1
|
Goswami P, Ghimire A, Coffin C, Cheng J, Coulombe-Huntington J, Ghazal G, Thattikota Y, Guerra MF, Tyers M, Tollis S, Royer CA. Swi4-dependent SWI4 transcription couples cell size to cell cycle commitment. iScience 2025; 28:112027. [PMID: 40124484 PMCID: PMC11930368 DOI: 10.1016/j.isci.2025.112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/22/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
Growth-dependent accumulation of the G1/S transcription factor SBF, composed of Swi4 and Swi6, occurs in G1 phase in budding yeast and is limiting for commitment to division, termed Start. Here, we investigate the mechanisms for the size dependence of Swi4 accumulation using different genetic contexts and quantitative scanning number and brightness microscopy. Mutation of SBF binding sites in the SWI4 promoter or disruption of SBF activation resulted in ∼33-50% decrease in Swi4 accumulation rate and concordantly increased cell size at Start. Ectopic inducible expression of Swi4 in G1 phase cells increased production of Swi4 from the endogenous promoter, upregulated transcription of the G1/S regulon, and accelerated Start. A threshold model in which Swi4 titrates SBF binding sites in G1/S promoters predicted the effects of nutrients, ploidy, and G1/S regulatory mutations on cell size. These results exemplify how transcription factor auto-production can refine a cell state transition.
Collapse
Affiliation(s)
- Pooja Goswami
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Abhishek Ghimire
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Carleton Coffin
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jing Cheng
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Ghada Ghazal
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T1J4, Canada
| | - Yogitha Thattikota
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - María Florencia Guerra
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Mike Tyers
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sylvain Tollis
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T1J4, Canada
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70210 Kuopio, Finland
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Environmental and Biological Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, 70210 Kuopio, Finland
- Centre de Biochimie Structurale INSERM U1054, University of University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
2
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
3
|
Litsios A, Grys BT, Kraus OZ, Friesen H, Ross C, Masinas MPD, Forster DT, Couvillion MT, Timmermann S, Billmann M, Myers C, Johnsson N, Churchman LS, Boone C, Andrews BJ. Proteome-scale movements and compartment connectivity during the eukaryotic cell cycle. Cell 2024; 187:1490-1507.e21. [PMID: 38452761 PMCID: PMC10947830 DOI: 10.1016/j.cell.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.
Collapse
Affiliation(s)
- Athanasios Litsios
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Benjamin T Grys
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Oren Z Kraus
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Helena Friesen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Catherine Ross
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Duncan T Forster
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mary T Couvillion
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Stefanie Timmermann
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm 89081, Germany
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Department of Biology, Ulm University, Ulm 89081, Germany
| | | | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; RIKEN Center for Sustainable Resource Science, Wako 351-0198 Saitama, Japan.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
4
|
A dynamical stochastic model of yeast translation across the cell cycle. Heliyon 2023; 9:e13101. [PMID: 36793957 PMCID: PMC9922973 DOI: 10.1016/j.heliyon.2023.e13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Translation is a central step in gene expression, however its quantitative and time-resolved regulation is poorly understood. We developed a discrete, stochastic model for protein translation in S. cerevisiae in a whole-transcriptome, single-cell context. A "base case" scenario representing an average cell highlights translation initiation rates as the main co-translational regulatory parameters. Codon usage bias emerges as a secondary regulatory mechanism through ribosome stalling. Demand for anticodons with low abundancy is shown to cause above-average ribosome dwelling times. Codon usage bias correlates strongly both with protein synthesis rates and elongation rates. Applying the model to a time-resolved transcriptome estimated by combining data from FISH and RNA-Seq experiments, it could be shown that increased total transcript abundance during the cell cycle decreases translation efficiency at single transcript level. Translation efficiency grouped by gene function shows highest values for ribosomal and glycolytic genes. Ribosomal proteins peak in S phase while glycolytic proteins rank highest in later cell cycle phases.
