1
|
Guiraud A, Couturier N, Christin E, Castellano L, Daura M, Kretz-Remy C, Janin A, Ghasemizadeh A, Del Carmine P, Monteiro L, Rotard L, Sanchez C, Jacquemond V, Burny C, Janczarski S, Durieux AC, Arnould D, Romero NB, Bui MT, Buchman VL, Julien L, Bitoun M, Gache V. SH3KBP1 promotes skeletal myofiber formation and functionality through ER/SR architecture integrity. EMBO Rep 2025; 26:2166-2191. [PMID: 40065183 PMCID: PMC12019163 DOI: 10.1038/s44319-025-00413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 04/25/2025] Open
Abstract
Dynamic changes in the arrangement of myonuclei and the organization of the sarcoplasmic reticulum are important determinants of myofiber formation and muscle function. To find factors associated with muscle integrity, we perform an siRNA screen and identify SH3KBP1 as a new factor controlling myoblast fusion, myonuclear positioning, and myotube elongation. We find that the N-terminus of SH3KBP1 binds to dynamin-2 while the C-terminus associates with the endoplasmic reticulum through calnexin, which in turn control myonuclei dynamics and ER integrity, respectively. Additionally, in mature muscle fibers, SH3KBP1 contributes to the formation of triads and modulates the Excitation-Contraction Coupling process efficiency. In Dnm2R465W/+ mice, a model for centronuclear myopathy (CNM), depletion of Sh3kbp1 expression aggravates CNM-related atrophic phenotypes and impaired autophagic flux in mutant skeletal muscle fiber. Altogether, our results identify SH3KBP1 as a new regulator of myofiber integrity and function.
Collapse
MESH Headings
- Animals
- Mice
- Muscle Fibers, Skeletal/metabolism
- Dynamin II/metabolism
- Dynamin II/genetics
- Sarcoplasmic Reticulum/metabolism
- Humans
- Endoplasmic Reticulum/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Myopathies, Structural, Congenital/genetics
- Myopathies, Structural, Congenital/metabolism
- Myopathies, Structural, Congenital/pathology
- Muscle, Skeletal/metabolism
- Protein Binding
- Myoblasts/metabolism
Collapse
Affiliation(s)
- Alexandre Guiraud
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Nathalie Couturier
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Emilie Christin
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Léa Castellano
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Marine Daura
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Carole Kretz-Remy
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Alexandre Janin
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Alireza Ghasemizadeh
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Peggy Del Carmine
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Laloe Monteiro
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Ludivine Rotard
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Colline Sanchez
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Vincent Jacquemond
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France
| | - Claire Burny
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, CEDEX 07, France
| | - Stéphane Janczarski
- Laboratoire de Biologie et Modélisation de la Cellule, ENS de Lyon, Lyon, CEDEX 07, France
| | - Anne-Cécile Durieux
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet, Saint Etienne, France
| | - David Arnould
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet, Saint Etienne, France
| | - Norma Beatriz Romero
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Mai Thao Bui
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Vladimir L Buchman
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Laura Julien
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, F-75013, Paris, France
| | - Marc Bitoun
- Sorbonne Université, INSERM, Institute of Myology, Centre of Research in Myology, F-75013, Paris, France
| | - Vincent Gache
- CNRS/UCBL1 UMR 5261 - INSERM U1315, U1217, INMG-PGNM, INSERM, CNRS, Claude Bernard University Lyon 1, Lyon, France.
| |
Collapse
|
2
|
Bitoun M. [The dynamin-2-gene related centronuclear myopathy]. Med Sci (Paris) 2023; 39 Hors série n° 1:6-10. [PMID: 37975763 DOI: 10.1051/medsci/2023130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Autosomal dominant centronuclear myopathy (AD-CNM) is a rare congenital myopathy characterized by muscle weakness and centrally located nuclei in muscle fibers in the absence of any regeneration. AD-CNM is due to mutations in the DNM2 gene encoding dynamin 2 (DNM2), a large GTPase involved in intracellular membrane trafficking and a regulator of actin and microtubule cytoskeletons. DNM2 mutations are associated with a broad clinical spectrum ranging from severe neonatal to less severe late-onset forms. The histopathological signature includes nuclear centralization, predominance and atrophy of type 1 myofibers and radiating sarcoplasmic strands. To explain the muscle dysfunction, several pathophysiological mechanisms affecting key mechanisms of muscle homeostasis have been identified. They include defects in excitation-contraction coupling, muscle regeneration, mitochondria or autophagy. Several therapeutic approaches are under development by modulating the expression of DNM2 in a pan-allelic manner or by allele-specific silencing targeting only the mutated allele, which open the era of clinical trials for this pathology.
