1
|
Hohenwarter L, Böttger R, Li SD. Modification and Delivery of Enkephalins for Pain Modulation. Int J Pharm 2023; 646:123425. [PMID: 37739096 DOI: 10.1016/j.ijpharm.2023.123425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Chronic pain negatively affects patient's quality of life and poses a significant economic burden. First line pharmaceutical treatment of chronic pain, including NSAIDs or antidepressants, is often inefficient to reduce pain, or produces intolerable adverse effects. In such cases, opioids are frequently prescribed for their potent analgesia, but chronic opioid use is also frequently associated with debilitating side effects that may offset analgesic benefits. Nonetheless, opioids continue to be widely utilized due to the lack of effective alternative analgesics. Since their discovery in 1975, a class of endogenous opioids called enkephalins (ENKs) have been investigated for their ability to relieve pain with significantly reduced adverse effects compared to conventional opioids. Their low metabolic stability and inability to cross biological membranes, however, make ENKs ineffective analgesics. Over past decades, much effort has been invested to overcome these limitations and develop ENK-based pain therapies. This review summarizes and describes chemical modifications and ENK delivery technologies utilizing ENK conjugates, nanoparticles and ENK gene delivery approaches and discusses valid lessons, challenges, and future directions of this evolving field.
Collapse
Affiliation(s)
- Lukas Hohenwarter
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
2
|
Kumar Sharma A, Satpati D, Sharma R, Das A, Dev Sarma H, Mukherjee A. Targeting HER2-Receptors with 177Lu-Labeled Triazole Stapled Cyclic Peptidomimetic. Bioorg Chem 2023; 135:106503. [PMID: 37037128 DOI: 10.1016/j.bioorg.2023.106503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
In this study on-resin Cu(I)-catalyzed click reaction was performed to synthesize triazole-stapled cyclic peptidomimetic, DOTA-c[TZ]A9 targeting HER2 receptor expression in breast cancers. Spectroscopic (circular dichroism) and docking analysis provided evidence of enhanced helicity and secondary structure stabilization along with improved HER2 affinity in comparison to the corresponding linear peptide, DOTA-[Pra1, Aza7]A9. 177Lu-labeled cyclic peptide, 177Lu-DOTA-c[TZ]A9 displayed higher in vitro serum stability and in vivo metabolic stability and better HER2 binding affinity {Kd of 16.93 ± 3.02 nM} than the linear counterpart, [177Lu]DOTA-[Pra1, Aza7]A9 {Kd of 26.28 ± 2.87 nM}. Biodistribution profile in SKBR3 tumor bearing SCID mice demonstrated elevated radioactivity levels and prolonged retention of cyclic peptide in the tumor compared to the linear peptide. Thus, solid phase click cyclization technique can be extended towards preparation of triazole-stapled peptides targeting different receptors with improved stability and efficacy.
Collapse
|
3
|
Li X, Guo Y, Li J, Yu Z, Cheng J, Ren F, Jia H, Zhang Y, Cui S, Zhang T, Shi W. Discovery and Structural Explorations of G-Protein Biased μ-Opioid Receptor Agonists. ChemMedChem 2022; 17:e202200416. [PMID: 36210341 DOI: 10.1002/cmdc.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/04/2022] [Indexed: 01/14/2023]
Abstract
Compounds that activate only the G-protein signalling pathway represent an effective strategy for making safer opioids. In the present study, we report the design, synthesis and evaluation of two classes of novel PZM21 derivatives containing the benzothiophene ring and biphenyl ring group respectively as biased μ-opioid receptor (μOR) agonists. The new compound SWG-LX-33 showed potent μOR agonist activity and produced μOR-dependent analgesia. SWG-LX-33 does not activate the β-arrestin-2 signalling pathway in vitro even at high concentrations. Computational docking demonstrated the amino acid residue ASN150 to be critical for the weak efficacy and potency of μOR agonists in arrestin recruitment.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, P. R. China
- State National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100061, P. R. China
| | - Yanhao Guo
- College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Jing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, P. R. China
| | - Zixing Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, P. R. China
| | - Jingchao Cheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, P. R. China
| | - Fengxia Ren
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, P. R. China
| | - Hongxin Jia
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, P. R. China
