1
|
Takeda A, Mizuyama K, Fukuda T, Ikeda H, Okawara M, Akagi Y, Ikeura S, Tamano H. Beneficial effect of Juncus effusus extract powder enriched with dehydroeffusol on the cognitive and dexterous performance of elderly people: A randomized, double-blind, placebo-controlled, parallel-group study. Nutrition 2025; 134:112712. [PMID: 40068564 DOI: 10.1016/j.nut.2025.112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 04/12/2025]
Abstract
On the basis of the evidence that dehydroeffusol prevents human amyloid-β-induced memory deficit and neurodegeneration in mice, here we tested the effect of a Juncus effusus extract powder enriched with dehydroeffusol on the cognitive and dexterous performance of elderly people. A randomized, double-blind, placebo-controlled, parallel-group study was conducted in 41 participants (averaged age: 69 years) randomly divided into test and placebo groups who received a test tablet and a placebo tablet, respectively, once a day for 24 weeks. Changes in cognitive function were assessed using the Five-Cog test 24 weeks after the start of intake. The task scores of the test group were significantly higher in the clue recall and clock-drawing tasks than in the placebo group, suggesting that intake of J. effusus extract powder may improve the cognitive function of elderly people. Moreover, the task score of the test group was significantly higher for the assembly task in the dexterity test than the placebo group, suggesting that intake of J. effusus extract powder may improve the dexterous movement of elderly people. No adverse events were clinically observed during the study. The present study first suggests that intake of J. effusus extract powder enriched with dehydroeffusol is of benefit to the cognitive and dexterous performance of elderly people.
Collapse
Affiliation(s)
- Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan.
| | - Kazuyuki Mizuyama
- Medical Corporation Dojin Memorial Meiwa Hospital, Kandasudacho, Chiyoda-ku, Tokyo, Japan
| | | | - Hiroki Ikeda
- Satoen CO., LTD., 1057 Ohhara, Aoi-ku Shizuoka, Japan
| | | | - Yasuhito Akagi
- Hagihara & CO., LTD., 884 Nishibara, Nishiachicho, Kurashiki, Japan
| | - Shinji Ikeura
- Hagihara & CO., LTD., 884 Nishibara, Nishiachicho, Kurashiki, Japan
| | - Haruna Tamano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
2
|
Takeda A, Tamano H. Insight into brain metallothioneins from bidirectional Zn2+ signaling in synaptic dynamics. Metallomics 2024; 16:mfae039. [PMID: 39223100 DOI: 10.1093/mtomcs/mfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
The basal levels as the labile Zn2+ pools in the extracellular and intracellular compartments are in the range of ∼10 nM and ∼100 pM, respectively. The influx of extracellular Zn2+ is used for memory via cognitive activity and is regulated for synaptic plasticity, a cellular mechanism of memory. When Zn2+ influx into neurons excessively occurs, however, it becomes a critical trigger for cognitive decline and neurodegeneration, resulting in acute and chronic pathogenesis. Aging, a biological process, generally accelerates vulnerability to neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). The basal level of extracellular Zn2+ is age relatedly increased in the rat hippocampus, and the influx of extracellular Zn2+ contributes to accelerating vulnerability to the AD and PD pathogenesis in experimental animals with aging. Metallothioneins (MTs) are Zn2+-binding proteins for cellular Zn2+ homeostasis and involved in not only supplying functional Zn2+ required for cognitive activity, but also capturing excess (toxic) Zn2+ involved in cognitive decline and neurodegeneration. Therefore, it is estimated that regulation of MT synthesis is involved in both neuronal activity and neuroprotection. The present report provides recent knowledge regarding the protective/preventive potential of MT synthesis against not only normal aging but also the AD and PD pathogenesis in experimental animals, focused on MT function in bidirectional Zn2+ signaling in synaptic dynamics.
