1
|
John S, Yuja Vaquiz Y, Nyayapathi N, Kabbani L, Nilam A, Lovell JF, Wilson NA, Yan Y, Mehrmohammadi M. Photoacoustic Imaging for Image-Guided Gastric Tube Placement: Ex Vivo Characterization. SENSORS (BASEL, SWITZERLAND) 2025; 25:1597. [PMID: 40096492 PMCID: PMC11902702 DOI: 10.3390/s25051597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Over 250,000 gastrostomy tubes (G-tubes) are placed annually in the United States. Percutaneous endoscopic gastrostomy (PEG) is the most widely used clinical method for placing G-tubes within the stomach. However, endoscope detectability is limited due to the scattering of light by tissues. Poor organ visibility and low sensitivity of the palpation techniques cause blind needle insertions, which cause colon/liver perforations, abdominal bleeding, and gastric resections. Additionally, imaging artifacts and the poor distinguishability between water-filled tissues make ultrasound (US) imaging-based techniques incompatible with G-tube placement. The risk of ionizing radiation exposure and the confinement of fluoroscopy to radiology suites limits its bedside utility in patients. Considering these limitations, we propose to design a safe, point-of-care integrated US and photoacoustic (PA) imaging system for accurate G-tube placement procedures, for a broad spectrum of patients, and to characterize the system's effectiveness. Our proposed technology utilizes a clinically safe contrast agent and a dual-wavelength approach for precise procedures. Our ex vivo tissue studies indicated that PA imaging accurately differentiates the different organs at specific wavelengths. Our characterization studies revealed that PA imaging could detect lower concentrations of Indocyanine Green (ICG) dye coating the colon wall, minimizing the risk of ICG dye-related toxicity and providing safer G-tube placements.
Collapse
Affiliation(s)
- Samuel John
- Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yeidi Yuja Vaquiz
- Department of Biomedical Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, NY 14627, USA; (Y.Y.V.); (Y.Y.)
| | - Nikhila Nyayapathi
- Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Loay Kabbani
- Vascular Surgery, Henry Ford Health System, Detroit, MI 48202, USA;
| | - Anoop Nilam
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA; (A.N.); (J.F.L.)
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, NY 14260, USA; (A.N.); (J.F.L.)
| | - Nicole A. Wilson
- Departments of Surgery, Pediatrics, & Biomedical Engineering, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Yan Yan
- Department of Biomedical Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, NY 14627, USA; (Y.Y.V.); (Y.Y.)
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, NY 14627, USA; (Y.Y.V.); (Y.Y.)
- Department of Imaging Sciences, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| |
Collapse
|
2
|
John S, Yan Y, Abbasi S, Mehrmohammadi M. Ultrasound and Photoacoustic Imaging for the Guidance of Laser Ablation Procedures. SENSORS (BASEL, SWITZERLAND) 2024; 24:3542. [PMID: 38894332 PMCID: PMC11175072 DOI: 10.3390/s24113542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
The accuracy and efficacy of laser ablation procedures depend on the accurate placement of the laser applicator within the diseased tissue, monitoring the real-time temperature during the ablation procedure, and mapping the extent of the ablated region. Ultrasound (US) imaging has been widely used to guide ablation procedures. While US imaging offers significant advantages for guiding ablation procedures, its limitations include low imaging contrast, angular dependency, and limited ability to monitor the temperature. Photoacoustic (PA) imaging is a relatively new imaging modality that inherits the advantages of US imaging and offers enhanced capabilities for laser-guided ablations, such as accurate, angle-independent tracking of ablation catheters, the potential for quantitative thermometry, and monitoring thermal lesion formation. This work provides an overview of ultrasound-guided procedures and how different US-related artifacts limit their utility, followed by introducing PA as complementary to US as a solution to address the existing limitations and improve ablation outcomes. Furthermore, we highlight the integration of PA-driven features into existing US-guided laser ablation systems, along with their limitations and future outlooks. Integrated US/PA-guided laser ablation procedures can lead to safer and more precise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Mohammad Mehrmohammadi
- Imaging Science, University of Rochester Medical Center, Rochester, NY 14642, USA; (S.J.); (Y.Y.); (S.A.)
