the typical cause of a neurogenic lower urinary tract dysfunction (NLUTD) in childhood. The structural changes in the bladder wall in spinal dysraphism already occur in the fetal period and affect all bladder wall compartments. The progressive decrease in smooth muscle and the gradual increase in fibrosis in the detrusor, the impairment of the barrier function of the urothelium, and the global decrease in nerve density, lead to severe functional impairment characterized by reduced compliance and increased elastic modulus. Children present a particular challenge, as their diseases and capabilities evolve with age. An increased understanding of the signaling pathways involved in lower urinary tract development and function could also fill an important knowledge gap at the interface between basic science and clinical implications, leading to new opportunities for prenatal screening, diagnosis, and therapy. In this review, we aim to summarize the evidence on structural, functional, and molecular changes in the NLUTD bladder in children with spinal dysraphism and discuss possible strategies for improved management and for the development of new therapeutic approaches for affected children.
Collapse
Affiliation(s)
- Dafni Planta
- Division of Pediatric Urology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Tim Gerwinn
- Division of Pediatric Urology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
| | - Souzan Salemi
- Laboratory for Urologic Oncology and Stem Cell Therapy, Department of Urology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Maya Horst
- Division of Pediatric Urology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
4
|
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 2023; 19:550-568. [PMID: 35600969 PMCID: PMC9108756 DOI: 10.1016/j.bioactmat.2022.04.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 10/29/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling event accompanied by complicated inflammation-related pathological processes, such as excessive reactive oxygen species (ROS) produced by the infiltrated inflammatory immune cells and released to the extracellular microenvironment, leading to the widespread apoptosis of the neuron cells, glial and oligodendroctyes. In this study, a thioketal-containing and ROS-scavenging hydrogel was prepared for encapsulation of the bone marrow derived mesenchymal stem cells (BMSCs), which promoted the neurogenesis and axon regeneration by scavenging the overproduced ROS and re-building a regenerative microenvironment. The hydrogel could effectively encapsulate BMSCs, and played a remarkable neuroprotective role in vivo by reducing the production of endogenous ROS, attenuating ROS-mediated oxidative damage and downregulating the inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), resulting in a reduced cell apoptosis in the spinal cord tissue. The BMSCs-encapsulated ROS-scavenging hydrogel also reduced the scar formation, and improved the neurogenesis of the spinal cord tissue, and thus distinctly enhanced the motor functional recovery of SCI rats. Our work provides a combinational strategy against ROS-mediated oxidative stress, with potential applications not only in SCI, but also in other central nervous system diseases with similar pathological conditions.
Collapse
|
5
|
Using Network Pharmacology to Systematically Decipher the Potential Mechanisms of Jisuikang in the Treatment of Spinal Cord Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4932153. [PMID: 35265147 PMCID: PMC8898796 DOI: 10.1155/2022/4932153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Objective To identify the potential pharmacological targets of Jisuikang (JSK) for the treatment of spinal cord injury (SCI) using network pharmacology. Methods The bioactive compounds of JSK herbs and their corresponding potential SCI targets were obtained from three traditional Chinese medicine (TCM) databases. SCI-related therapeutic target genes were obtained from the Comparative Toxicogenomics Database and the GeneCards Database. The common target genes between the JSK compounds and SCI-related therapeutic targets were screened using GO/KEGG functional enrichment and protein-protein interaction (PPI) analyses to identify hub genes and their categories of biological function. Gene expression distribution and receiver operating characteristic curve (ROC) analyses were used to identify probable SCI-related target genes. Molecular docking was used to quantify molecular interactions between target genes and the bioactive compounds of JSK. Results A total of 183 JSK bioactive compounds and 197 target genes for the treatment of SCI were screened and assessed. The target genes were enriched primarily in drug metabolism and in inflammation-related biological processes. Ten genes with statistical significance were identified as therapeutic SCI-related target genes of JSK. Molecular docking experiments demonstrated that the proteins of these 10 genes docked with binding energies of less than −5 kcal/mol with the bioactive compounds in JSK. Conclusion This study showed that the anti-SCI effects of JSK may be mediated through numerous bioactive components, multiple gene targets, and inflammation-related pathways and provided potential novel targets for directed therapies for treating SCI. These results provide a foundation for further experimental investigations into treatment options for SCI.