Collapse
Affiliation(s)
- Marc Bitoun
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, UMRS974, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
3
|
de Carvalho Neves J, Moschovaki-Filippidou F, Böhm J, Laporte J. DNM2 levels normalization improves muscle phenotypes of a novel mouse model for moderate centronuclear myopathy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:321-334. [PMID: 37547294 PMCID: PMC10400865 DOI: 10.1016/j.omtn.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Dynamin 2 (DNM2) is a ubiquitously expressed GTPase regulating membrane trafficking and cytoskeleton dynamics. Heterozygous dominant mutations in DNM2 cause centronuclear myopathy (CNM), associated with muscle weakness and atrophy and histopathological hallmarks as fiber hypotrophy and organelles mis-position. Different severities range from the severe neonatal onset form to the moderate form with childhood onset and to the mild adult onset form. No therapy is approved for CNM. Here we aimed to validate and rescue a mouse model for the moderate form of DNM2-CNM harboring the common DNM2 R369W missense mutation. Dnm2R369W/+ mice presented with increased DNM2 protein level in muscle and moderate CNM-like phenotypes with force deficit, muscle and fiber hypotrophy, impaired mTOR signaling, and progressive mitochondria and nuclei mis-position with age. Molecular analyses revealed a fiber type switch toward oxidative metabolism correlating with decreased force and alteration of mitophagy markers paralleling mitochondria structural defects. Normalization of DNM2 levels through intramuscular injection of AAV-shDnm2 targeting Dnm2 mRNA significantly improved histopathology and muscle and myofiber hypotrophy. These results showed that the Dnm2R369W/+ mouse is a faithful model for the moderate form of DNM2-CNM and revealed that DNM2 normalization after a short 4-week treatment is sufficient to improve the CNM phenotypes.
Collapse
Affiliation(s)
- Juliana de Carvalho Neves
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Foteini Moschovaki-Filippidou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| |
Collapse
|
4
|
Rahmati M, Shariatzadeh Joneydi M, Koyanagi A, Yang G, Ji B, Won Lee S, Keon Yon D, Smith L, Il Shin J, Li Y. Resistance training restores skeletal muscle atrophy and satellite cell content in an animal model of Alzheimer's disease. Sci Rep 2023; 13:2535. [PMID: 36781881 PMCID: PMC9925431 DOI: 10.1038/s41598-023-29406-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and numerous recent findings suggest that several pathologic signs, including loss of muscle strength and mass, are also detected in these patients. In the present study, we evaluated muscle cross-sectional area (CSA), myonuclear number, satellite cell (SC) content, and myosin heavy chain (MyHC) types in an animal model of AD and examined the possible role of resistance training in controlling skeletal muscle size in this disease. Fifty-eight male rats were randomly divided into four groups: healthy-control (H-C), healthy-exercise (H-Ex), Alzheimer-control (A-C), and Alzheimer-exercise (A-Ex). AD was induced by the single injection of 1-42 amyloid into the CA1 region of the hippocampus (1 μl/site). The rats in H-Ex and A-Ex groups performed a 5-week resistance training period (17 sessions). The results indicated that AD induces significant skeletal muscle atrophy and reduces the myonuclear number and SC content in gastrocnemius muscle in both whole muscle cross-sections and isolated myofibers. Interestingly, we did not find any significant differences in the different MyHC distributions of AD animals compared with controls, while resistance training significantly increased the CSA of MyHC IIb fibers in both AD and healthy animals. Altogether, these observations suggest that the skeletal muscle of AD animals are more prone to atrophy and loss of myonuclear number and satellite cell content, while resistance training successfully restores these impairments.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | | | - Ai Koyanagi
- Parc Sanitari Sant Joan de Deu/CIBERSAM, ISCIII, Universitat de Barcelona, Fundacio Sant Joan de Deu, Sant Boi de Llobregat, Barcelona, Spain
