1
|
Thomas WR, Richter T, O'Neil ET, Baldoni C, Corthals A, von Elverfeldt D, Nieland JD, Dechmann D, Hunter R, Davalos LM. Seasonal and comparative evidence of adaptive gene expression in mammalian brain size plasticity. eLife 2025; 13:RP100788. [PMID: 40310674 PMCID: PMC12045622 DOI: 10.7554/elife.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Contrasting almost all other mammalian wintering strategies, Eurasian common shrews, Sorex araneus, endure winter by shrinking their brain, skull, and most organs, only to then regrow to breeding size the following spring. How such tiny mammals achieve this unique brain size plasticity while maintaining activity through the winter remains unknown. To discover potential adaptations underlying this trait, we analyzed seasonal differential gene expression in the shrew hypothalamus, a brain region that both regulates metabolic homeostasis and drastically changes size, and compared hypothalamus gene expression across species. We discovered seasonal variation in suites of genes involved in energy homeostasis and apoptosis, shrew-specific upregulation of genes involved in the development of the hypothalamic blood-brain barrier and calcium signaling, as well as overlapping seasonal and comparative gene expression divergence in genes implicated in the development and progression of human neurological and metabolic disorders, including CCDC22. With high metabolic rates and facing harsh winter conditions, S. araneus have evolved both adaptive and plastic mechanisms to sense and regulate their energy budget. Many of these changes mirrored those identified in human neurological and metabolic disease, highlighting the interactions between metabolic homeostasis, brain size plasticity, and longevity.
Collapse
Affiliation(s)
- William R Thomas
- Department of Ecology and Evolution, Stony Brook UniversityNew YorkUnited States
| | - Troy Richter
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts BostonBostonUnited States
| | - Erin T O'Neil
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts BostonBostonUnited States
| | - Cecilia Baldoni
- Max Planck Institute of Animal BehaviorRadolfzellGermany
- University of KonstanzRadolfzellGermany
| | | | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Dignostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University FreiburgFreiburgGermany
| | - John D Nieland
- Health Science and Technology, Aalborg UniversityAalborgDenmark
| | - Dina Dechmann
- Max Planck Institute of Animal BehaviorRadolfzellGermany
- University of KonstanzRadolfzellGermany
| | - Richard Hunter
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts BostonBostonUnited States
| | - Liliana M Davalos
- Department of Ecology and Evolution, Stony Brook UniversityNew YorkUnited States
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook UniversityNew YorkUnited States
| |
Collapse
|
2
|
Baldoni C, Raptis K, Farantouri M, Lenzi I, Lim KS, Menz MHM, Muturi M, Reisert M, Bedoya Duque MA, Thomas WR, Dávalos LM, Nieland JD, von Elverfeldt D, Dechmann DKN. Captivity alters behaviour but not seasonal brain size change in semi-naturally housed shrews. ROYAL SOCIETY OPEN SCIENCE 2025; 12:242138. [PMID: 40420851 PMCID: PMC12105801 DOI: 10.1098/rsos.242138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/23/2025] [Indexed: 05/28/2025]
Abstract
Captivity, frequently used in animal research, can profoundly alter brain size, cognitive abilities and activity levels. Critically, persistent exposure to stressors in captive environments can lead to chronic stress and subsequently to a range of health issues. However, the direct implications of captivity on research outcomes have not been thoroughly investigated. We examined the effects of captivity on the common shrew, Sorex araneus, a species that exhibits a profound seasonal reversible change in brain and body size. We compared wild shrews during summer and winter to assess seasonal changes in brain size and behaviour and then contrasted these findings with shrews kept in captivity for six months. Using repeated in vivo magnitic resonance imaging, we determined that the extent of seasonal brain size change was not affected by the semi-natural captive conditions. However, captivity led to increased activity levels and reduced learning motivation in the shrews, indicative of chronic stress. These results suggest that even semi-natural conditions can significantly alter the outcome of studies and these effects need to be quantified before experimentation.