Collapse
|
6
|
Li Y, Ritzel RM, Lei Z, Cao T, He J, Faden AI, Wu J. Sexual dimorphism in neurological function after SCI is associated with disrupted neuroinflammation in both injured spinal cord and brain. Brain Behav Immun 2022; 101:1-22. [PMID: 34954073 PMCID: PMC8885910 DOI: 10.1016/j.bbi.2021.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/29/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022] Open
Abstract
Whereas human spinal cord injury (SCI) is more common in men, the prevalence is growing in women. However, little is known about the effect of biological sex on brain dysfunction and injury mechanisms. To model the highest per capita rate of injury (ages between 16 and 30 years old) in humans, in the present study, young adult or a young/middle-aged male and female C57BL/6 mice were subjected to moderate contusion SCI. When mice were injured at 10-12-week-old, transcriptomic analysis of inflammation-related genes and flow cytometry revealed a more aggressive neuroinflammatory profile in male than females following 3 d SCI, ostensibly driven by sex-specific changes myeloid cell function rather than cell number. Female mice were generally more active at baseline, as evidenced by greater distance traveled in the open field. After SCI, female mice had more favorable locomotor function than male animals. At 13 weeks post-injury, male mice showed poor performance in cognitive and depressive-like behavioral tests, while injured female mice showed fewer deficits in these tasks. However, when injured at 6 months old followed by 8 months post-injury, male mice had considerably less inflammatory activation compared with female animals despite having similar or worse outcomes in affective, cognitive, and motor tasks. Collectively, these findings indicate that sex differences in functional outcome after SCI are associated with the age at onset of injury, as well as disrupted neuroinflammation not only at the site of injury but also in remote brain regions. Thus, biological sex should be considered when designing new therapeutic agents.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Rodney M. Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Zhuofan Lei
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, 21201 USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Cohrs G, Blumenröther AK, Sürie JP, Synowitz M, Held-Feindt J, Knerlich-Lukoschus F. Fetal and perinatal expression profiles of proinflammatory cytokines in the neuroplacodes of rats with myelomeningoceles: A contribution to the understanding of secondary spinal cord injury in open spinal dysraphism. J Neurotrauma 2021; 38:3376-3392. [PMID: 34541905 DOI: 10.1089/neu.2021.0091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular and molecular mechanisms that presumably underlie the progressive functional decline of the myelomeningocele (MMC) placode are not well understood. We previously identified key players in posttraumatic spinal cord injury cascades in human MMC tissues obtained during postnatal repair. In this study we conducted experiments to further investigate these mediators in the prenatal time course under standardized conditions in a retinoic-acid-induced MMC rat model. A retinoic acid MMC model was established using time-dated Sprague-Dawley rats, which were gavage-fed with all-trans retinoic acid (RA; 60 mg/kg) dissolved in olive oil at E10. Control animals received olive oil only. Fetuses from both groups were obtained at E16, E18, E22. The spinal cords (SCs) of both groups were formalin-fixed or snap-frozen. Tissues were screened by real-time RT-PCR for the expression of cytokines and chemokines known to play a role in the lesion cascades of the central nervous system after trauma. MMC placodes exhibited inflammatory cells and glial activation in the later gestational stages. At the mRNA level, IL-1b, TNFa, and TNF-R1 exhibited significant induction at E22. IL1-R1 mRNA was induced significantly at E16 and E22. Double labeling experiments confirmed the costaining of these cytokines and their receptors with Iba1 (i.e., inflammatory cells), Vimentin, and Nestin in different anatomical SC areas and NeuN in ventral horn neurons. CXCL12 mRNA was elevated in control and MMC animals at E16 compared to E18 and E22. CX3CL1 mRNA was lower in MMC tissues than in control tissues on E16. The presented findings contribute to the concept that pathophysiological mechanisms, such as cytokine induction in the neuroplacode, in addition to the "first hit", promote secondary spinal cord injury with functional loss in the late fetal time course. Furthermore, these mediators should be taken into consideration in the development of new therapeutic approaches for open spinal dysraphism.