- ICREA (Catalan Institution for Research and Advanced Studies), Barcelona, Spain
| | - Guang Yang
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingzhou Ji
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Seung Won Lee
- Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Dong Keon Yon
- Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Kyung Hee University Medical Center, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Lee Smith
- Centre for Health, Performance, and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Østergård Jensen S, Christen M, Rondahl V, Holland CT, Jagannathan V, Leeb T, Giger U. EHBP1L1 Frameshift Deletion in English Springer Spaniel Dogs with Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) or Neonatal Losses. Genes (Basel) 2022; 13:genes13091533. [PMID: 36140701 PMCID: PMC9498568 DOI: 10.3390/genes13091533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Hereditary myopathies are well documented in dogs, whereas hereditary dyserythropoietic anemias are rarely seen. The aim of this study was to further characterize the clinical and clinicopathological features of and to identify the causative genetic variant for a dyserythropoietic anemia and myopathy syndrome (DAMS) in English springer spaniel dogs (ESSPs). Twenty-six ESSPs, including five dogs with DAMS and two puppies that died perinatally, were studied. Progressive weakness, muscle atrophy—particularly of the temporal and pelvic muscles—trismus, dysphagia, and regurgitation due to megaesophagus were observed at all ages. Affected dogs had a non-regenerative, microcytic hypochromic anemia with metarubricytosis, target cells, and acanthocytes. Marked erythroid hyperplasia and dyserythropoiesis with non-orderly maturation of erythrocytes and inappropriate microcytic metarubricytosis were present. Muscle biopsies showed centralized nuclei, central pallor, lipocyte infiltrates, and fibrosis, which was consistent with centronuclear myopathy. The genome sequencing of two affected dogs was compared to 782 genomes of different canine breeds. A homozygous frameshift single-base deletion in EHBP1L1 was identified; this gene was not previously associated with DAMS. Pedigree analysis confirmed that the affected ESSPs were related. Variant genotyping showed appropriate complete segregation in the family, which was consistent with an autosomal recessive mode of inheritance. This study expands the known genotype–phenotype correlation of EHBP1L1 and the list of potential causative genes in dyserythropoietic anemias and myopathies in humans. EHBP1L1 deficiency was previously reported as perinatally lethal in humans and knockout mice. Our findings enable the genetic testing of ESSP dogs for early diagnosis and disease prevention through targeted breeding strategies.
Collapse
Affiliation(s)
- Sarah Østergård Jensen
- Clinical Pathology Laboratory, The Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- AniCura Small Animal Referral Hospital Bagarmossen, Ljusnevägen 17, Bagarmossen, 128 48 Stockholm, Sweden
| | - Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | | | - Christopher T. Holland
- Merewether Veterinary Hospital, Suite 2, 25 Llewellyn St, Merewether, NSW 2291, Australia
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Urs Giger
- Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057 Zürich, Switzerland
- Correspondence: ; Tel.: +1-610-565-1427
| |
Collapse
|
6
|
Fujise K, Noguchi S, Takeda T. Centronuclear Myopathy Caused by Defective Membrane Remodelling of Dynamin 2 and BIN1 Variants. Int J Mol Sci 2022; 23:ijms23116274. [PMID: 35682949 PMCID: PMC9181712 DOI: 10.3390/ijms23116274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and their dysfunction is tightly associated with CNM pathogenesis. DNM2 and BIN1 are two causative genes for CNM that encode essential membrane remodelling proteins in endocytosis, dynamin 2 and BIN1, respectively. In this review, we overview the functions of dynamin 2 and BIN1 in T-tubule biogenesis and discuss how their dysfunction in membrane remodelling leads to CNM pathogenesis.