Collapse
Affiliation(s)
- Cecilia Baldoni
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Konstantinos Raptis
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
| | - Marina Farantouri
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
| | - Ivan Lenzi
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
| | - Ka Sing Lim
- Computational and Analytical Sciences, Rothamsted Research, HarpendenAL5 2JQ, UK
| | - Myles H. M. Menz
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Marion Muturi
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
| | - Marco Reisert
- Department of Diagnostic and Interventional Radiology, Division of Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Medical Faculty of Freiburg University, Freiburg, Germany
| | | | - William R. Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Liliana M. Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | - John D. Nieland
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dominik von Elverfeldt
- Department of Diagnostic and Interventional Radiology, Division of Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dina K. N. Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Bedoya Duque MA, Thomas WR, Dechmann DKN, Nieland J, Baldoni C, von Elverfeldt D, Muturi M, Corthals AP, Dávalos LM. Gene expression comparisons between captive and wild shrew brains reveal captivity effects. Biol Lett 2025; 21:20240478. [PMID: 39772919 PMCID: PMC11706642 DOI: 10.1098/rsbl.2024.0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/17/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025] Open
Abstract
Compared with their free-ranging counterparts, wild animals in captivity experience different conditions with lasting physiological and behavioural effects. Although shifts in gene expression are expected to occur upstream of these phenotypes, we found no previous gene expression comparisons of captive versus free-ranging mammals. We assessed gene expression profiles of three brain regions (cortex, olfactory bulb and hippocampus) of wild shrews (Sorex araneus) compared with shrews kept in captivity for two months and undertook sample dropout to examine robustness given limited sample sizes. Consistent with captivity effects, we found hundreds of differentially expressed genes in all three brain regions, 104 overlapping across all three, that enriched pathways associated with neurodegenerative disease, oxidative phosphorylation and genes encoding ribosomal proteins. In the shrew, transcriptomic changes detected under captivity resemble responses in several human pathologies, including major depressive disorder and neurodegeneration. While interpretations of individual genes are tempered by small sample sizes, we propose captivity influences brain gene expression and function and can confound analyses of natural processes in wild individuals under captive conditions.
Collapse
Affiliation(s)
- Maria Alejandra Bedoya Duque
- Departamento de Ciencias Biológicas Bioprocesos y Biotecnología, Universidad Icesi, Cali, Valle del Cauca, Colombia
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - William R. Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Dina K. N. Dechmann
- Max-Planck Institute for Animal Behavior, Radolfzell, Germany
- University of Konstanz, Konstanz, Germany
| | - John Nieland
- Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Cecilia Baldoni
- Max-Planck Institute for Animal Behavior, Radolfzell, Germany
- University of Konstanz, Konstanz, Germany
| | | | - Marion Muturi
- Max-Planck Institute for Animal Behavior, Radolfzell, Germany
- University of Konstanz, Konstanz, Germany
| | | | - Liliana M. Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
4
|
Pohle AK, Zalewski A, Muturi M, Dullin C, Farková L, Keicher L, Dechmann DKN. Domestication effect of reduced brain size is reverted when mink become feral. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230463. [PMID: 37416828 PMCID: PMC10320332 DOI: 10.1098/rsos.230463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
A typical consequence of breeding animal species for domestication is a reduction in relative brain size. When domesticated animals escape from captivity and establish feral populations, the larger brain of the wild phenotype is usually not regained. In the American mink (Neovison vison), we found an exception to this rule. We confirmed the previously described reduction in relative braincase size and volume compared to their wild North American ancestors in mink bred for their fur in Poland, in a dataset of 292 skulls. We then also found a significant regrowth of these measures in well-established feral populations in Poland. Closely related, small mustelids are known for seasonal reversible changes in skull and brain size. It seems that these small mustelids are able to regain the brain size, which is adaptive for living in the wild, and flexibly respond to selection accordingly.