Collapse
Affiliation(s)
- Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Haruna Tamano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Shizuoka Tohto Medical College, 1949 Minamiema, Izunokuni, Shizuoka 410-2221, Japan
| |
Collapse
|
3
|
Tamano H, Takiguchi M, Murakami D, Kawano Y, Fukuda T, Ikeda H, Akagi Y, Ikeura S, Takeda A. Blockage of metallothionein synthesis via adrenaline β receptor activation invalidates dehydroeffusol-mediated prevention of amyloid β 1-42 toxicity. Neurosci Lett 2024; 825:137708. [PMID: 38438068 DOI: 10.1016/j.neulet.2024.137708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
Dehydroeffusol, a major phenanthrene in Juncus effusus, protects neurodegeneration induced by intracellular Zn2+ ferried by extracellular amyloid β1-42 (Aβ1-42). Here we focused on adrenaline β receptor activation and the induction of metallothioneins (MTs), intracellular Zn2+-binding proteins to test the protective mechanism of dehydroeffusol. Isoproterenol, an agonist of adrenergic β receptors elevated the level of MTs in the dentate granule cell layer 1 day after intracerebroventricular (ICV) injection. When Aβ1-42 was injected 1 day after isoproterenol injection, pre-injection of isoproterenol protected Aβ1-42 toxicity via reducing the increase in intracellular Zn2+ after ICV injection of Aβ1-42. On the basis of the effect of increased MTs by isoproterenol, dehydroeffusol (15 mg/kg body weight) was orally administered to mice once a day for 2 days. On day later, dehydroeffusol elevated the level of MTs and prevented Aβ1-42 toxicity via reducing Aβ1-42-mediated increase in intracellular Zn2+. In contrast, propranolol, an antagonist of adrenergic β receptors reduced the level of MTs increased by dehydroeffusol, resulting in invalidating the preventive effect of dehydroeffusol on Aβ1-42 toxicity. The present study indicates that blockage of MT synthesis via adrenaline β receptor activation invalidates dehydroeffusol-mediated prevention of Aβ1-42 toxicity. It is likely that MT synthesis via adrenaline β receptor activation is beneficial to neuroprotection and that oral intake of dehydroeffusol preventively serves against the Aβ1-42 toxicity.
Collapse
Affiliation(s)
- Haruna Tamano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Shizuoka Tohto Medical College, 1949 Minamiema, Izunokuni, Shizuoka 410-2221, Japan
| | - Mako Takiguchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Daichi Murakami
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuya Kawano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | | | - Hiroki Ikeda
- Satoen CO., LTD., 1057 Ohhara, Aoi-ku Shizuoka 421-1392, Japan
| | - Yasuhito Akagi
- Hagihara & CO., LTD., 884 Nishibara, Nishiachicho, Kurashiki 710-8501, Japan
| | - Shinji Ikeura
- Hagihara & CO., LTD., 884 Nishibara, Nishiachicho, Kurashiki 710-8501, Japan
| | - Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
4
|
Chen WB, Wang YX, Wang HG, An D, Sun D, Li P, Zhang T, Lu WG, Liu YQ. Role of TPEN in Amyloid-β 25-35-Induced Neuronal Damage Correlating with Recovery of Intracellular Zn 2+ and Intracellular Ca 2+ Overloading. Mol Neurobiol 2023:10.1007/s12035-023-03322-x. [PMID: 37059931 DOI: 10.1007/s12035-023-03322-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/17/2023] [Indexed: 04/16/2023]
Abstract
The overproduction of neurotoxic amyloid-β (Aβ) peptides in the brain is a hallmark of Alzheimer's disease (AD). To determine the role of intracellular zinc ion (iZn2+) dysregulation in mediating Aβ-related neurotoxicity, this study aimed to investigate whether N, N, N', N'‑tetrakis (2‑pyridylmethyl) ethylenediamine (TPEN), a Zn2+‑specific chelator, could attenuate Aβ25-35‑induced neurotoxicity and the underlying mechanism. We used the 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay to measure the viability of primary hippocampal neurons. We also determined intracellular Zn2+ and Ca2+ concentrations, mitochondrial and lysosomal functions, and intracellular reactive oxygen species (ROS) content in hippocampal neurons using live-cell confocal imaging. We detected L-type voltage-gated calcium channel currents (L-ICa) in hippocampal neurons using the whole‑cell patch‑clamp technique. Furthermore, we measured the mRNA expression levels of proteins related to the iZn2+ buffer system (ZnT-3, MT-3) and voltage-gated calcium channels (Cav1.2, Cav1.3) in hippocampal neurons using RT-PCR. The results showed that TPEN attenuated Aβ25-35‑induced neuronal death, relieved the Aβ25-35‑induced increase in intracellular Zn2+ and Ca2+ concentrations; reversed the Aβ25-35‑induced increase in ROS content, the Aβ25-35‑induced increase in the L-ICa peak amplitude at different membrane potentials, the Aβ25-35‑induced the dysfunction of the mitochondria and lysosomes, and the Aβ25-35‑induced decrease in ZnT-3 and MT-3 mRNA expressions; and increased the Cav1.2 mRNA expression in the hippocampal neurons. These results suggest that TPEN, the Zn2+-specific chelator, attenuated Aβ25-35‑induced neuronal damage, correlating with the recovery of intracellular Zn2+ and modulation of abnormal Ca2+-related signaling pathways.