| | - Yatong Zhang
- College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Shiqiang Cui
- College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Tao Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, P. R. China
| | - Weiguo Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing, 100850, P. R. China
| |
Collapse
|
4
|
Anil DA, Aydin BO, Demir Y, Turkmenoglu B. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Fallah Z, Tajbakhsh M, Alikhani M, Larijani B, Faramarzi MA, Hamedifar H, Mohammadi-Khanaposhtani M, Mahdavi M. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Design and synthesis of first environment-sensitive coumarin fluorescent agonists for MrgX2. Int J Biol Macromol 2022; 203:481-491. [PMID: 35051504 DOI: 10.1016/j.ijbiomac.2022.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 11/24/2022]
Abstract
Mas related G-protein-coupled receptor member X2 (MrgX2) has been identified as the crucial receptor in drug induced pseudo-allergic reactions and allergic diseases. In this research, the first type of fluorescent agonists (ZX1, ZX2 and ZX3) for MrgX2 were developed by conjugating environment-sensitive fluorophore coumarin to MrgX2 selective agonists (R)-ZINC-3573. Their environment-sensitive property was confirmed by the dramatically increase of fluorescent intensity after binding to the hydrophobic ligand binding domain MrgX2, which help to overcome the high background signal. Based on these characteristics, they can be used for selective visualization of MrgX2 in living cells even with their own background interference. Among these fluorescent agonists, compound ZX2 possessed splendid spectroscopic properties, outstanding pharmacological activities (EC50 = 0.93 μM, KD = 1.97 μM). And a competitive binding assay was established with ZX2 to analysis the binding affinity of MrgX2 agonists, which shown high coherence with the results of cell membrane chromatography. To our knowledge, these probes are the first fluorescent ligands of MrgX2 with agonistic activity and environment-sensitive property, which is expected to use for the development of MrgX2 molecular pharmacology and serve as a convenient high-throughput screening tool for the drug candidates targeting MrgX2.
Collapse
|
7
|
LC-MS Based Analysis and Biological Properties of Pseudocedrela kotschyi (Schweinf.) Harms Extracts: A Valuable Source of Antioxidant, Antifungal, and Antibacterial Compounds. Antioxidants (Basel) 2021; 10:antiox10101570. [PMID: 34679706 PMCID: PMC8533236 DOI: 10.3390/antiox10101570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
The impact of two extraction solvents on the phenolic composition, antioxidant, and enzymes inhibitory and antimicrobial activities of two parts (leaves and stem bark) of P. kotschyi was studied. Two different LC-DAD-MSn approaches were used to identify and quantify the bioactive compounds in the different extracts. A total of thirty-two compounds were quantified, being the procyanidin the most abundant in stem bark while catechin and flavonoids are most abundant in leaves. Overall, the stem bark extraction using methanol showed higher amounts of total phenolic (131.83 ± 1.81 mg GAE/g) and flavanol (14.14 ± 0.11 mg CE/g) while the leaves extraction using water exhibited stronger levels of total flavonoid (44.95 ± 0.38 mg RE/g) and phenolic acid (63.58 ± 2.00 mg CAE/g). As regards the antioxidant assays, methanol stem bark extracts were characterized by the highest antioxidant activities (DPPH: 1.94 ± 0.01 mmol TE/g, ABTS: 3.31 ± 0.01 mmol TE/g, FRAP: 2.86 ± 0.02 mmol TE/g, CUPRAC: 5.09 ± 0.08 mmol TE/g, phosphomolybdenum: 5.16 ± 0.23 mmol TE/g and metal chelating: 17.12 ± 0.46 mg EDTAE/g). In addition, the methanolic extracts of stem bark had highest impact on acetylcholinesterase (2.54 mg GALAE/g), butyrylcholinesterase (5.48 mg GALAE/g). In contrast, the methanolic extracts of leaves was potent against tyrosinase (77.39 ± 0.21 mg KAE/g) and α-glucosidase (0.97 ± 0.01 mmol ACAE/g), while a higher anti-α–amylase (0.97 ± 0.01 mmol ACAE/g) was observed for water extracts of the same part. All of the tested extracts showed inhibitory effects on elastase, except methanolic leaves extracts. Additionally, the extracts exhibited appreciable antifungal toward A. ochraceus, A. fumigatus, P. ochrochloron, T. viride, and P. funiculosum and promising antibacterial activity against M. flavus, S. aureus, L. monocytogenes, E. coli, P. aeruginosa, E. cloacae, and S. typhimurium. Taken together, the outcomes demonstrated P. kotschyi as a novel source of bioactive molecules of interest with an evident therapeutic value.