Collapse
Affiliation(s)
- Kenshiro Fujise
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8001, USA;
| | - Satoru Noguchi
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan;
| | - Tetsuya Takeda
- Department of Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata-cho 2-5-1, Kita-ku, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7125; Fax: +81-86-235-7126
| |
Collapse
|
7
|
Trochet D, Prudhon B, Mekzine L, Lemaitre M, Beuvin M, Julien L, Benkhelifa-Ziyyat S, Bui MT, Romero N, Bitoun M. Benefits of therapy by dynamin-2-mutant-specific silencing are maintained with time in a mouse model of dominant centronuclear myopathy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1179-1190. [PMID: 35282416 PMCID: PMC8889367 DOI: 10.1016/j.omtn.2022.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Dominant dynamin 2 (DNM2) mutations are responsible for the autosomal dominant centronuclear myopathy (AD-CNM), a rare progressive neuromuscular disorder ranging from severe neonatal to mild adult forms. We previously demonstrated that mutant-specific RNA interference is an efficient therapeutic strategy to rescue the muscle phenotype at the onset of the symptoms in the AD-CNM knockin-Dnm2 R465W/+ mouse model. Our objective was to evaluate the long-term benefit of the treatment along with the disease time course. We demonstrate here that the complete rescue of the muscle phenotype is maintained for at least 1 year after a single injection of adeno-associated virus expressing the mutant-specific short hairpin RNA (shRNA). This was achieved by a maintained reduction of the mutant Dnm2 transcript. Moreover, this long-term study uncovers a pathological accumulation of DNM2 protein occurring with age in the mouse model and prevented by the treatment. Conversely, a physiological DNM2 protein decrease with age was observed in muscles from wild-type mice. Therefore, this study highlights a new potential pathophysiological mechanism linked to mutant protein accumulation and underlines the importance of DNM2 protein expression level for proper muscle function. Overall, these results strengthen the allele-specific silencing approach as a robust, safe, and efficient therapy for AD-CNM.
Collapse
Affiliation(s)
- Delphine Trochet
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Bernard Prudhon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Lylia Mekzine
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | | | - Maud Beuvin
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Laura Julien
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Mai Thao Bui
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013 Paris, France
| | - Norma Romero
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013 Paris, France
| | - Marc Bitoun
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| |
Collapse
|
8
|
Abstract
The mechanoenzyme dynamin 2 (DNM2) is crucial for intracellular organization and trafficking. DNM2 is mutated in dominant centronuclear myopathy (DNM2-CNM), a muscle disease characterized by defects in organelle positioning in myofibers. It remains unclear how the in vivo functions of DNM2 are regulated in muscle. Moreover, there is no therapy for DNM2-CNM to date. Here, we overexpressed human amphiphysin 2 (BIN1), a membrane remodeling protein mutated in other CNM forms, in Dnm2 RW/+ and Dnm2 RW/RW mice modeling mild and severe DNM2-CNM, through transgenesis or with adeno-associated virus (AAV). Increasing BIN1 improved muscle atrophy and main histopathological features of Dnm2 RW/+ mice and rescued the perinatal lethality and survival of Dnm2 RW/RW mice. In vitro experiments showed that BIN1 binds and recruits DNM2 to membrane tubules, and that the BIN1-DNM2 complex regulates tubules fission. Overall, BIN1 is a potential therapeutic target for dominant centronuclear myopathy linked to DNM2 mutations.
Collapse
|
9
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
10
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
11
|
Barbosa GK, Jacob CDS, Rodrigues MP, Rocha LC, Pimentel Neto J, Ciena AP. Morphological Changes in the Motor Endplate and in the Belly Muscle Induced by Previous Static Stretching to the Climbing Protocol. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-9. [PMID: 34294184 DOI: 10.1017/s1431927621012253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Static stretching provides benefits to the range of motion, modulates intramuscular connective tissue, and is incorporated into warm-up exercises. In this study, we present the effects in the motor endplate and belly muscle resulting from previous static stretching to climbing training. Twenty-four adult male Wistar rats were divided into four groups (n = 6 each): Sedentary (Sed), Climbing (Clb), Static stretching (Ss), and Static stretching prior to climbing (Ssc). The animals (Clb, Ss, and Ssc groups) were subjected to a training protocol 3×/week for 8 weeks, and the Ssc group was subjected to the Ss and Clb protocols in the same session. Samples from the animals were processed for immunostaining, histochemistry, and light microscopy. The Clb group presented a higher motor endplate; the Ss group presented no changes in the motor endplate; and the Ssc group demonstrated a higher compactness. We concluded that static stretching prior to the climbing protocol maintained the density of the motor endplate and increased the compactness of the neuromuscular junction structure. Also, there was a reduction in the myofibers’ diameter (Type I and IIa), an increase in myofibrillar densities (Type I and IIx, and total), and the reorganization of the myonuclei and the interstitium.
