1
|
Aldana S, Nies CL, Nolan M. Control of Cu morphology on TaN barrier and combined Ru-TaN barrier/liner substrates for nanoscale interconnects from atomistic kinetic Monte Carlo simulations. NANOSCALE 2025. [PMID: 40302441 DOI: 10.1039/d4nr04505j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The miniaturization of electronic devices poses severe challenges for metal interconnect deposition in back-end-of-line processing due to the decreasing volume available in the interconnect via. Cu is currently used as the interconnect metal and requires barrier and liner layers to prevent diffusion into silicon and promote smooth film growth. However, these layers occupy critical space in the already narrow, high-aspect ratio interconnect vias. Designing combined barrier/liner materials is critical to optimizing available interconnect volume. While film morphology can be predicted from first principles calculations, e.g. Density Functional Theory (DFT), modelling deposition to understand the evolution of metal growth and optimize barrier material design and metal deposition is extremely challenging. We present an atomistic kinetic Monte Carlo (kMC) investigation of Cu deposition on Ru-modified TaN as a potential dual-function barrier/liner material. Using DFT-calculated activation barriers, we predict Cu morphology on these technologically important substrates at back-end-of-line processing temperatures. We evaluate 2D vs. 3D morphology and film quality by analyzing film roughness, island size, substrate exposure, layer occupation rate, film compactness and the effect of annealing. Our results show that Ru-modified TaN with 50% Ru incorporation significantly reduces roughness and islanding, promoting the desired 2D growth. Vacuum annealing further promotes smooth Cu films, eliminating vacancy defects on Ru-modified substrates, while TaN promotes further island formation. This demonstrates the potential of Ru-TaN in optimizing Cu deposition for advanced CMOS interconnects and showcases a new, robust approach for atomistic simulation of metal deposition on a range of substrates.
Collapse
Affiliation(s)
- Samuel Aldana
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland.
| | - Cara-Lena Nies
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland.
| | - Michael Nolan
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland.
| |
Collapse
|
2
|
Noisternig SM, Rentenberger C, Gammer C, Karnthaler HP, Kotakoski J. Probing the interaction range of electron beam-induced etching in STEM by a non-contact electron beam. Ultramicroscopy 2024; 265:114019. [PMID: 39094366 DOI: 10.1016/j.ultramic.2024.114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Beside its main purpose as a high-end tool in material analysis reaching the atomic scale for structure, chemical and electronic properties, aberration-corrected scanning transmission electron microscopy (STEM) is increasingly used as a tool to manipulate materials down to that very same scale. In order to obtain exact and reproducible results, it is essential to consider the interaction processes and interaction ranges between the electron beam and the involved materials. Here, we show in situ that electron beam-induced etching in a low-pressure oxygen atmosphere can extend up to a distance of several nm away from the Ångström-size electron beam, usually used for probing the sample. This relatively long-range interaction is related to beam tails and inelastic scattering involved in the etching process. To suppress the influence of surface diffusion, we measure the etching effect indirectly on isolated nm-sized holes in a 2 nm thin amorphous carbon foil that is commonly used as sample support in STEM. During our experiments, the electron beam is placed inside the nanoholes so that most electrons cannot directly participate in the etching process. We characterize the etching process from measuring etching rates at multiple nanoholes with different distances between the hole edge and the electron beam.
Collapse
Affiliation(s)
- Stefan Manuel Noisternig
- University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria; Austrian Academy of Sciences, Erich Schmid Institute of Materials Science, Jahnstraße 12, 8700, Leoben, Austria.
| | - Christian Rentenberger
- University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Christoph Gammer
- Austrian Academy of Sciences, Erich Schmid Institute of Materials Science, Jahnstraße 12, 8700, Leoben, Austria
| | - H Peter Karnthaler
- University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Jani Kotakoski
- University of Vienna, Physics of Nanostructured Materials, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
3
|
Popov I, Ghaderzadeh S, Kohlrausch EC, Norman LT, Slater TJA, Aliev GN, Alhabeadi H, Kaplan A, Theis W, Khlobystov AN, Fernandes JA, Besley E. Chemical Kinetics of Metal Single Atom and Nanocluster Formation on Surfaces: An Example of Pt on Hexagonal Boron Nitride. NANO LETTERS 2023; 23:8006-8012. [PMID: 37594260 PMCID: PMC10510580 DOI: 10.1021/acs.nanolett.3c01968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/11/2023] [Indexed: 08/19/2023]
Abstract
The production of atomically dispersed metal catalysts remains a significant challenge in the field of heterogeneous catalysis due to coexistence with continuously packed sites such as nanoclusters and nanoparticles. This work presents a comprehensive guidance on how to increase the degree of atomization through a selection of appropriate experimental conditions and supports. It is based on a rigorous macro-kinetic theory that captures relevant competing processes of nucleation and formation of single atoms stabilized by point defects. The effects of metal-support interactions and deposition parameters on the resulting single atom to nanocluster ratio as well as the role of metal centers formed on point defects in the kinetics of nucleation have been established, thus paving the way to guided synthesis of single atom catalysts. The predictions are supported by experimental results on sputter deposition of Pt on exfoliated hexagonal boron nitride, as imaged by aberration-corrected scanning transmission electron microscopy.