Collapse
Affiliation(s)
- Gesa Cohrs
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Dept. of Neurosurgery, Arnold-Heller-Straße 3, Kiel, Germany, 24105;
| | - Ann-Kathrin Blumenröther
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Jan-Philip Sürie
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Michael Synowitz
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Janka Held-Feindt
- Universitatsklinikum Schleswig-Holstein Campus Kiel, 15056, Neurosurgery, Kiel, Schleswig-Holstein, Germany;
| | - Friederike Knerlich-Lukoschus
- Universitätsklinikum Schleswig-Holstein, 54186, Neurosurgery, Kiel, Schleswig-Holstein, Germany.,Asklepios Kinderklinik Sankt Augustin, 248587, Pediatric Neurosurgery, Sankt Augustin, Nordrhein-Westfalen, Germany;
| |
Collapse
|
8
|
Zhang H, Yang T. FBXW7alpha Promotes the Recovery of Traumatic Spinal Cord. Curr Mol Med 2021; 20:494-504. [PMID: 31870261 DOI: 10.2174/1566524020666191223164916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND White matter damage and neuronal cell death are incurred by spinal cord injury (SCI). FBXW7α, an important mediator of cell division and growth was investigated to explore its role in repairing the traumatic spinal cord in rats. Underlying mechanisms such as oxidative stress and inflammasomes signaling were also studied. METHODS Spinal cord injury in rats was established by longitudinal surgical incision from the lower to mid-thoracic vertebrae on the backside, followed by 20-g weight placed on the exposed Th12 surface for 30 min. AAV-delivered FBXW7α and -sh-FBXW7α were intrathecally injected into the rat spinal cord. Indices of oxidation, neurotrophic factors, and pyroptosis were measured by Western blot, Elisa, and RT-PCR. RESULTS We found the overexpression of FBXW7α in spinal cord rescue neuronal death triggered by the injury. Specifically, the nutritional condition, oxidative stress, and pyroptosis were improved. A synchronization of BNDF and GDNF expression patterns in various groups indicated the secretion of neurotrophic factors affect the outcome of SCI. The SOD1, CAT, and GSH-px were suppressed after trauma but all restored in response to FBXW7α overexpression. Inflammasomes-activated pyroptosis was incurred after the injury, and relevant biomarkers such as GSDMD, caspase-1, caspase- 11, IL-1β, and IL-18 were down-regulated after the introduction of FBXW7α into the injured cord. Additionally, up-regulating FBXW7α also repaired the mitochondria dysfunction. CONCLUSION Our data indicate FBXW7α probably serves as an important molecular target for the therapy of spinal cord injury.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Trauma Center, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, 222061, China
| | - Tao Yang
- Department of Orthopedics, 4th (Xing Yuan) Hospital of Yulin, Yulin City, Shaanxi Province, 719000, China
| |
Collapse
|
9
|
Gong L, Lv Y, Li S, Feng T, Zhou Y, Sun Y, Mi D. Changes in transcriptome profiling during the acute/subacute phases of contusional spinal cord injury in rats. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1682. [PMID: 33490194 PMCID: PMC7812200 DOI: 10.21037/atm-20-6519] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Spinal cord injuries (SCIs), along with subsequent secondary injuries, often result in irreversible damage to both sensory and motor functions. However, a thorough view of the underlying pathological mechanisms of SCIs, especially in a temporal-spatial manner, is still lacking. Methods To obtain a comprehensive, real-time view of multiple subsets of the cellular mechanisms involved in SCIs, we applied RNA-sequencing technology to characterize the temporal changes in gene expression around the lesion site of contusion SCI in rats. First, we identified the differentially expressed genes (DEGs) in contrast to sham controls at 1, 4, and 7 days post SCI. Through bioinformatics analysis, including Pathway analysis, Gene-act-net, and Pathway-act-net, we screened and verified potential key pathways and genes associated with either the acute or subacute stages of SCI pathology. Results The top three overrepresented pathways were associated with cytokine-cytokine receptor interaction, TNF signaling pathway, and cell cycle at day 1; lysosome, cytokine-cytokine receptor interaction, phagosome at day 4; and phagosome, lysosome, cytokine-cytokine receptor interaction at day 7 post injury. Further, we identified uniquely enriched genes at each time point, such as Ccr1 and Nos2 at day 1; as well as Mgst2, and Pla2g3 at 4 and 7 days post-injury. Conclusions Our pathway analysis suggested a transition from inflammatory responses to multiple forms of cell death processes from the acute to subacute stages of SCI. Further, our results revealed a continuous transformation from a more inflammatory to an apoptotic/self-repairing transcriptome following the time-course of SCIs. Our research provides novel insights into the molecular mechanisms of SCI pathophysiology and identifies potential targets for therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yehua Lv
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Shenglong Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tao Feng
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Yi Zhou
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| | - Yuyu Sun
- Department of Orthopedic, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Daguo Mi
- Department of Orthopedic, Nantong Traditional Chinese Medicine Hospital, Nantong, China