Collapse
Affiliation(s)
- Gabriela K Barbosa
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| | - Carolina Dos S Jacob
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| | - Mariana P Rodrigues
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| | - Lara C Rocha
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| | - Jurandyr Pimentel Neto
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| | - Adriano P Ciena
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| |
Collapse
|
12
|
Affiliation(s)
- Hannah F Dugdale
- Centre for Human and Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, United Kingdom
| | - Julien Ochala
- Centre for Human and Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, United Kingdom.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
F Almeida C, Bitoun M, Vainzof M. Satellite cells deficiency and defective regeneration in dynamin 2-related centronuclear myopathy. FASEB J 2021; 35:e21346. [PMID: 33715228 DOI: 10.1096/fj.202001313rrr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 11/11/2022]
Abstract
Dynamin 2 (DNM2) is a ubiquitously expressed protein involved in many functions related to trafficking and remodeling of membranes and cytoskeleton dynamics. Mutations in the DNM2 gene cause the autosomal dominant centronuclear myopathy (AD-CNM), characterized mainly by muscle weakness and central nuclei. Several defects have been identified in the KI-Dnm2R465W/+ mouse model of the disease to explain the muscle phenotype, including reduction of the satellite cell pool in muscle, but the functional consequences of this depletion have not been characterized until now. Satellite cells (SC) are the main source for muscle growth and regeneration of mature tissue. Here, we investigated muscle regeneration in the KI-Dnm2R465W/+ mouse model for AD-CNM. We found a reduced number of Pax7-positive SCs, which were also less activated after induced muscle injury. The muscles of the KI-Dnm2R465W/+ mouse regenerated more slowly and less efficiently than wild-type ones, formed fewer new myofibers, and did not recover its normal mass 15 days after injury. Altogether, our data provide evidence that the muscle regeneration is impaired in the KI-Dnm2R465W/+ mouse and contribute with one more layer to the comprehension of the disease, by identifying a new pathomechanism linked to DNM2 mutations which may be involved in the muscle-specific impact occurring in AD-CNM.
Collapse
Affiliation(s)
- Camila F Almeida
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.,INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Marc Bitoun
- INSERM, Institute of Myology, Centre of Research in Myology, UMRS 974, Sorbonne Université, Paris, France
| | - Mariz Vainzof
- Laboratory of Muscle Proteins and Comparative Histopathology, Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Ross JA, Tasfaout H, Levy Y, Morgan J, Cowling BS, Laporte J, Zanoteli E, Romero NB, Lowe DA, Jungbluth H, Lawlor MW, Mack DL, Ochala J. rAAV-related therapy fully rescues myonuclear and myofilament function in X-linked myotubular myopathy. Acta Neuropathol Commun 2020; 8:167. [PMID: 33076971 PMCID: PMC7574461 DOI: 10.1186/s40478-020-01048-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 01/17/2023] Open
Abstract
X-linked myotubular myopathy (XLMTM) is a life-threatening skeletal muscle disease caused by mutations in the MTM1 gene. XLMTM fibres display a population of nuclei mispositioned in the centre. In the present study, we aimed to explore whether positioning and overall distribution of nuclei affects cellular organization and contractile function, thereby contributing to muscle weakness in this disease. We also assessed whether gene therapy alters nuclear arrangement and function. We used tissue from human patients and animal models, including XLMTM dogs that had received increasing doses of recombinant AAV8 vector restoring MTM1 expression (rAAV8-cMTM1). We then used single isolated muscle fibres to analyze nuclear organization and contractile function. In addition to the expected mislocalization of nuclei in the centre of muscle fibres, a novel form of nuclear mispositioning was observed: irregular spacing between those located at the fibre periphery, and an overall increased number of nuclei, leading to dramatically smaller and inconsistent myonuclear domains. Nuclear mislocalization was associated with decreases in global nuclear synthetic activity, contractile protein content and intrinsic myofilament force production. A contractile deficit originating at the myofilaments, rather than mechanical interference by centrally positioned nuclei, was supported by experiments in regenerated mouse muscle. Systemic administration of rAAV8-cMTM1 at doses higher than 2.5 × 1013 vg kg−1 allowed a full rescue of all these cellular defects in XLMTM dogs. Altogether, these findings identify previously unrecognized pathological mechanisms in human and animal XLMTM, associated with myonuclear defects and contractile filament function. These defects can be reversed by gene therapy restoring MTM1 expression in dogs with XLMTM.