Collapse
Affiliation(s)
- Ilya Popov
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Sadegh Ghaderzadeh
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Emerson C. Kohlrausch
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Luke T. Norman
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | | | - Gazi N. Aliev
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Hanan Alhabeadi
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Physics, College of Science and Art, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Andre Kaplan
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Wolfgang Theis
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Andrei N. Khlobystov
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Jesum Alves Fernandes
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Elena Besley
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| |
Collapse
|
4
|
Lee S, Schneider NM, Tan SF, Ross FM. Temperature Dependent Nanochemistry and Growth Kinetics Using Liquid Cell Transmission Electron Microscopy. ACS NANO 2023; 17:5609-5619. [PMID: 36881385 DOI: 10.1021/acsnano.2c11477] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid cell transmission electron microscopy has become a powerful and increasingly accessible technique for in situ studies of nanoscale processes in liquid and solution phase. Exploring reaction mechanisms in electrochemical or crystal growth processes requires precise control over experimental conditions, with temperature being one of the most critical factors. Here we carry out a series of crystal growth experiments and simulations at different temperatures in the well-studied system of Ag nanocrystal growth driven by the changes in redox environment caused by the electron beam. Liquid cell experiments show strong changes in both morphology and growth rate with temperature. We develop a kinetic model to predict the temperature-dependent solution composition, and we discuss how the combined effect of temperature-dependent chemistry, diffusion, and the balance between nucleation and growth rates affect the morphology. We discuss how this work may provide guidance in interpreting liquid cell TEM and potentially larger-scale synthesis experiments for systems controlled by temperature.
Collapse
Affiliation(s)
- Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Shu Fen Tan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Abstract
Nucleation and growth are critical steps in crystallization, which plays an important role in determining crystal structure, size, morphology, and purity. Therefore, understanding the mechanisms of nucleation and growth is crucial to realize the controllable fabrication of crystalline products with desired and reproducible properties. Based on classical models, the initial crystal nucleus is formed by the spontaneous aggregation of ions, atoms, or molecules, and crystal growth is dependent on the monomer's diffusion and the surface reaction. Recently, numerous in situ investigations on crystallization dynamics have uncovered the existence of nonclassical mechanisms. This review provides a summary and highlights the in situ studies of crystal nucleation and growth, with a particular emphasis on the state-of-the-art research progress since the year 2016, and includes technological advances, atomic-scale observations, substrate- and temperature-dependent nucleation and growth, and the progress achieved in the various materials: metals, alloys, metallic compounds, colloids, and proteins. Finally, the forthcoming opportunities and challenges in this fascinating field are discussed.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi830011, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Francis Leonard Deepak
- Nanostructured Materials Group, International Iberian Nanotechnology Laboratory (INL), Av. Mestre Jose Veiga, 4715-330Braga, Portugal
| |
Collapse
|
6
|
Weng WL, Chen HY, Ting YH, Chen HYT, Wu WW, Tu KN, Liao CN. Twin-Boundary Reduced Surface Diffusion on Electrically Stressed Copper Nanowires. NANO LETTERS 2022; 22:9071-9076. [PMID: 36342418 DOI: 10.1021/acs.nanolett.2c03437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Surface diffusion is intimately correlated with crystal orientation and surface structure. Fast surface diffusion accelerates phase transformation and structural evolution of materials. Here, through in situ transmission electron microscopy observation, we show that a copper nanowire with dense nanoscale coherent twin-boundary (CTB) defects evolves into a zigzag configuration under electric-current driven surface diffusion. The hindrance at the CTB-intercepted concave triple junctions decreases the effective surface diffusivity by almost 1 order of magnitude. The energy barriers for atomic migration at the concave junctions and different faceted surfaces are computed using density functional theory. We proposed that such a stable zigzag surface is shaped not only by the high-diffusivity facets but also by the stalled atomic diffusion at the concave junctions. This finding provides a defect-engineering route to develop robust interconnect materials against electromigration-induced failures for nanoelectronic devices.