Collapse
|
5
|
Wilkinson MD, Ferreira JL, Beeby M, Baum J, Willison KR. The malaria parasite chaperonin containing TCP-1 (CCT) complex: Data integration with other CCT proteomes. Front Mol Biosci 2022; 9:1057232. [PMID: 36567946 PMCID: PMC9772883 DOI: 10.3389/fmolb.2022.1057232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The multi-subunit chaperonin containing TCP-1 (CCT) is an essential molecular chaperone that functions in the folding of key cellular proteins. This paper reviews the interactome of the eukaryotic chaperonin CCT and its primary clients, the ubiquitous cytoskeletal proteins, actin and tubulin. CCT interacts with other nascent proteins, especially the WD40 propeller proteins, and also assists in the assembly of several protein complexes. A new proteomic dataset is presented for CCT purified from the human malarial parasite, P. falciparum (PfCCT). The CCT8 subunit gene was C-terminally FLAG-tagged using Selection Linked Integration (SLI) and CCT complexes were extracted from infected human erythrocyte cultures synchronized for maximum expression levels of CCT at the trophozoite stage of the parasite's asexual life cycle. We analyze the new PfCCT proteome and incorporate it into our existing model of the CCT system, supported by accumulated data from biochemical and cell biological experiments in many eukaryotic species. Together with measurements of CCT mRNA, CCT protein subunit copy number and the post-translational and chemical modifications of the CCT subunits themselves, a cumulative picture is emerging of an essential molecular chaperone system sitting at the heart of eukaryotic cell growth control and cell cycle regulation.
Collapse
Affiliation(s)
- Mark D. Wilkinson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Josie L. Ferreira
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Morgan Beeby
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, United Kingdom,School of Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Keith R. Willison
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom,*Correspondence: Keith R. Willison,
| |
Collapse
|
6
|
Slowest possible replicative life at frigid temperatures for yeast. Nat Commun 2022; 13:7518. [PMID: 36473846 PMCID: PMC9726825 DOI: 10.1038/s41467-022-35151-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Determining whether life can progress arbitrarily slowly may reveal fundamental barriers to staying out of thermal equilibrium for living systems. By monitoring budding yeast's slowed-down life at frigid temperatures and with modeling, we establish that Reactive Oxygen Species (ROS) and a global gene-expression speed quantitatively determine yeast's pace of life and impose temperature-dependent speed limits - shortest and longest possible cell-doubling times. Increasing cells' ROS concentration increases their doubling time by elongating the cell-growth (G1-phase) duration that precedes the cell-replication (S-G2-M) phase. Gene-expression speed constrains cells' ROS-reducing rate and sets the shortest possible doubling-time. To replicate, cells require below-threshold concentrations of ROS. Thus, cells with sufficiently abundant ROS remain in G1, become unsustainably large and, consequently, burst. Therefore, at a given temperature, yeast's replicative life cannot progress arbitrarily slowly and cells with the lowest ROS-levels replicate most rapidly. Fundamental barriers may constrain the thermal slowing of other organisms' lives.
Collapse
|
7
|
Choudhary K, Itzkovich Z, Alonso-Perez E, Bishara H, Dunn B, Sherlock G, Kupiec M. S. cerevisiae Cells Can Grow without the Pds5 Cohesin Subunit. mBio 2022; 13:e0142022. [PMID: 35708277 PMCID: PMC9426526 DOI: 10.1128/mbio.01420-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
During DNA replication, the newly created sister chromatids are held together until their separation at anaphase. The cohesin complex is in charge of creating and maintaining sister chromatid cohesion (SCC) in all eukaryotes. In Saccharomyces cerevisiae cells, cohesin is composed of two elongated proteins, Smc1 and Smc3, bridged by the kleisin Mcd1/Scc1. The latter also acts as a scaffold for three additional proteins, Scc3/Irr1, Wpl1/Rad61, and Pds5. Although the HEAT-repeat protein Pds5 is essential for cohesion, its precise function is still debated. Deletion of the ELG1 gene, encoding a PCNA unloader, can partially suppress the temperature-sensitive pds5-1 allele, but not a complete deletion of PDS5. We carried out a genetic screen for high-copy-number suppressors and another for spontaneously arising mutants, allowing the survival of a pds5Δ elg1Δ strain. Our results show that cells remain viable in the absence of Pds5 provided that there is both an elevation in the level of Mcd1 (which can be due to mutations in the CLN2 gene, encoding a G1 cyclin), and an increase in the level of SUMO-modified PCNA on chromatin (caused by lack of PCNA unloading in elg1Δ mutants). The elevated SUMO-PCNA levels increase the recruitment of the Srs2 helicase, which evicts Rad51 molecules from the moving fork, creating single-stranded DNA (ssDNA) regions that serve as sites for increased cohesin loading and SCC establishment. Thus, our results delineate a double role for Pds5 in protecting the cohesin ring and interacting with the DNA replication machinery. IMPORTANCE Sister chromatid cohesion is vital for faithful chromosome segregation, chromosome folding into loops, and gene expression. A multisubunit protein complex known as cohesin holds the sister chromatids from S phase until the anaphase stage. In this study, we explore the function of the essential cohesin subunit Pds5 in the regulation of sister chromatid cohesion. We performed two independent genetic screens to bypass the function of the Pds5 protein. We observe that Pds5 protein is a cohesin stabilizer, and elevating the levels of Mcd1 protein along with SUMO-PCNA accumulation on chromatin can compensate for the loss of the PDS5 gene. In addition, Pds5 plays a role in coordinating the DNA replication and sister chromatid cohesion establishment. This work elucidates the function of cohesin subunit Pds5, the G1 cyclin Cln2, and replication factors PCNA, Elg1, and Srs2 in the proper regulation of sister chromatid cohesion.