Collapse
|
15
|
Li Q, Lin J, Rosen SM, Zhang T, Kazerounian S, Luo S, Agrawal PB. Striated Preferentially Expressed Protein Kinase (SPEG)-Deficient Skeletal Muscles Display Fewer Satellite Cells with Reduced Proliferation and Delayed Differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2453-2463. [PMID: 32919980 DOI: 10.1016/j.ajpath.2020.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Centronuclear myopathies (CNMs) are a subtype of congenital myopathies characterized by skeletal muscle weakness and an increase in the number of central myonuclei. SPEG (striated preferentially expressed protein kinase) has been identified as the sixth gene associated with CNM, and it has been shown that striated muscle-specific Speg-knockout (KO) mice have defective triad formation, abnormal excitation-contraction coupling, and calcium mishandling. The impact of SPEG deficiency on the survival and function of myogenic cells remains to be deciphered. In this study, the authors examined the overall population, proliferation, and differentiation of myogenic cells obtained from striated muscle-specific Speg-KO mice and compared them with wild-type (WT) controls. SPEG-deficient skeletal muscles contained fewer myogenic cells, which on further study demonstrated reduced proliferation and delayed differentiation compared with those from WT muscles. Regenerative response to skeletal muscle injury in Speg-KO mice was compared with that of WT mice, leading to the identification of similar abnormalities including fewer satellite cells, fewer dividing cells, and an increase in apoptotic cells in KO mice. Overall, these results reveal specific abnormalities in myogenic cell number and behavior associated with SPEG deficiency. Similar satellite cell defects have been reported in mouse models of MTM1- and DNM2-associated CNM, suggestive of shared underlying pathways.
Collapse
Affiliation(s)
- Qifei Li
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jasmine Lin
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samantha M Rosen
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tian Zhang
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shideh Kazerounian
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shiyu Luo
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
16
|
Volpatti JR, Al-Maawali A, Smith L, Al-Hashim A, Brill JA, Dowling JJ. The expanding spectrum of neurological disorders of phosphoinositide metabolism. Dis Model Mech 2019; 12:12/8/dmm038174. [PMID: 31413155 PMCID: PMC6737944 DOI: 10.1242/dmm.038174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositides (PIPs) are a ubiquitous group of seven low-abundance phospholipids that play a crucial role in defining localized membrane properties and that regulate myriad cellular processes, including cytoskeletal remodeling, cell signaling cascades, ion channel activity and membrane traffic. PIP homeostasis is tightly regulated by numerous inositol kinases and phosphatases, which phosphorylate and dephosphorylate distinct PIP species. The importance of these phospholipids, and of the enzymes that regulate them, is increasingly being recognized, with the identification of human neurological disorders that are caused by mutations in PIP-modulating enzymes. Genetic disorders of PIP metabolism include forms of epilepsy, neurodegenerative disease, brain malformation syndromes, peripheral neuropathy and congenital myopathy. In this Review, we provide an overview of PIP function and regulation, delineate the disorders associated with mutations in genes that modulate or utilize PIPs, and discuss what is understood about gene function and disease pathogenesis as established through animal models of these diseases. Summary: This Review highlights the intersection between phosphoinositides and the enzymes that regulate their metabolism, which together are crucial regulators of myriad cellular processes and neurological disorders.
Collapse
Affiliation(s)
- Jonathan R Volpatti
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Almundher Al-Maawali
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Lindsay Smith
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aqeela Al-Hashim
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Neuroscience, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Julie A Brill
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - James J Dowling
- Division of Neurology and Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|