Collapse
Affiliation(s)
- Wei-Lun Weng
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu30013, Taiwan, ROC
| | - Hsin-Yu Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu30013, Taiwan, ROC
| | - Yi-Hsin Ting
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu30013, Taiwan, ROC
| | - Hsin-Yi Tiffany Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu30013, Taiwan, ROC
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu30013, Taiwan, ROC
| | - King-Ning Tu
- Department of Materials Science and Engineering and Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Chien-Neng Liao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu30013, Taiwan, ROC
| |
Collapse
|
7
|
Chiodini S, Dinelli F, Martinez NF, Donati S, Albonetti C. Identification of ultra-thin molecular layers atop monolayer terraces in sub-monolayer organic films with scanning probe microscopy. Ultramicroscopy 2022; 240:113598. [DOI: 10.1016/j.ultramic.2022.113598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
|
8
|
Transparent Silver Coatings with Copper Addition for Improved Conductivity by Combined DCMS and HiPIMS Process. METALS 2022. [DOI: 10.3390/met12081264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The demand for transparent conductive coatings has increased over recent years, leading to the development of various technical solutions. One of the approaches is to use metallic coatings very close to their coalescence thickness, so that a good compromise between transparency and conductivity is obtained. In this contribution, a combination of two elements with high potential in this field is used, namely silver and copper. The continuity of silver films on a dielectric transparent substrate is significantly improved by the addition of a copper seed layer that promotes the formation of a continuous layer at smaller effective thicknesses. Two distinct deposition processes are used for the deposition of the two materials, namely HiPIMS (High Power Impulse magnetron sputtering) for copper and DC sputtering for silver. The use of HiPIMS enables a better control of the structure and quantity of deposited material, allowing us to deposit a very small amount of material. The mono-element coatings are characterized from the optical and electrical point of view, and then mixed to form a structure with better transparency, up to 80% in the visible spectrum, good electrical properties, resistivity of ~2 × 10−5 (Ω × cm), and significantly lower surface roughness, down to 0.2 nm.
Collapse
|
9
|
Nies CL, Natarajan SK, Nolan M. Control of the Cu morphology on Ru-passivated and Ru-doped TaN surfaces - promoting growth of 2D conducting copper for CMOS interconnects. Chem Sci 2022; 13:713-725. [PMID: 35173936 PMCID: PMC8768880 DOI: 10.1039/d1sc04708f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/10/2021] [Indexed: 01/09/2023] Open
Abstract
Prolonging the lifetime of Cu as a level 1 and level 2 interconnect metal in future nanoelectronic devices is a significant challenge as device dimensions continue to shrink and device structures become more complex. At nanoscale dimensions Cu exhibits high resistivity which prevents its functioning as a conducting wire and prefers to form non-conducting 3D islands. Given that changing from Cu to an alternative metal is challenging, we are investigating new materials that combine properties of diffusion barriers and seed liners to reduce the thickness of this layer and to promote successful electroplating of Cu to facilitate the coating of high-aspect ratio interconnect vias and to allow for optimal electrical conductance. In this study we propose new combined barrier/liner materials based on modifying the surface layer of the TaN barrier through Ru incorporation. Simulating a model Cu29 structure at 0 K and through finite temperature ab initio molecular dynamics on these surfaces allows us to demonstrate how the Ru content can control copper wetting, adhesion and thermal stability properties. Activation energies for atom migrations onto a nucleating copper island allow insight into the growth mechanism of a Cu thin-film. Using this understanding allows us to tailor the Ru content on TaN to control the final morphology of the Cu film. These Ru-modified TaN films can be deposited by atomic layer deposition, allowing for fine control over the film thickness and composition.
Collapse
Affiliation(s)
- Cara-Lena Nies
- Tyndall National Institute, University College Cork Lee Maltings, Dyke Parade Cork T12 R5CP Ireland
| | | | - Michael Nolan
- Tyndall National Institute, University College Cork Lee Maltings, Dyke Parade Cork T12 R5CP Ireland
- NIBEC, School of Engineering, University of Ulster at Jordanstown BT37 0QB UK
| |
Collapse
|
10
|
Zarshenas M, Gervilla V, Sangiovanni DG, Sarakinos K. Room-temperature diffusion of metal clusters on graphene. Phys Chem Chem Phys 2021; 23:13087-13094. [PMID: 34059869 DOI: 10.1039/d1cp00522g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the diffusion dynamics, the diffusion mechanisms, and the adsorption energetics of Ag, Au, Cu, and Pd dimers, as well as of Ag trimers on single-layer graphene (SLG) by means of ab initio molecular dynamics (AIMD) simulations and density-functional theory (DFT) calculations. The simulations show that Ag, Cu, and Au clusters exhibit a super-diffusive pattern characterized by long jumps, which can be explained by the flat potential energy landscape (PEL) (corrugation of a few tens of meV) encountered by those clusters on SLG. Pd dimers, instead, diffuse in a pattern that is reminiscent of conventional random walk, which is consistent with a significantly rougher PEL of the order of 100 meV. Moreover, our data show that all clusters exhibit diffusion mechanisms that include both concerted translation and rotation. The overall results of the present study provide key insights for modeling the growth of metal layers and nanostructures on graphene and other van der Waals materials, which is a prerequisite for the directed growth of multifunctional metal contacts in a broad range of enabling devices.