Collapse
|
8
|
Abstract
This paper is the forty-second consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2019 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
9
|
Wang Y, Yao J, Cai L, Liu T, Wang X, Zhang Y, Zhou Z, Li T, Liu M, Lai R, Liu X. Bone-Targeted Extracellular Vesicles from Mesenchymal Stem Cells for Osteoporosis Therapy. Int J Nanomedicine 2020; 15:7967-7977. [PMID: 33116512 PMCID: PMC7573321 DOI: 10.2147/ijn.s263756] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background Current drugs used for osteoporosis therapy show strong adverse effects. Stem cell-derived extracellular vesicles (EVs) provide another choice for osteoporosis therapy. Mouse mesenchymal stem cells (mMSCs)-derived EVs promote bone regeneration; however, their clinical application is limited due to non-specific tissue targeting. Alendronate specifically targets bone tissue via hydroxyapatite. Therefore, EVs were combined with alendronate to generate Ale-EVs by “click chemistry” to facilitate EVs targeting bone via alendronate/hydroxyapatite binding. Methods Ale-EVs were characterized based on size using dynamic light scattering analysis and morphology was visualized by transmission electron microscopy. Hydroxyapatite affinity of Ale-EVs was detected by flow cytometry. Bone targeting of Ale-EVs was tested by ex vivo fluorescent imaging. Cell viability was assessed by using WST-8 reduction assay kit for testing the ability of Ale-EVs to promote mMSCs proliferation. Alkaline phosphatase experiment was used to detect ability of Ale-EVs to promote differentiation of mouse mesenchymal stem cells in vitro. Western blotting and Q-PCR assay were used to detect the early marker of osteogenic differentiation. Antiosteoporotic effects of Ale-EVs were detected in ovariectomy (OVX)-induced osteoporosis rat model. The safety of the Ale-EVs in vivo was measured by H&E staining and serum markers assay. Results In vitro, Ale-EVs had high affinity with hydroxyapatite. Also, ex vivo data indicated that Ale-EVs-DiD treatment of mice induced strong fluorescece in bone tissues compared with EVs-DiD group. Furthermore, results suggested that Ale-EVs promoted the growth and differentiation of mouse MSCs. They also protected against osteoporosis in ovariectomy (OVX)-induced osteoporotic rats. Ale-EVs were well tolerated and no side effects were found, indicating that Ale-EVs specifically target bone and can be used as a new therapeutic in osteoporosis treatment. Conclusion We used the Ale-N3 to modify mouse mesenchymal stem cells-derived extracellular vesicles by copper-free “click chemistry” to generate a Ale-EVs system. The Ale-EVs had a high affinity for bone and have great potential for clinical applications in osteoporosis therapy with low systemic toxicity.
Collapse
Affiliation(s)
- Yayu Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jie Yao
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Lizhao Cai
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Tong Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaogang Wang
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Ye Zhang
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Zhiying Zhou
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Tingwei Li
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Minyi Liu
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Renfa Lai
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Xiangning Liu
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
10
|
Plant-derived peptides rubiscolin-6, soymorphin-6 and their c-terminal amide derivatives: Pharmacokinetic properties and biological activity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
D'Ercole A, Sabatino G, Pacini L, Impresari E, Capecchi I, Papini AM, Rovero P. On‐resin microwave‐assisted copper‐catalyzed azide‐alkyne cycloaddition of H1‐relaxin B single chain ‘stapled’ analogues. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Annunziata D'Ercole
