1
|
Kiliç CS, Kisla MM, Amasya G, Sengel-Türk CT, Alagöz ZA, Gençler Özkan AM, Ates I, Gümüsok S, Herrera-Bravo J, Sharifi-Rad J, Calina D. Rhoifolin: A promising flavonoid with potent cytotoxic and anticancer properties: molecular mechanisms and therapeutic potential. EXCLI JOURNAL 2025; 24:289-320. [PMID: 40071026 PMCID: PMC11895061 DOI: 10.17179/excli2024-7836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Rhoifolin is a flavonoid found in various plant species, especially within the Rutaceae family, and is considered a dietary component due to its presence in edible plants. Its bioactive properties, such as cytotoxic and anticancer activities, have gained significant attention. This review aims to highlight the general properties and diverse bioactivities of rhoifolin, with a particular focus on its cytotoxic and anticancer effects. This is based on a comprehensive literature search, focusing on the presence of rhoifolin in different plant species and its biological activities, particularly its anticancer properties. Rhoifolin is widely distributed in the plant kingdom, especially in Citrus species. It exhibits a variety of bioactivities, including strong cytotoxic and anticancer effects. Recent studies have shown that rhoifolin can induce apoptosis and inhibit cancer cell proliferation, making it a promising candidate for anticancer therapies. Rhoifolin's diverse bioactivities, particularly its cytotoxic and anticancer properties, position it as a potential therapeutic agent. Further detailed investigations into its molecular mechanisms and well-designed clinical studies are needed to fully understand and utilize its therapeutic potential. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Ceyda Sibel Kiliç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Mehmet Murat Kisla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Gülin Amasya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Ceyda Tugba Sengel-Türk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Zeynep Ates Alagöz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Ayse Mine Gençler Özkan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Ilker Ates
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University,Tandogan, Türkiye
| | - Safa Gümüsok
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Tandogan, Türkiye
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón 092301, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
2
|
Butler CJ, Larson M. Climate change winners and losers: The effects of climate change on five palm species in the Southeastern United States. Ecol Evol 2020; 10:10408-10425. [PMID: 33072269 PMCID: PMC7548205 DOI: 10.1002/ece3.6697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 11/12/2022] Open
Abstract
Palms (Arecaceae) are a relatively speciose family and provide materials for food, construction, and handicraft, especially in the tropics. They are frequently used as paleo‐indicators for megathermal climates, and therefore, it is logical to predict that palms will benefit from predicted warmer temperatures under anthropogenic climate change. We created species distribution models to explore the projected ranges of five widespread southeastern North American palm species (Rhapidophyllum hystrix, Sabal etonia, Sabal minor, Sabal palmetto, and Serenoa repens) under four climate change scenarios through 2070. We project that the amount of habitat with >50% suitability for S. etonia will decline by a median of 50% by 2070, while the amount of habitat with >50% suitability S. minor will decline by a median of 97%. In contrast, the amount of suitable habitat for Rhapidophyllum hystrix will remain stable, while the amount of suitable habitat for Serenoa repens will slightly increase. The projected distribution for S. palmetto will increase substantially, by a median of approximately 21% across all scenarios. The centroid of the range of each species will shift generally north at a median rate of 23.5 km/decade. These five palm species have limited dispersal ability and require a relatively long time to mature and set fruit. Consequently, it is likely that the change in the distribution of these palms will lag behind the projected changes in climate. However, Arecaceae can modify physiological responses to heat and drought, which may permit these palms to persist as local conditions become increasingly inappropriate. Nonetheless, this plasticity is unlikely to indefinitely prevent local extinctions.
Collapse
Affiliation(s)
| | - Matt Larson
- Department of Biology University of Central Oklahoma Edmond OK USA
| |
Collapse
|
3
|
Jaiswal YS, Yerke AM, Bagley MC, Ekelöf M, Weber D, Haddad D, Fodor A, Muddiman DC, Williams LL. 3D Imaging and metabolomic profiling reveal higher neuroactive kavalactone contents in lateral roots and crown root peels of Piper methysticum (kava). Gigascience 2020; 9:giaa096. [PMID: 32960942 PMCID: PMC7507772 DOI: 10.1093/gigascience/giaa096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Kava is an important neuroactive medicinal plant. While kava has a large global consumer footprint for its clinical and recreational use, factors related to its use lack standardization and the tissue-specific metabolite profile of its neuroactive constituents is not well understood. RESULTS Here we characterized the metabolomic profile and spatio-temporal characteristics of tissues from the roots and stems using cross-platform metabolomics and a 3D imaging approach. Gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry revealed the highest content of kavalactones in crown root peels and lateral roots. Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging revealed a unique tissue-specific presence of each target kavalactone. X-ray micro-computed tomography analysis demonstrated that lateral roots have morphological characteristics suitable for synthesis of the highest content of kavalactones. CONCLUSIONS These results provide mechanistic insights into the social and clinical practice of the use of only peeled roots by linking specific tissue characteristics to concentrations of neuroactive compounds.
Collapse
Affiliation(s)
- Yogini S Jaiswal
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Aaron M Yerke
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - M Caleb Bagley
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Måns Ekelöf
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel Weber
- Fraunhofer Development Centre X-Ray Technology EZRT, Division of Fraunhofer Institute for Integrated Circuits IIS, Department Magnetic Resonance and X-Ray Imaging MRB, Am Hubland D-97074 Wurzburg, Germany
| | - Daniel Haddad
- Fraunhofer Development Centre X-Ray Technology EZRT, Division of Fraunhofer Institute for Integrated Circuits IIS, Department Magnetic Resonance and X-Ray Imaging MRB, Am Hubland D-97074 Wurzburg, Germany
| | - Anthony Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27695, USA
| | - Leonard L Williams
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| |
Collapse
|
4
|
Plant-Derived Supplements for Sexual Health and Problems: Part 1—Trends over the Past Decade. CURRENT SEXUAL HEALTH REPORTS 2019. [DOI: 10.1007/s11930-019-00203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|