Collapse
Affiliation(s)
- Wen-Bo Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
- School of Basic Medical Science, Henan University, Kaifeng, 475004, China
| | - Yu-Xiang Wang
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dan Sun
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Pan Li
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Department of Neurology, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, China
| | - Tao Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wan-Ge Lu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Tamano H, Tokoro H, Murakami D, Tsujimoto R, Nishijima Y, Tsuda E, Watanabe S, Suzuki M, Takeda A. Metallothionein synthesis increased by Ninjin-yoei-to, a Kampo medicine protects neuronal death and memory loss after exposure to amyloid β 1-42. J Pharm Health Care Sci 2022; 8:26. [PMID: 36316709 PMCID: PMC9624024 DOI: 10.1186/s40780-022-00257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND It is possible that increased synthesis of metallothioneins (MTs), Zn2+-binding proteins is linked with the protective effect of Ninjin-yoei-to (NYT) on Zn2+ toxicity ferried by amyloid β1-42 (Aβ1-42). METHODS Judging from the biological half-life (18-20 h) of MTs, the effective period of newly synthesized MT on capturing Zn2+ is estimated to be approximately 2 days. In the present paper, a diet containing 3% NYT was administered to mice for 2 days and then Aβ1-42 was injected into the lateral ventricle of mice. RESULTS MT level in the dentate granule cell layer was elevated 2 days after administration of NYT diet, while the administration reduced intracellular Zn2+ level increased 1 h after Aβ1-42 injection, resulting in rescuing neuronal death in the dentate granule cell layer, which was observed 14 days after Aβ1-42 injection. Furthermore, Pre-administration of NYT diet rescued object recognition memory loss via affected perforant pathway long-term potentiation after local injection of Aβ1-42 into the dentate granule cell layer of rats. CONCLUSION The present study indicates that pre-administration of NYT diet for 2 days increases synthesis of MTs, which reduces intracellular Zn2+ toxicity ferried by extracellular Aβ1-42, resulting in protecting neuronal death in the dentate gyrus and memory loss after exposure to Aβ1-42.
Collapse
Affiliation(s)
- Haruna Tamano
- grid.469280.10000 0000 9209 9298School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Haruna Tokoro
- grid.469280.10000 0000 9209 9298School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Daichi Murakami
- grid.469280.10000 0000 9209 9298School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Rin Tsujimoto
- grid.469280.10000 0000 9209 9298School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Yuka Nishijima
- grid.469280.10000 0000 9209 9298School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Erina Tsuda
- grid.469280.10000 0000 9209 9298School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Satoshi Watanabe
- grid.469280.10000 0000 9209 9298School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Miki Suzuki
- grid.469280.10000 0000 9209 9298School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Atsushi Takeda
- grid.469280.10000 0000 9209 9298School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| |
Collapse
|
6
|
Takeda A. [Brain Function and Pathophysiology Focused on Zn 2+ Dynamics]. YAKUGAKU ZASSHI 2022; 142:855-866. [PMID: 35908946 DOI: 10.1248/yakushi.22-00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basal levels of intracellular Zn2+ and extracellular Zn2+ are in the range of ~100 pM and ~10 nM, respectively, in the brain. Extracellular Zn2+ dynamics is involved in both cognitive performance and neurodegeneration. The bidirectional actions are linked with extracellular glutamate and amyloid-β1-42 (Aβ1-42). Intracellular Zn2+ signaling via extracellular glutamate is required for learning and memory, while intracellular Zn2+ dysregulation induces cognitive decline. Furthermore, human Aβ1-42, a causative peptide in Alzheimer's disease pathogenesis captures extracellular Zn2+ and readily taken up into hippocampal neurons followed by intracellular Zn2+ dysregulation. Aβ1-42-mediated intracellular Zn2+ dysregulation is accelerated with aging, because extracellular Zn2+ is age-relatedly increased, resulting in Aβ1-42-induced cognitive decline and neurodegeneration with aging. On the other hand, metallothioneins, zinc-binding proteins can capture Zn2+ released from intracellular Zn-Aβ1-42 complexes and serve for intracellular Zn2+-buffering to maintain intracellular Zn2+ homeostasis. This review summarizes Zn2+ function and its neurotoxicity in the brain, and also the potential defense strategy via metallothioneins against Aβ1-42-induced pathogenesis.