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry ‘Ugo Schiff’University of Florence Sesto Fiorentino Italy
- FIS Fabbrica Italiana Sintetici S.p.A Vicenza Italy
| | - Giuseppina Sabatino
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry ‘Ugo Schiff’University of Florence Sesto Fiorentino Italy
- CNR‐IC Istituto di Cristallografia Catania Italy
| | | | - Elisa Impresari
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and NutraceuticsUniversity of Florence Sesto Fiorentino Italy
| | - Ilaria Capecchi
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and NutraceuticsUniversity of Florence Sesto Fiorentino Italy
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry ‘Ugo Schiff’University of Florence Sesto Fiorentino Italy
- CNR‐IC Istituto di Cristallografia Catania Italy
- PeptLab@UCP and Laboratory of Chemical Biology EA4505CY Cergy Paris University Cergy‐Pontoise France
| | - Paolo Rovero
- CNR‐IC Istituto di Cristallografia Catania Italy
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and NutraceuticsUniversity of Florence Sesto Fiorentino Italy
| |
Collapse
|
12
|
Placines C, Castañeda-Loaiza V, João Rodrigues M, G. Pereira C, Stefanucci A, Mollica A, Zengin G, Llorent-Martínez EJ, Castilho PC, Custódio L. Phenolic Profile, Toxicity, Enzyme Inhibition, In Silico Studies, and Antioxidant Properties of Cakile maritima Scop. (Brassicaceae) from Southern Portugal. PLANTS (BASEL, SWITZERLAND) 2020; 9:E142. [PMID: 31979182 PMCID: PMC7076647 DOI: 10.3390/plants9020142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
Cakile maritima Scop. (sea rocket) is an edible halophyte plant with several ethnomedicinal uses. This work reports the chemical profile and bioactivities of food grade extracts from sea rocket organs. Toxicity was determined on mammalian cells, and phenolic profiling and the quantitation of the main metabolites were made by high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Enzymatic inhibition was determined towards acetyl- and butyrylcholinesterase (AChE, BuChE), α-glucosidase, α-amylase, and tyrosinase. Docking studies were performed to tyrosinase, on the major metabolites, and samples were tested for antioxidant properties. Extracts were not toxic, were constituted mainly by flavonoids, and some compounds (roseoside and oleuropein) are here described for the first time in the species. The aerial organs' ethanol extract had relevant activity towards 2,2-diphenyl-1-picrylhydrazyl [DPPH, half maximal inhibitory concentration (IC50) = 0.59 mg/mL], and ferric-reducing activity power (FRAP, IC50 = 0.99 mg/mL). All samples were more active towards AChE than on BuChE. The ethanol fruits' extract inhibited α-glucosidase [2.19 mmol of equivalent of acarbose (ACAE)/g]. Samples were active against tyrosinase, especially the aerial organs' ethanol extracts [25.9 mg of equivalent of kojic acid (KAE)/g]. Quercetin and kaempferol glycosides fit well into the enzymatic pocket of tyrosinase. Our results suggest sea rocket as a candidate to be further explored as a source of bioactive products.
Collapse
Affiliation(s)
- Chloé Placines
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (C.P.); (V.C.-L.); (M.J.R.); (C.G.P.)
| | - Viana Castañeda-Loaiza
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (C.P.); (V.C.-L.); (M.J.R.); (C.G.P.)
| | - Maria João Rodrigues
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (C.P.); (V.C.-L.); (M.J.R.); (C.G.P.)
| | - Catarina G. Pereira
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (C.P.); (V.C.-L.); (M.J.R.); (C.G.P.)
| | - Azzurra Stefanucci
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (A.M.)
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.S.); (A.M.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42250 Konya, Turkey;
| | - Eulogio J. Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain;
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, University of Algarve, Ed. 7, Campus of Gambelas, 8005-139 Faro, Portugal; (C.P.); (V.C.-L.); (M.J.R.); (C.G.P.)