| |
Collapse
|
3
|
John S, Hester S, Basij M, Paul A, Xavierselvan M, Mehrmohammadi M, Mallidi S. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. PHOTOACOUSTICS 2023; 32:100533. [PMID: 37636547 PMCID: PMC10448345 DOI: 10.1016/j.pacs.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
In the past decade, photoacoustic (PA) imaging has attracted a great deal of popularity as an emergent diagnostic technology owing to its successful demonstration in both preclinical and clinical arenas by various academic and industrial research groups. Such steady growth of PA imaging can mainly be attributed to its salient features, including being non-ionizing, cost-effective, easily deployable, and having sufficient axial, lateral, and temporal resolutions for resolving various tissue characteristics and assessing the therapeutic efficacy. In addition, PA imaging can easily be integrated with the ultrasound imaging systems, the combination of which confers the ability to co-register and cross-reference various features in the structural, functional, and molecular imaging regimes. PA imaging relies on either an endogenous source of contrast (e.g., hemoglobin) or those of an exogenous nature such as nano-sized tunable optical absorbers or dyes that may boost imaging contrast beyond that provided by the endogenous sources. In this review, we discuss the applications of PA imaging with endogenous contrast as they pertain to clinically relevant niches, including tissue characterization, cancer diagnostics/therapies (termed as theranostics), cardiovascular applications, and surgical applications. We believe that PA imaging's role as a facile indicator of several disease-relevant states will continue to expand and evolve as it is adopted by an increasing number of research laboratories and clinics worldwide.
Collapse
Affiliation(s)
- Samuel John
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Scott Hester
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, Rochester, NY, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
4
|
Basij M, John S, Bustamante D, Kabbani L, Maskoun W, Mehrmohammadi M. Integrated Ultrasound and Photoacoustic-Guided Laser Ablation Theranostic Endoscopic System. IEEE Trans Biomed Eng 2023; 70:67-75. [PMID: 35724291 PMCID: PMC10355465 DOI: 10.1109/tbme.2022.3184495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Advancements in ablation techniques have paved the way towards the development of safer and more effective clinical procedures for treating various maladies such as atrial fibrillation (AF). AF is characterized by rapid, chaotic atrial activation and is commonly treated using radiofrequency applicators or laser ablation catheters. However, the lack of thermal lesion formation and temperature monitoring capabilities in these devices prevents them from measuring the treatment outcome directly. In addition, poor differentiation between healthy and ablated tissues leads to incomplete ablation, which reduces safety and causes complications in patients. Hence, a novel photoacoustic (PA)-guided laser ablation theranostic device was developed around a traditional phased-array endoscope. The proposed technology provides lesion formation, tissue distinguishing, and temperature monitoring capabilities. Our results have validated the lesion monitoring capability of the proposed technology through PA correlation maps. The tissue distinguishing capability of the theranostic device was verified by the measurable differences in the PA signal between pre-and post-ablated mice myocardial tissue. The increase in the PA signal with temperature variations caused by the ablation laser confirmed the ability of the proposed device to provide temperature feedback.
Collapse
Affiliation(s)
- Maryam Basij
- Department of Biomedical Engineering Wayne State University, Detroit, MI, USA
| | - Samuel John
- Department of Biomedical Engineering Wayne State University, Detroit, MI, USA
| | - David Bustamante
- Department of Biomedical Engineering Wayne State University, Detroit, MI, USA
| | - Loay Kabbani
- Department of Vascular Surgery, Henry Ford Health Systems, Detroit, MI, USA
| | - Waddah Maskoun
- Department of Cardiology, Henry Ford Hospital, Detroit, MI, USA
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering at Wayne State University and Scientific member of molecular imaging at Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
5
|
Farnia P, Makkiabadi B, Alimohamadi M, Najafzadeh E, Basij M, Yan Y, Mehrmohammadi M, Ahmadian A. Photoacoustic-MR Image Registration Based on a Co-Sparse Analysis Model to Compensate for Brain Shift. SENSORS 2022; 22:s22062399. [PMID: 35336570 PMCID: PMC8954240 DOI: 10.3390/s22062399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022]
Abstract
Brain shift is an important obstacle to the application of image guidance during neurosurgical interventions. There has been a growing interest in intra-operative imaging to update the image-guided surgery systems. However, due to the innate limitations of the current imaging modalities, accurate brain shift compensation continues to be a challenging task. In this study, the application of intra-operative photoacoustic imaging and registration of the intra-operative photoacoustic with pre-operative MR images are proposed to compensate for brain deformation. Finding a satisfactory registration method is challenging due to the unpredictable nature of brain deformation. In this study, the co-sparse analysis model is proposed for photoacoustic-MR image registration, which can capture the interdependency of the two modalities. The proposed algorithm works based on the minimization of mapping transform via a pair of analysis operators that are learned by the alternating direction method of multipliers. The method was evaluated using an experimental phantom and ex vivo data obtained from a mouse brain. The results of the phantom data show about 63% improvement in target registration error in comparison with the commonly used normalized mutual information method. The results proved that intra-operative photoacoustic images could become a promising tool when the brain shift invalidates pre-operative MRI.