Collapse
Affiliation(s)
- Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
7
|
Kawano Y, Tamura K, Egawa M, Tamano H, Takeda A. Isoproterenol, an adrenergic β receptor agonist, induces metallothionein synthesis followed by canceling amyloid β1-42-induced neurodegeneration. Biometals 2022; 35:303-312. [DOI: 10.1007/s10534-022-00365-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022]
|
8
|
Ishikawa Y, Itoh R, Tsujimoto R, Tamano H, Takeda A. Isoproterenol injected into the basolateral amygdala rescues amyloid β 1-42-induced conditioned fear memory deficit via reducing intracellular Zn 2+ toxicity. Neurosci Lett 2022; 766:136353. [PMID: 34793899 DOI: 10.1016/j.neulet.2021.136353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022]
Abstract
On the basis of amyloid β (Aβ) peptides as triggers in atrophy of structures in the limbic system, here we postulated that Aβ1-42-induced intracellular Zn2+ toxicity in the basolateral amygdala contributes to conditioned fear memory. Aβ1-42 increased intracellular Zn2+ level in the amygdala after local injection of Aβ1-42 into the basolateral amygdala, resulting in conditioned fear memory deficit via attenuated LTP at perforant pathway-basolateral amygdala synapses. Co-injection of isoproterenol, a beta-adrenergic receptor agonist, reduced Aβ1-42-mediated increase in intracellular Zn2+, resulting in rescue of the memory deficit and attenuated LTP. The present study suggests that beta-adrenergic activity induced by isoproterenol in the basolateral amygdala rescues the impairment of conditioned fear memory by Aβ1-42. The rescuing effect may be linked with reducing Aβ1-42-induced intracellular Zn2+ toxicity. Furthermore, Aβ1-42 injection into the basolateral amygdala also attenuated LTP at perforant pathway-dentate granule cell synapses, while co-injection of isoproterenol rescued it, suggesting that Aβ1-42 toxicity in the basolateral amygdala also affects hippocampus-dependent memory. It is likely that beta-adrenergic receptor activation in the basolateral amygdala rescues the limbic system exposed to Aβ1-42 toxicity.
Collapse
Affiliation(s)
- Yudai Ishikawa
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryusei Itoh
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Rin Tsujimoto
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
9
|
Chen WB, Wang YX, Wang HG, An D, Sun D, Li P, Zhang T, Lu WG, Liu YQ. TPEN attenuates amyloid-β 25-35-induced neuronal damage with changes in the electrophysiological properties of voltage-gated sodium and potassium channels. Mol Brain 2021; 14:124. [PMID: 34384467 PMCID: PMC8359616 DOI: 10.1186/s13041-021-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
To understand the role of intracellular zinc ion (Zn2+) dysregulation in mediating age-related neurodegenerative changes, particularly neurotoxicity resulting from the generation of excessive neurotoxic amyloid-β (Aβ) peptides, this study aimed to investigate whether N, N, N', N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a Zn2+-specific chelator, could attenuate Aβ25-35-induced neurotoxicity and the underlying electrophysiological mechanism. We used the 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay to measure the viability of hippocampal neurons and performed single-cell confocal imaging to detect the concentration of Zn2+ in these neurons. Furthermore, we used the whole-cell patch-clamp technique to detect the evoked repetitive action potential (APs), the voltage-gated sodium and potassium (K+) channels of primary hippocampal neurons. The analysis showed that TPEN attenuated Aβ25-35-induced neuronal death, reversed the Aβ25-35-induced increase in intracellular Zn2+ concentration and the frequency of APs, inhibited the increase in the maximum current density of voltage-activated sodium channel currents induced by Aβ25-35, relieved the Aβ25-35-induced decrease in the peak amplitude of transient outward K+ currents (IA) and outward-delayed rectifier K+ currents (IDR) at different membrane potentials, and suppressed the steady-state activation and inactivation curves of IA shifted toward the hyperpolarization direction caused by Aβ25-35. These results suggest that Aβ25-35-induced neuronal damage correlated with Zn2+ dysregulation mediated the electrophysiological changes in the voltage-gated sodium and K+ channels. Moreover, Zn2+-specific chelator-TPEN attenuated Aβ25-35-induced neuronal damage by recovering the intracellular Zn2+ concentration.