| |
Collapse
|
10
|
Yan W, Liu X, Wang Y, Han S, Wang F, Liu X, Xiao F, Hu G. Identifying Drug Targets in Pancreatic Ductal Adenocarcinoma Through Machine Learning, Analyzing Biomolecular Networks, and Structural Modeling. Front Pharmacol 2020; 11:534. [PMID: 32425783 PMCID: PMC7204992 DOI: 10.3389/fphar.2020.00534] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death and has an extremely poor prognosis. Thus, identifying new disease-associated genes and targets for PDAC diagnosis and therapy is urgently needed. This requires investigations into the underlying molecular mechanisms of PDAC at both the systems and molecular levels. Herein, we developed a computational method of predicting cancer genes and anticancer drug targets that combined three independent expression microarray datasets of PDAC patients and protein-protein interaction data. First, Support Vector Machine–Recursive Feature Elimination was applied to the gene expression data to rank the differentially expressed genes (DEGs) between PDAC patients and controls. Then, protein-protein interaction networks were constructed based on the DEGs, and a new score comprising gene expression and network topological information was proposed to identify cancer genes. Finally, these genes were validated by “druggability” prediction, survival and common network analysis, and functional enrichment analysis. Furthermore, two integrins were screened to investigate their structures and dynamics as potential drug targets for PDAC. Collectively, 17 disease genes and some stroma-related pathways including extracellular matrix-receptor interactions were predicted to be potential drug targets and important pathways for treating PDAC. The protein-drug interactions and hinge sites predication of ITGAV and ITGA2 suggest potential drug binding residues in the Thigh domain. These findings provide new possibilities for targeted therapeutic interventions in PDAC, which may have further applications in other cancer types.
Collapse
Affiliation(s)
- Wenying Yan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xingyi Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Yibo Wang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Shuqing Han
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fan Wang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xin Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fei Xiao
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Ling B, Liao X, Huang Y, Liang L, Jiang Y, Pang Y, Qi G. Identification of prognostic markers of lung cancer through bioinformatics analysis and in vitro experiments. Int J Oncol 2020; 56:193-205. [PMID: 31789390 PMCID: PMC6910184 DOI: 10.3892/ijo.2019.4926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is one of the most common types of cancer worldwide. Understanding the molecular mechanisms underlying the development and progression of lung cancer may improve early diagnosis, treatment and prognosis. The aim of the present study was to examine the pathogenesis of lung cancer and to identify potentially novel biomarkers. Gene expression datasets of patients with lung cancer were obtained from the Gene Expression Omnibus. Genes which were most closely associated with lung cancer (core genes) were screened by weighted gene co‑expression network analysis. In vitro cell based experiments were further utilized to verify the effects of the core genes on the proliferation of lung cancer cells, adhesion between cells and the matrix, and the associated metabolic pathways. Based on WGCNA screening, two gene modules and five core genes closely associated with lung cancer, including immunoglobulin superfamily member 10 (IGSF10) from the turquoise module, and ribonucleotide reductase regulatory subunit M2, protein regulator of cytokinesis 1, kinesin family member (KIF)14 and KIF2C from the brown module were identified as relevant. Survival analysis and differential gene expression analysis showed that there were significant differences in IGSF10 expression levels between the healthy controls and patients with lung cancer. In patients with lung cancer, IGSF10 expression was decreased, and the overall survival time of patients with lung cancer was significantly shortened. An MTT and colony formation assay showed that IGSF10‑knockout significantly increased proliferation of lung cancer cells, and Transwell assays and adhesion experiments further suggested that the adhesion between cells and the matrix was significantly increased in IGSF10‑knockout cells. Gene Set Enrichment Analysis showed that the expression level of IGSF10 was significantly associated with the activation of the integrin‑β1/focal adhesion kinase (FAK) pathway. Western blotting revealed that knockout of IGSF10 resulted in the activation of the integrin‑β1/FAK pathway, as the protein expression levels of integrin‑β1, phosphorylated (p)‑FAK and p‑AKT were significantly upregulated. Activation of the integrin‑β1/FAK pathway, following knockout of IGSF10, affected the proliferation and adhesion of lung cancer cells. Therefore, IGSF10 my serve as a potential prognostic marker of lung cancer.
Collapse
Affiliation(s)
| | | | - Yuanhe Huang
- Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000
| | | | - Yan Jiang
- Medical College, Guangxi University, Nanning, Guangxi 530004
| | - Yaqin Pang
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Guangzi Qi
- College of Public Health and Management, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| |
Collapse
|