Collapse
Affiliation(s)
- Parastoo Farnia
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417653761, Iran; (P.F.); (B.M.); (E.N.)
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran
| | - Bahador Makkiabadi
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417653761, Iran; (P.F.); (B.M.); (E.N.)
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran
| | - Maysam Alimohamadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran;
| | - Ebrahim Najafzadeh
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417653761, Iran; (P.F.); (B.M.); (E.N.)
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.B.); (Y.Y.)
| | - Yan Yan
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.B.); (Y.Y.)
| | - Mohammad Mehrmohammadi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; (M.B.); (Y.Y.)
- Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
- Correspondence: (M.M.); (A.A.)
| | - Alireza Ahmadian
- Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran 1417653761, Iran; (P.F.); (B.M.); (E.N.)
- Research Centre of Biomedical Technology and Robotics (RCBTR), Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran 1419733141, Iran
- Correspondence: (M.M.); (A.A.)
| |
Collapse
|
6
|
Li J, Shang C, Rong Y, Sun J, Cheng Y, He B, Wang Z, Li M, Ma J, Fu B, Ji X. Review on Laser Technology in Intravascular Imaging and Treatment. Aging Dis 2022; 13:246-266. [PMID: 35111372 PMCID: PMC8782552 DOI: 10.14336/ad.2021.0711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022] Open
Abstract
Blood vessels are one of the most essential organs, which nourish all tissues in our body. Once there are intravascular plaques or vascular occlusion, other organs and circulatory systems will not work properly. Therefore, it is necessary to detect abnormal blood vessels by intravascular imaging technologies for subsequent vascular treatment. The emergence of lasers and fiber optics promotes the development of intravascular imaging and treatment. Laser imaging techniques can obtain deep vascular images owing to light scattering and absorption properties. Moreover, photothermal and photomechanical effects of laser make it possible to treat vascular diseases accurately. In this review, we present the research progress and applications of laser techniques in intravascular imaging and treatment. Firstly, we introduce intravascular optical coherent tomography and intravascular photoacoustic imaging, which can obtain various information of plaques. Multimodal intravascular imaging techniques provide more information about intravascular plaques, which have an essential influence on intravascular imaging. Secondly, two laser techniques including laser angioplasty and endovenous laser ablation are discussed for the treatment of arterial and venous diseases, respectively. Finally, the outlook of laser techniques in blood vessels, as well as the integration of laser imaging and treatment are prospected in the section of discussions.
Collapse
Affiliation(s)
- Jing Li
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Ce Shang
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yao Rong
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
- Medical Engineering Devices of Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jingxuan Sun
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Yuan Cheng
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Boqu He
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Zihao Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Ming Li
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Ma
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
| | - Bo Fu
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.
- Key Laboratory of Big Data-Based Precision Medicine Ministry of Industry and Information Technology, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.
| | - Xunming Ji
- BUAA-CCMU Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Neurosurgery Department of Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Yan Y, John S, Shaik T, Patel B, Lam MT, Kabbani L, Mehrmohammadi M. Photoacoustic-guided endovenous laser ablation: Characterization and in vivo canine study. PHOTOACOUSTICS 2021; 24:100298. [PMID: 34504765 PMCID: PMC8416949 DOI: 10.1016/j.pacs.2021.100298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 05/28/2023]
Abstract
Endovenous laser ablation (EVLA) is a minimally invasive surgical procedure, often guided by ultrasound (US) imaging, for treating venous insufficiencies. US imaging limitations in accurately visualizing the catheter and the lack of a temperature monitoring system can lead to sub-optimal outcomes. An integrated photoacoustic (PA)-guided EVLA system has been previously developed and reported to overcome the shortcomings of US-guided procedure. In this study, we further characterized the system and tested the in vivo utility. In addition, PA thermometry was further explored by compensating the variation of PA signal with temperature with respect to the temperature-dependent absorption of blood and water. In vivo imaging results indicated that the PA-guided EVLA system can provide high contrast and accurate images of the ablation catheter tip overlaid on US images of the background tissue. Additionally, absorption-compensated PA signal amplitudes over a relevant range of temperature were measured and demonstrated.