Collapse
Affiliation(s)
- Ann-Kathrin Pohle
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Bücklestraße 5a, 78467 Konstanz, Germany
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, 17-230 Białowieża, Poland
| | - Marion Muturi
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
| | - Christian Dullin
- Department for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany
- Department Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Herman-Rein-Straße 3, 37075 Goettingen, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Lucie Farková
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Zoology, Charles University, Viničná 7, 128 00 Prague, Czech Republic
| | - Lara Keicher
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Dina K. N. Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
5
|
Baldoni C, Thomas WR, von Elverfeldt D, Reisert M, Làzaro J, Muturi M, Dávalos LM, Nieland JD, Dechmann DKN. Histological and MRI brain atlas of the common shrew, Sorex araneus, with brain region-specific gene expression profiles. Front Neuroanat 2023; 17:1168523. [PMID: 37206998 PMCID: PMC10188933 DOI: 10.3389/fnana.2023.1168523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
The common shrew, Sorex araneus, is a small mammal of growing interest in neuroscience research, as it exhibits dramatic and reversible seasonal changes in individual brain size and organization (a process known as Dehnel's phenomenon). Despite decades of studies on this system, the mechanisms behind the structural changes during Dehnel's phenomenon are not yet understood. To resolve these questions and foster research on this unique species, we present the first combined histological, magnetic resonance imaging (MRI), and transcriptomic atlas of the common shrew brain. Our integrated morphometric brain atlas provides easily obtainable and comparable anatomic structures, while transcriptomic mapping identified distinct expression profiles across most brain regions. These results suggest that high-resolution morphological and genetic research is pivotal for elucidating the mechanisms underlying Dehnel's phenomenon while providing a communal resource for continued research on a model of natural mammalian regeneration. Morphometric and NCBI Sequencing Read Archive are available at https://doi.org/10.17617/3.HVW8ZN.
Collapse
Affiliation(s)
- Cecilia Baldoni
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- International Max Planck Research School for Quantitative Behaviour Ecology and Evolution, Konstanz, Germany
- *Correspondence: Cecilia Baldoni,
| | - William R. Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
| | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marco Reisert
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Javier Làzaro
- Javier Lázaro Scientific and Wildlife Illustration, Noasca, Italy
| | - Marion Muturi
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
| | - Liliana M. Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, United States
| | - John D. Nieland
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dina K. N. Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell am Bodensee, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Taylor JRE, Muturi M, Lázaro J, Zub K, Dechmann DKN. Fifty years of data show the effects of climate on overall skull size and the extent of seasonal reversible skull size changes (Dehnel's phenomenon) in the common shrew. Ecol Evol 2022; 12:e9447. [PMID: 36311390 PMCID: PMC9609440 DOI: 10.1002/ece3.9447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Global climate change affects many aspects of biology and has been shown to cause body size changes in animals. However, suitable datasets allowing the analysis of long-term relationships between body size, climate, and its effects are rare. The size of the skull is often used as a proxy for overall body size. Skull size does not change much in fully grown vertebrates; however, some high-metabolic small mammals shrink in winter and regrow in spring, including their skull and brain. This is thought to be a winter adaptation, as a smaller brain size reduces energy requirements. Climate could thus affect not only the overall size but also the pattern of the size change, that is, Dehnel's phenomenon, in these animals. We assessed the impact of the changes in climate on the overall skull size and the different stages of Dehnel's phenomenon in skulls of the common shrew, Sorex araneus, collected over 50 years in the Białowieża Forest, E Poland. Overall skull size decreased, along with increasing temperatures and decreasing soil moisture, which affected the availability of the shrews' main food source, earthworms. The skulls of males were larger than those of females, but the degree of the decrease in size did not differ between sexes. The magnitude of Dehnel's phenomenon increased over time, indicating an increasing selection pressure on animals in winter. Overall, climate clearly affected the common shrew's overall size as well as its seasonal size changes. With the current acceleration in climate change, the effects on the populations of this cold-adapted species may be quite severe in a large part of its distribution range.
Collapse
Affiliation(s)
| | - Marion Muturi
- Department of MigrationMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Javier Lázaro
- Department of MigrationMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Karol Zub
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| | - Dina K. N. Dechmann
- Department of MigrationMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| |
Collapse
|
7
|
Nováková L, Lázaro J, Muturi M, Dullin C, Dechmann DKN. Winter conditions, not resource availability alone, may drive reversible seasonal skull size changes in moles. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220652. [PMID: 36133148 PMCID: PMC9449468 DOI: 10.1098/rsos.220652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/15/2022] [Indexed: 05/30/2023]
Abstract
Seasonal changes in the environment can lead to astonishing adaptations. A few small mammals with exceptionally high metabolisms have evolved a particularly extreme strategy: they shrink before winter and regrow in spring, including changes of greater than 20% in skull and brain size. Whether this process is an adaptation to seasonal climates, resource availability or both remains unclear. We show that European moles (Talpa europaea) also decrease skull size in winter. As resources for closely related Iberian moles (Talpa occidentalis) are lowest in summer, we predicted they should shift the timing of size changes. Instead, they do not change size at all. We conclude that in moles, seasonal decrease and regrowth of skull size is an adaptation to winter climate and not to a changing resource landscape alone. We not only describe this phenomenon in yet another taxon, but take an important step towards a better understanding of this enigmatic cycle.