Collapse
Affiliation(s)
- Wen-Bo Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yu-Xiang Wang
- Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Dan Sun
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Pan Li
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgery Institute, Department of Neurology, Tianjin Huanhu Hospital Affiliated to Nankai University, Tianjin, People's Republic of China
| | - Tao Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Wan-Ge Lu
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
10
|
Tamano H, Tokoro H, Murakami D, Furuhata R, Nakajima S, Saeki N, Katahira M, Shioya A, Tanaka Y, Egawa M, Takeda A. Preventive effect of Ninjin-yoei-to, a Kampo medicine, on amyloid β 1-42-induced neurodegeneration via intracellular Zn 2+ toxicity in the dentate gyrus. Exp Anim 2021; 70:514-521. [PMID: 34193681 PMCID: PMC8614007 DOI: 10.1538/expanim.21-0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ninjin-yoei-to (NYT), a Kampo medicine, has ameliorative effects on cognitive dysfunction via enhancing cholinergic neuron activity. To explore an efficacy of NYT administration for prevention and cure of Alzheimer’s disease, here we examined the effect of NYT on amyloid β1-42 (Aβ1-42)-induced neurodegeneration in the dentate gyrus. A diet containing 3% NYT was administered to mice for 2 weeks and human Aβ1-42 was intracerebroventricularly injected. Neurodegeneration in the dentate granule cell layer of the hippocampus, which was determined 2 weeks after the injection, was rescued by administration of the diet for 4 weeks. Aβ staining (uptake) was not modified in the dentate granule cell layer by pre-administration of the diet for 2 weeks, while Aβ1-42-induced increase in intracellular Zn2+ was reduced, suggesting that pre-administration of NYT prior to Aβ injection is effective for reducing Aβ1-42-induced Zn2+ toxicity in the dentate gyrus. As a matter of fact, Aβ1-42-induced neurodegeneration in the dentate gyrus was rescued by pre-administration of NYT. Interestingly, the level of metallothioneins, intracellular Zn2+-binding proteins, which can capture Zn2+ from Zn-Aβ1-42 complexes, was elevated in the dentate granule cell layer by pre-administration of NYT. The present study suggests that pre-administration of NYT prevents Aβ1-42-mediated neurodegeneration in the dentate gyurs by induced synthesis of metallothioneins, which reduces intracellular Zn2+ toxicity induced by Aβ1-42.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Haruna Tokoro
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Daichi Murakami
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ryo Furuhata
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Satoko Nakajima
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Nana Saeki
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Misa Katahira
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Aoi Shioya
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yukino Tanaka
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Mako Egawa
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
11
|
Dehydroeffusol Pprevents Amyloid β 1-42-mediated Hippocampal Neurodegeneration via Reducing Intracellular Zn 2+ Toxicity. Mol Neurobiol 2021; 58:3603-3613. [PMID: 33770339 DOI: 10.1007/s12035-021-02364-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/17/2021] [Indexed: 01/04/2023]
Abstract
Dehydroeffusol, a phenanthrene isolated from Juncus effusus, is a Chinese medicine. To explore an efficacy of dehydroeffusol administration for prevention and cure of Alzheimer's disease, here we examined the effect of dehydroeffusol on amyloid β1-42 (Aβ1-42)-mediated hippocampal neurodegeneration. Dehydroeffusol (15 mg/kg body weight) was orally administered to mice once a day for 6 days and then human Aβ1-42 was injected intracerebroventricularly followed by oral administration for 12 days. Neurodegeneration in the dentate granule cell layer, which was determined 2 weeks after Aβ1-42 injection, was rescued by dehydroeffusol administration. Aβ staining (uptake) was not reduced in the dentate granule cell layer by pre-administration of dehydroeffusol for 6 days, while increase in intracellular Zn2+ induced with Aβ1-42 was reduced, suggesting that pre-administration of dehydroeffusol prior to Aβ1-42 injection is effective for Aβ1-42-mediated neurodegeneration that was linked with intracellular Zn2+ toxicity. As a matter of fact, pre-administration of dehydroeffusol rescued Aβ1-42-mediated neurodegeneration. Interestingly, pre-administration of dehydroeffusol increased synthesis of metallothioneins, intracellular Zn2+-binding proteins, in the dentate granule cell layer, which can capture Zn2+ from Zn-Aβ1-42 complexes. The present study indicates that pre-administration of dehydroeffusol protects Aβ1-42-mediated neurodegeneration in the hippocampus by reducing intracellular Zn2+ toxicity, which is linked with induced synthesis of metallothioneins. Dehydroeffusol, a novel inducer of metallothioneins, may protect Aβ1-42-induced pathogenesis in Alzheimer's disease.