| |
Collapse
|
13
|
Stefanucci A, Dimmito MP, Macedonio G, Ciarlo L, Pieretti S, Novellino E, Lei W, Barlow D, Houseknecht KL, Streicher JM, Mollica A. Potent, Efficacious, and Stable Cyclic Opioid Peptides with Long Lasting Antinociceptive Effect after Peripheral Administration. J Med Chem 2019; 63:2673-2687. [DOI: 10.1021/acs.jmedchem.9b01963] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marilisa Pia Dimmito
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giorgia Macedonio
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Laura Ciarlo
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei Farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Pieretti
- Istituto Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei Farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Via D. Montesano, 49, 80131 Naples, Italy
| | - Wei Lei
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Deborah Barlow
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - Karen L. Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
14
|
A Survey of Molecular Imaging of Opioid Receptors. Molecules 2019; 24:molecules24224190. [PMID: 31752279 PMCID: PMC6891617 DOI: 10.3390/molecules24224190] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023] Open
Abstract
The discovery of endogenous peptide ligands for morphine binding sites occurred in parallel with the identification of three subclasses of opioid receptor (OR), traditionally designated as μ, δ, and κ, along with the more recently defined opioid-receptor-like (ORL1) receptor. Early efforts in opioid receptor radiochemistry focused on the structure of the prototype agonist ligand, morphine, although N-[methyl-11C]morphine, -codeine and -heroin did not show significant binding in vivo. [11C]Diprenorphine ([11C]DPN), an orvinol type, non-selective OR antagonist ligand, was among the first successful PET tracers for molecular brain imaging, but has been largely supplanted in research studies by the μ-preferring agonist [11C]carfentanil ([11C]Caf). These two tracers have the property of being displaceable by endogenous opioid peptides in living brain, thus potentially serving in a competition-binding model. Indeed, many clinical PET studies with [11C]DPN or [11C]Caf affirm the release of endogenous opioids in response to painful stimuli. Numerous other PET studies implicate μ-OR signaling in aspects of human personality and vulnerability to drug dependence, but there have been very few clinical PET studies of μORs in neurological disorders. Tracers based on naltrindole, a non-peptide antagonist of the δ-preferring endogenous opioid enkephalin, have been used in PET studies of δORs, and [11C]GR103545 is validated for studies of κORs. Structures such as [11C]NOP-1A show selective binding at ORL-1 receptors in living brain. However, there is scant documentation of δ-, κ-, or ORL1 receptors in healthy human brain or in neurological and psychiatric disorders; here, clinical PET research must catch up with recent progress in radiopharmaceutical chemistry.
Collapse
|
15
|
Avula SK, Khan A, Halim SA, Al-Abri Z, Anwar MU, Al-Rawahi A, Csuk R, Al-Harrasi A. Synthesis of novel (R)-4-fluorophenyl-1H-1,2,3-triazoles: A new class of α-glucosidase inhibitors. Bioorg Chem 2019; 91:103182. [DOI: 10.1016/j.bioorg.2019.103182] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/04/2019] [Accepted: 08/01/2019] [Indexed: 01/19/2023]
|
16
|
Discovery of Orexant and Anorexant Agents with Indazole Scaffold Endowed with Peripheral Antiedema Activity. Biomolecules 2019; 9:biom9090492. [PMID: 31527522 PMCID: PMC6770484 DOI: 10.3390/biom9090492] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 01/16/2023] Open
Abstract
The endocannabinoid system represents an integrated neuronal network involved in the control of several organisms' functions, such as feeding behavior. A series of hybrids of 5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (mimonabant), a well-known inverse agonist of the type-1 cannabinoid receptor (CB1), once used as an antiobesity drug, and the N-(2S)-substitutes of 1-[(4-fluorophenyl)methyl]indazole-3-carboxamide with 1-amino-3-methyl-1-oxobutane (AB-Fubinaca), 1-amino-3,3-dimethyl-1-oxobutane (ADB-Fubinaca), and 3-methylbutanoate (AMB-Fubinaca), endowed with potent agonistic activity towards cannabinoid receptors CB1 and CB2 were in solution as C-terminal amides, acids, methyl esters and N-methyl amides. These compounds have been studied by binding assays to cannabinoid receptors and by functional receptor assays, using rat brain membranes in vitro. The most active among them as an agonist, (S)-1-(2,4-dichlorobenzyl)-N-(3,3-dimethyl-1-(methylamino)-1-oxobutan-2-yl)-1H-indazole-3-carboxamide (LONI11), and an antagonist, (S)-2-(1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamido)-3-methylbutanoic acid (LONI4), were tested in vivo in mic, to evaluate their ability to stimulate or suppress feeding behavior after intraperitoneal (i.p.) administration. For a LONI11 formalin test and a tail flick test after an administration by the subcutaneous (s.c.) and intracerebroventricular (i.c.v.) routes, respectively, were also carried out in vivo in mice to investigate the antinociceptive property at the central and peripheral levesl. We observed a significant orexant effect for LONI11 and an intense anorexant effect for (S)-methyl 2-(1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxamido)-3,3-dimethylbutanoate (LONI2) and LONI4. In zymosan-induced edema and hyperalgesia, LONI11 reduced the percent of paw volume increase and paw latency after s.c. administration, also suggesting a possible peripheral anti-inflammatory activity.
Collapse
|