Collapse
Affiliation(s)
- Lucie Nováková
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell 78315, Germany
- Department of Zoology, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Javier Lázaro
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell 78315, Germany
- Javier Lázaro Scientific and Wildlife Illustration, Gere Sopra 17, Noasca 10080, Italy
| | - Marion Muturi
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell 78315, Germany
| | - Christian Dullin
- Department for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Straße 40, Goettingen 37075, Germany
- Department Translational Molecular Imaging, Max Planck Institute for Multidisciplinary Sciences, Herman-Rein-Straße 3, Goettingen 37075, Germany
- Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, Heidelberg 69120, Germany
| | - Dina K. N. Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell 78315, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
8
|
Abstract
Lázaro and Dechmann explain how some mammals that live through harsh winters exhibit seasonal shrinkage of the brain and skull, a process called Dehnel's phenomenon, which helps to spare energy during times of food shortage and high energetic demands.
Collapse
Affiliation(s)
- Javier Lázaro
- Max Planck Institute of Animal Behavior, Radolfzell, Germany; Department of Biology, University of Konstanz, Konstanz, Germany.
| | - Dina K N Dechmann
- Max Planck Institute of Animal Behavior, Radolfzell, Germany; Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
9
|
Lázaro J, Nováková L, Hertel M, Taylor JRE, Muturi M, Zub K, Dechmann DKN. Geographic patterns in seasonal changes of body mass, skull, and brain size of common shrews. Ecol Evol 2021; 11:2431-2448. [PMID: 33767812 PMCID: PMC7981214 DOI: 10.1002/ece3.7238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Some small mammals exhibit Dehnel's Phenomenon, a drastic decrease in body mass, braincase, and brain size from summer to winter, followed by a regrowth in spring. This is accompanied by a re-organization of the brain and changes in other organs. The evolutionary link between these changes and seasonality remains unclear, although the intensity of change varies between locations as the phenomenon is thought to lead to energy savings during winter.Here we explored geographic variation of the intensity of Dehnel's Phenomenon in Sorex araneus. We compiled literature on seasonal changes in braincase size, brain, and body mass, supplemented by our own data from Poland, Germany, and Czech Republic.We analyzed the effect of geographic and climate variables on the intensity of change and patterns of brain re-organization.From summer to winter, the braincase height decreased by 13%, followed by 10% regrowth in spring. For body mass, the changes were -21%/+82%, respectively. Changes increased toward northeast. Several climate variables were correlated with these transformations, confirming a link of the intensity of the changes with environmental conditions. This relationship differed for the decrease versus regrowth, suggesting that they may have evolved under different selective pressures.We found no geographic trends explaining variability in the brain mass changes although they were similar (-21%/+10%) to those of the braincase size. Underlying patterns of change in brain organization in northeastern Poland were almost identical to the pattern observed in southern Germany. This indicates that local habitat characteristics may play a more important role in determining brain structure than broad scale geographic conditions.We discuss the techniques and criteria used for studying this phenomenon, as well as its potential presence in other taxa and the importance of distinguishing it from other kinds of seasonal variation.