Collapse
|
12
|
Sato Y, Takiguchi M, Tamano H, Takeda A. Extracellular Zn 2+-Dependent Amyloid-β 1-42 Neurotoxicity in Alzheimer's Disease Pathogenesis. Biol Trace Elem Res 2021; 199:53-61. [PMID: 32281074 DOI: 10.1007/s12011-020-02131-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
The basal level of extracellular Zn2+ is in the range of low nanomolar (~ 10 nM) in the hippocampus. However, extracellular Zn2+ dynamics plays a key role for not only cognitive activity but also cognitive decline. Extracellular Zn2+ dynamics is modified by glutamatergic synapse excitation and the presence of amyloid-β1-42 (Aβ1-42), a causative peptide in Alzheimer's disease (AD). When human Aβ1-42 reaches high picomolar (> 100 pM) in the extracellular compartment of the rat dentate gyrus, Zn-Aβ1-42 complexes are readily formed and taken up into dentate granule cells, followed by Aβ1-42-induced cognitive decline that is linked with Zn2+ released from intracellular Zn-Aβ1-42 complexes. Aβ1-42-induced intracellular Zn2+ toxicity is accelerated with aging because of age-related increase in extracellular Zn2+. The recent findings suggest that Aβ1-42 secreted continuously from neuron terminals causes age-related cognitive decline and neurodegeneration via intracellular Zn2+ dysregulation. On the other hand, metallothioneins (MTs), zinc-binding proteins, quickly serve for intracellular Zn2+-buffering under acute intracellular Zn2+ dysregulation. On the basis of the idea that the defense strategy against Aβ1-42-induced pathogenesis leads to preventing the AD development, this review deals with extracellular Zn2+-dependent Aβ1-42 neurotoxicity, which is accelerated with aging.
Collapse
Affiliation(s)
- Yuichi Sato
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Mako Takiguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
13
|
Tamano H, Togo J, Sato Y, Shioya A, Tempaku M, Takeda A. Retention Period of Amyloid β 1-42 in the Brain Extracellular Fluid as the Toxicological Determinant in Freely Moving Rats. Biol Pharm Bull 2020; 43:1975-1978. [PMID: 33268719 DOI: 10.1248/bpb.b20-00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pathological significance of amyloid-β1-42 (Aβ1-42) dynamics is poorly understood in the brain extracellular compartment. Here we test which of the concentration or the retention is critical for Aβ1-42 toxicity after injection of equal dose into dentate granule cell layer of freely moving rats. The toxicity of Aβ1-42 (25 µM) was compared between injections at the rate of 0.25 µL/min for 4 min (fast injection) and 0.025 µL/min for 40 min (slow injection). Dentate gyrus long-term potentiation (LTP) was affected 1 and 2 h after the fast injection, but not 4 h. In contrast, LTP was affected even 72 h after the slow injection. Aβ1-42 staining 5 min after finish of the slow injection was more intense in the dentate granule cell layer than of the fast injection. The present study indicates that the retention of Aβ1-42 in the extracellular fluid is correlated with neuronal Aβ1-42 uptake and plays a key role in Aβ1-42 neurotoxicity. In the extracellular fluid of the dentate gyrus, the retention period of Aβ1-42 is much more critical for Aβ1-42 toxicity than Aβ1-42 concentration. It is likely that Aβ1-42 toxicity is accelerated by the disturbance of Aβ1-42 metabolism in the dentate gyrus.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Junichi Togo
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yuichi Sato
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Aoi Shioya
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Munekazu Tempaku
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
14
|