Collapse
Affiliation(s)
- Yan Yan
- Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Samuel John
- Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Tanyeem Shaik
- Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Bijal Patel
- Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Mai T. Lam
- Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Loay Kabbani
- Vascular Surgery, Henry Ford Health System, MI, United States
| | - Mohammad Mehrmohammadi
- Biomedical Engineering, Wayne State University, Detroit, MI, United States
- Barbara Ann Karmanos Cancer Institute, MI, United States
| |
Collapse
|
8
|
Yan Y, Hernandez-Andrade E, Basij M, Alshahrani SS, Kondle S, Brown BO, Gelovani J, Hassan S, Hsu CD, Mehrmohammadi M. Endocavity ultrasound and photoacoustic system for fetal and maternal imaging: design, implementation, and ex-vivo validation. J Med Imaging (Bellingham) 2021; 8:066001. [PMID: 34778491 DOI: 10.1117/1.jmi.8.6.066001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/22/2021] [Indexed: 11/14/2022] Open
Abstract
Purpose: Transvaginal ultrasound (TVUS) is a widely used real-time and non-invasive imaging technique for fetal and maternal care. It can provide structural and functional measurements about the fetal brain, such as blood vessel diameter and blood flow. However, it lacks certain biochemical estimations, such as hemoglobin oxygen saturation ( SO 2 ), which limits its ability to indicate a fetus at risk of birth asphyxia. Photoacoustic (PA) imaging has been steadily growing in recognition as a complement to ultrasound (US). Studies have shown PA imaging is capable of providing such biochemical estimations as SO 2 at relatively high penetration depth (up to 30 mm). Approach: In this study, we have designed and developed a multi-modal (US, PA, and Doppler) endocavity imaging system (ECUSPA) around a commercialized TVUS probe (Philips ATL C9-5). Results: The integrated system was evaluated through a set of in-vitro, ex-vivo, and in-vivo studies. Imaging of excised sheep brain tissue demonstrated the system's utility and penetration depth in transfontanelle imaging conditions. The accuracy of using the spectroscopic PA imaging (sPA) method to estimate SO 2 was validated by comparing sPA oximetry results with the gold standard measurements indicated by a blood gas analyzer. The ability of US and Doppler to measure moving blood volume was evaluated in-vivo. Spectral unmixing capabilities were tested using fluorophores within sheep brains. Conclusion: The developed system is a high resolution (about 200 μ m at 30 mm depth), real-time (at 30 Hz), and quantitative ( SO 2 estimation error < 10 % ) imaging tool with a total diameter less than 30 mm, making it suitable for intrapartum applications such as fetal and maternal diagnostics.
Collapse
Affiliation(s)
- Yan Yan
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Edgar Hernandez-Andrade
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, U.S. Department of Health and Human Services, Detroit, Michigan, United States.,University of Texas, McGovern Medical School, Health Science Center at Houston (UTHealth), Department of Obstetrics and Gynecology and Reproductive Sciences, Houston, Texas, United States
| | - Maryam Basij
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Suhail S Alshahrani
- King Saud University, Department of Biomedical Technology, Riyadh, Kingdom of Saudi Arabia
| | - Sirisha Kondle
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Barrington O Brown
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Juri Gelovani
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Sonia Hassan
- Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, United States.,Wayne State University School of Medicine, Department of Physiology, Detroit, Michigan, United States.,Wayne State University School of Medicine, Office of Women's Health, Detroit, Michigan, United States
| | - Chaur-Dong Hsu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, U.S. Department of Health and Human Services, Detroit, Michigan, United States
| | - Mohammad Mehrmohammadi
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States.,Wayne State University School of Medicine, Department of Obstetrics and Gynecology, Detroit, Michigan, United States.,Wayne State University, Department of Electrical and Computer Engineering, Detroit, Michigan, United States.,Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States
| |
Collapse
|
9
|
Varicose Veins—How to Investigate. Indian J Surg 2021. [DOI: 10.1007/s12262-021-03093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Wiacek A, Lediju Bell MA. Photoacoustic-guided surgery from head to toe [Invited]. BIOMEDICAL OPTICS EXPRESS 2021; 12:2079-2117. [PMID: 33996218 PMCID: PMC8086464 DOI: 10.1364/boe.417984] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 05/04/2023]
Abstract
Photoacoustic imaging-the combination of optics and acoustics to visualize differences in optical absorption - has recently demonstrated strong viability as a promising method to provide critical guidance of multiple surgeries and procedures. Benefits include its potential to assist with tumor resection, identify hemorrhaged and ablated tissue, visualize metal implants (e.g., needle tips, tool tips, brachytherapy seeds), track catheter tips, and avoid accidental injury to critical subsurface anatomy (e.g., major vessels and nerves hidden by tissue during surgery). These benefits are significant because they reduce surgical error, associated surgery-related complications (e.g., cancer recurrence, paralysis, excessive bleeding), and accidental patient death in the operating room. This invited review covers multiple aspects of the use of photoacoustic imaging to guide both surgical and related non-surgical interventions. Applicable organ systems span structures within the head to contents of the toes, with an eye toward surgical and interventional translation for the benefit of patients and for use in operating rooms and interventional suites worldwide. We additionally include a critical discussion of complete systems and tools needed to maximize the success of surgical and interventional applications of photoacoustic-based technology, spanning light delivery, acoustic detection, and robotic methods. Multiple enabling hardware and software integration components are also discussed, concluding with a summary and future outlook based on the current state of technological developments, recent achievements, and possible new directions.