Collapse
Affiliation(s)
- Javier Lázaro
- Max Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Lucie Nováková
- Department of ZoologyFaculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Moritz Hertel
- Department of Behavioural NeurobiologyMax Planck Institute for OrnithologySeewiesenGermany
| | | | - Marion Muturi
- Max Planck Institute of Animal BehaviorRadolfzellGermany
| | - Karol Zub
- Mammal Research Institute Polish Academy of SciencesBiałowieżaPoland
| | - Dina K. N. Dechmann
- Max Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| |
Collapse
|
10
|
Abstract
To survive, animals need to adapt to changes of their ecosystem by changing their behaviors or even morphing the organs responsible for generating these behaviors. Small mammals have a high metabolic rate, and to balance energy deficits during winter they can decrease their brain and body size, a phenomenon termed Dehnel’s effect. We find specific seasonal changes in the brain of the smallest terrestrial mammal, the Etruscan shrew. Their cortex shrinks in the winter, with layer-width and neuron number reduction in the energetically expensive somatosensory cortical layer 4. Imaging of neural activity revealed reduced suppressive responses to whisker touch during winter, indicating that such cortical adaptation may have synergistic functional and behavioral effects in addition to direct metabolic benefits. Seasonal cycles govern life on earth, from setting the time for the mating season to influencing migrations and governing physiological conditions like hibernation. The effect of such changing conditions on behavior is well-appreciated, but their impact on the brain remains virtually unknown. We investigate long-term seasonal changes in the mammalian brain, known as Dehnel’s effect, where animals exhibit plasticity in body and brain sizes to counter metabolic demands in winter. We find large seasonal variation in cellular architecture and neuronal activity in the smallest terrestrial mammal, the Etruscan shrew, Suncus etruscus. Their brain, and specifically their neocortex, shrinks in winter. Shrews are tactile hunters, and information from whiskers first reaches the somatosensory cortex layer 4, which exhibits a reduced width (−28%) in winter. Layer 4 width (+29%) and neuron number (+42%) increase the following summer. Activity patterns in the somatosensory cortex show a prominent reduction of touch-suppressed neurons in layer 4 (−55%), the most metabolically active layer. Loss of inhibitory gating occurs with a reduction in parvalbumin-positive interneurons, one of the most active neuronal subtypes and the main regulators of inhibition in layer 4. Thus, a reduction in neurons in layer 4 and particularly parvalbumin-positive interneurons may incur direct metabolic benefits. However, changes in cortical balance can also affect the threshold for detecting sensory stimuli and impact prey choice, as observed in wild shrews. Thus, seasonal neural adaptation can offer synergistic metabolic and behavioral benefits to the organism and offer insights on how neural systems show adaptive plasticity in response to ecological demands.
Collapse
|
11
|
Burggren WW. Phenotypic Switching Resulting From Developmental Plasticity: Fixed or Reversible? Front Physiol 2020; 10:1634. [PMID: 32038303 PMCID: PMC6987144 DOI: 10.3389/fphys.2019.01634] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
The prevalent view of developmental phenotypic switching holds that phenotype modifications occurring during critical windows of development are "irreversible" - that is, once produced by environmental perturbation, the consequent juvenile and/or adult phenotypes are indelibly modified. Certainly, many such changes appear to be non-reversible later in life. Yet, whether animals with switched phenotypes during early development are unable to return to a normal range of adult phenotypes, or whether they do not experience the specific environmental conditions necessary for them to switch back to the normal range of adult phenotypes, remains an open question. Moreover, developmental critical windows are typically brief, early periods punctuating a much longer period of overall development. This leaves open additional developmental time for reversal (correction) of a switched phenotype resulting from an adverse environment early in development. Such reversal could occur from right after the critical window "closes," all the way into adulthood. In fact, examples abound of the capacity to return to normal adult phenotypes following phenotypic changes enabled by earlier developmental plasticity. Such examples include cold tolerance in the fruit fly, developmental switching of mouth formation in a nematode, organization of the spinal cord of larval zebrafish, camouflage pigmentation formation in larval newts, respiratory chemosensitivity in frogs, temperature-metabolism relations in turtles, development of vascular smooth muscle and kidney tissue in mammals, hatching/birth weight in numerous vertebrates,. More extreme cases of actual reversal (not just correction) occur in invertebrates (e.g., hydrozoans, barnacles) that actually 'backtrack' along normal developmental trajectories from adults back to earlier developmental stages. While developmental phenotypic switching is often viewed as a permanent deviation from the normal range of developmental plans, the concept of developmental phenotypic switching should be expanded to include sufficient plasticity allowing subsequent correction resulting in the normal adult phenotype.
Collapse
Affiliation(s)
- Warren W. Burggren
- Developmental Integrative Biology, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|