Tamano H, Ishikawa Y, Shioya A, Itoh R, Oneta N, Shimaya R, Egawa M, Adlard PA, Bush AI, Takeda A. Adrenergic β receptor activation reduces amyloid β 1-42-mediated intracellular Zn 2+ toxicity in dentate granule cells followed by rescuing impairment of dentate gyrus LTP. Neurotoxicology 2020; 79:177-183. [PMID: 32512026 DOI: 10.1016/j.neuro.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Adrenergic β receptor activation prevents human soluble amyloid β (Aβ)-induced impairment of long-term potentiation (LTP) in slices. On the basis of the evidence that human Aβ1-42-induced impairment of LTP is due to Aβ1-42-mediated Zn2+ toxicity, we postulated that adrenergic β receptor activation reduces Aβ1-42-mediated intracellular Zn2+ toxicity followed by rescuing Aβ1-42 toxicity. To test the effect of adrenergic β receptor activation, LTP was recorded at perforant pathway-dentate granule cell synapses of anesthetized rats 60 min after Aβ1-42 injection into the dentate granule cell layer. Human Aβ1-42-induced impairment of LTP was rescued by co-injection of isoproterenol, an adrenergic β receptor agonist, but not by co-injection of phenylephrine, an adrenergic α1 receptor agonist. Isoproterenol did not reduce Aβ1-42 uptake into dentate granule cells, but reduced increase in intracellular Zn2+ in dentate granule cells induced by Aβ1-42. In contrast, phenylephrine did not reduce both Aβ1-42 uptake and increase in intracellular Zn2+ by Aβ1-42. In the case of human Aβ1-40 and rat Aβ1-42, which do not increase intracellular Zn2+, human Aβ1-40- and rat Aβ1-42-induced impairments of LTP were not rescued by co-injection of isoproterenol. The present study indicates that adrenergic β receptor activation reduces Aβ1-42-mediated increase in intracellular Zn2+ in dentate granule cells, resulting in rescuing Aβ1-42-induced impairment of LTP. It is likely that noradrenergic neuron activation by stimulating the locus coeruleus is effective for rescuing Aβ1-42-induced cognitive decline that is caused by intracellular Zn2+ dysregulation in the hippocampus.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yudai Ishikawa
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Aoi Shioya
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryusei Itoh
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Naoya Oneta
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Ryota Shimaya
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mako Egawa
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
15
|
Tamano H, Takiguchi M, Tanaka Y, Murakami T, Adlard PA, Bush AI, Takeda A. Preferential Neurodegeneration in the Dentate Gyrus by Amyloid β 1-42-Induced Intracellular Zn 2+Dysregulation and Its Defense Strategy. Mol Neurobiol 2019; 57:1875-1888. [PMID: 31865526 DOI: 10.1007/s12035-019-01853-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
On the basis of the evidence that rapid intracellular Zn2+ dysregulation by amyloid β1-42 (Aβ1-42) in the normal hippocampus transiently induces cognitive decline, here we report preferential neurodegeneration in the dentate gyrus by Aβ1-42-induced intracellular Zn2+ dysregulation and its defense strategy. Neurodegeneration was preferentially observed in the dentate granule cell layer in the hippocampus after a single Aβ1-42 injection into the lateral ventricle but not in the CA1 and CA3 pyramidal cell layers, while intracellular Zn2+ dysregulation was extensively observed in the hippocampus in addition to the dentate gyrus. Neurodegeneration in the dentate granule cell layer was rescued after co-injection of extracellular and intracellular Zn2+ chelators, i.e., CaEDTA and ZnAF-2DA, respectively. Aβ1-42-induced cognitive impairment was also rescued by co-injection of CaEDTA and ZnAF-2DA. Pretreatment with dexamethasone, an inducer of metalothioneins, Zn2+-binding proteins rescued neurodegeneration in the dentate granule cell layer and cognitive impairment via blocking the intracellular Zn2+ dysregulation induced by Aβ1-42. The present study indicates that intracellular Zn2+ dysregulation induced by Aβ1-42 preferentially causes neurodegeneration in the dentate gyrus, resulting in hippocampus-dependent cognitive decline. It is likely that controlling intracellular Zn2+ dysregulation, which is induced by the rapid uptake of Zn-Aβ1-42 complexes, is a defense strategy for Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Mako Takiguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yukino Tanaka
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Taku Murakami
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|