Collapse
Affiliation(s)
- Karan Choudhary
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Ziv Itzkovich
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Elisa Alonso-Perez
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Hend Bishara
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| | - Barbara Dunn
- Departments of Genetics, Stanford University, Stanford, California, USA
| | - Gavin Sherlock
- Departments of Genetics, Stanford University, Stanford, California, USA
| | - Martin Kupiec
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
8
|
Buskirk S, Skibbens RV. G1-Cyclin2 (Cln2) promotes chromosome hypercondensation in eco1/ctf7 rad61 null cells during hyperthermic stress in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2022; 12:6613937. [PMID: 35736360 PMCID: PMC9339302 DOI: 10.1093/g3journal/jkac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Eco1/Ctf7 is a highly conserved acetyltransferase that activates cohesin complexes and is critical for sister chromatid cohesion, chromosome condensation, DNA damage repair, nucleolar integrity, and gene transcription. Mutations in the human homolog of ECO1 (ESCO2/EFO2), or in genes that encode cohesin subunits, result in severe developmental abnormalities and intellectual disabilities referred to as Roberts syndrome and Cornelia de Lange syndrome, respectively. In yeast, deletion of ECO1 results in cell inviability. Codeletion of RAD61 (WAPL in humans), however, produces viable yeast cells. These eco1 rad61 double mutants, however, exhibit a severe temperature-sensitive growth defect, suggesting that Eco1 or cohesins respond to hyperthermic stress through a mechanism that occurs independent of Rad61. Here, we report that deletion of the G1 cyclin CLN2 rescues the temperature-sensitive lethality otherwise exhibited by eco1 rad61 mutant cells, such that the triple mutant cells exhibit robust growth over a broad range of temperatures. While Cln1, Cln2, and Cln3 are functionally redundant G1 cyclins, neither CLN1 nor CLN3 deletions rescue the temperature-sensitive growth defects otherwise exhibited by eco1 rad61 double mutants. We further provide evidence that CLN2 deletion rescues hyperthermic growth defects independent of START and impacts the state of chromosome condensation. These findings reveal novel roles for Cln2 that are unique among the G1 cyclin family and appear critical for cohesin regulation during hyperthermic stress.
Collapse
Affiliation(s)
- Sean Buskirk
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
9
|
Bereketoglu C, Nacar G, Sari T, Mertoglu B, Pradhan A. Transcriptomic analysis of nonylphenol effect on Saccharomyces cerevisiae. PeerJ 2021; 9:e10794. [PMID: 33614281 PMCID: PMC7882136 DOI: 10.7717/peerj.10794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022] Open
Abstract
Nonylphenol (NP) is a bioaccumulative environmental estrogen that is widely used as a nonionic surfactant. We have previously examined short-term effects of NP on yeast cells using microarray technology. In the present study, we investigated the adaptive response of Saccharomyces cerevisiae BY4742 cells to NP exposure by analyzing genome-wide transcriptional profiles using RNA-sequencing. We used 2 mg/L NP concentration for 40 days of exposure. Gene expression analysis showed that a total of 948 genes were differentially expressed. Of these, 834 genes were downregulated, while 114 genes were significantly upregulated. GO enrichment analysis revealed that 369 GO terms were significantly affected by NP exposure. Further analysis showed that many of the differentially expressed genes were associated with oxidative phosphorylation, iron and copper acquisition, autophagy, pleiotropic drug resistance and cell cycle progression related processes such as DNA and mismatch repair, chromosome segregation, spindle checkpoint activity, and kinetochore organization. Overall, these results provide considerable information and a comprehensive understanding of the adaptive response to NP exposure at the gene expression level.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Iskenderun Technical University, Hatay, Turkey
| | - Gozde Nacar
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Tugba Sari
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Bulent Mertoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|