Collapse
Affiliation(s)
- Alycen Wiacek
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| | - Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Computer Science, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
11
|
Najafzadeh E, Farnia P, Lavasani SN, Basij M, Yan Y, Ghadiri H, Ahmadian A, Mehrmohammadi M. Photoacoustic image improvement based on a combination of sparse coding and filtering. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200164RR. [PMID: 33029991 PMCID: PMC7540346 DOI: 10.1117/1.jbo.25.10.106001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 05/07/2023]
Abstract
SIGNIFICANCE Photoacoustic imaging (PAI) has been greatly developed in a broad range of diagnostic applications. The efficiency of light to sound conversion in PAI is limited by the ubiquitous noise arising from the tissue background, leading to a low signal-to-noise ratio (SNR), and thus a poor quality of images. Frame averaging has been widely used to reduce the noise; however, it compromises the temporal resolution of PAI. AIM We propose an approach for photoacoustic (PA) signal denoising based on a combination of low-pass filtering and sparse coding (LPFSC). APPROACH LPFSC method is based on the fact that PA signal can be modeled as the sum of low frequency and sparse components, which allows for the reduction of noise levels using a hybrid alternating direction method of multipliers in an optimization process. RESULTS LPFSC method was evaluated using in-silico and experimental phantoms. The results show a 26% improvement in the peak SNR of PA signal compared to the averaging method for in-silico data. On average, LPFSC method offers a 63% improvement in the image contrast-to-noise ratio and a 33% improvement in the structural similarity index compared to the averaging method for objects located at three different depths, ranging from 10 to 20 mm, in a porcine tissue phantom. CONCLUSIONS The proposed method is an effective tool for PA signal denoising, whereas it ultimately improves the quality of reconstructed images, especially at higher depths, without limiting the image acquisition speed.
Collapse
Affiliation(s)
- Ebrahim Najafzadeh
- Tehran University of Medical Sciences, Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran, Iran
- Tehran University of Medical Sciences, Research Centre of Biomedical Technology and Robotics, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Parastoo Farnia
- Tehran University of Medical Sciences, Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran, Iran
- Tehran University of Medical Sciences, Research Centre of Biomedical Technology and Robotics, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Saeedeh N. Lavasani
- Tehran University of Medical Sciences, Research Centre of Biomedical Technology and Robotics, Imam Khomeini Hospital Complex, Tehran, Iran
- Shahid Beheshti University of Medical Sciences, Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Tehran, Iran
| | - Maryam Basij
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Yan Yan
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
| | - Hossein Ghadiri
- Tehran University of Medical Sciences, Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran, Iran
- Tehran University of Medical Sciences, Research Center for Molecular and Cellular Imaging, Tehran, Iran
| | - Alireza Ahmadian
- Tehran University of Medical Sciences, Medical Physics and Biomedical Engineering Department, Faculty of Medicine, Tehran, Iran
- Tehran University of Medical Sciences, Research Centre of Biomedical Technology and Robotics, Imam Khomeini Hospital Complex, Tehran, Iran
| | - Mohammad Mehrmohammadi
- Wayne State University, Department of Biomedical Engineering, Detroit, Michigan, United States
- Wayne State University, Department of Electrical and Computer Engineering, Detroit, Michigan, United States
| |
Collapse
|