Collapse
Affiliation(s)
- Mohammad Zarshenas
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden.
| | - Victor Gervilla
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden.
| | - Davide G Sangiovanni
- Theoretical Physics Division, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Kostas Sarakinos
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden.
| |
Collapse
|
11
|
Mejri A, Herlem G, Picaud F. From Behavior of Water on Hydrophobic Graphene Surfaces to Ultra-Confinement of Water in Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:306. [PMID: 33504024 PMCID: PMC7911377 DOI: 10.3390/nano11020306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
In recent years and with the achievement of nanotechnologies, the development of experiments based on carbon nanotubes has allowed to increase the ionic permeability and/or selectivity in nanodevices. However, this new technology opens the way to many questionable observations, to which theoretical work can answer using several approximations. One of them concerns the appearance of a negative charge on the carbon surface, when the latter is apparently neutral. Using first-principles density functional theory combined with molecular dynamics, we develop here several simulations on different systems in order to understand the reactivity of the carbon surface in low or ultra-high confinement. According to our calculations, there is high affinity of the carbon atom to the hydrogen ion in every situation, and to a lesser extent for the hydroxyl ion. The latter can only occur when the first hydrogen attack has been achieved. As a consequence, the functionalization of the carbon surface in the presence of an aqueous medium is activated by its protonation, then allowing the reactivity of the anion.
Collapse
Affiliation(s)
| | | | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutiques, EA4662, UFR Sciences et Techniques, Centre Hospitalier Universitaire et Université de Bourgogne Franche Comté, 16 Route de Gray, 25030 Besançon, France; (A.M.); (G.H.)
| |
Collapse
|
12
|
Kakanakova-Georgieva A, Ivanov IG, Suwannaharn N, Hsu CW, Cora I, Pécz B, Giannazzo F, Sangiovanni DG, Gueorguiev GK. MOCVD of AlN on epitaxial graphene at extreme temperatures. CrystEngComm 2021. [DOI: 10.1039/d0ce01426e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Appearance of luminescent centers with narrow spectral emission at room temperature in nanometer thin AlN is reported.
Collapse
Affiliation(s)
| | - Ivan G. Ivanov
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- 581 83 Linköping
- Sweden
| | - Nattamon Suwannaharn
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- 581 83 Linköping
- Sweden
| | - Chih-Wei Hsu
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- 581 83 Linköping
- Sweden
| | - Ildikó Cora
- Centre for Energy Research
- Institute of Technical Physics and Materials Science
- Budapest
- Hungary
| | - Béla Pécz
- Centre for Energy Research
- Institute of Technical Physics and Materials Science
- Budapest
- Hungary
| | - Filippo Giannazzo
- Consiglio Nazionale delle Ricerche
- Istituto per la Microelettronica e Microsistemi
- Catania
- Italy
| | - Davide G. Sangiovanni
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- 581 83 Linköping
- Sweden
| | - Gueorgui K. Gueorguiev
- Department of Physics
- Chemistry and Biology (IFM)
- Linköping University
- 581 83 Linköping
- Sweden
| |
Collapse
|
13
|
Colin J, Jamnig A, Furgeaud C, Michel A, Pliatsikas N, Sarakinos K, Abadias G. In Situ and Real-Time Nanoscale Monitoring of Ultra-Thin Metal Film Growth Using Optical and Electrical Diagnostic Tools. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2225. [PMID: 33182409 PMCID: PMC7697846 DOI: 10.3390/nano10112225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/08/2023]
Abstract
Continued downscaling of functional layers for key enabling devices has prompted the development of characterization tools to probe and dynamically control thin film formation stages and ensure the desired film morphology and functionalities in terms of, e.g., layer surface smoothness or electrical properties. In this work, we review the combined use of in situ and real-time optical (wafer curvature, spectroscopic ellipsometry) and electrical probes for gaining insights into the early growth stages of magnetron-sputter-deposited films. Data are reported for a large variety of metals characterized by different atomic mobilities and interface reactivities. For fcc noble-metal films (Ag, Cu, Pd) exhibiting a pronounced three-dimensional growth on weakly-interacting substrates (SiO2, amorphous carbon (a-C)), wafer curvature, spectroscopic ellipsometry, and resistivity techniques are shown to be complementary in studying the morphological evolution of discontinuous layers, and determining the percolation threshold and the onset of continuous film formation. The influence of growth kinetics (in terms of intrinsic atomic mobility, substrate temperature, deposition rate, deposition flux temporal profile) and the effect of deposited energy (through changes in working pressure or bias voltage) on the various morphological transition thicknesses is critically examined. For bcc transition metals, like Fe and Mo deposited on a-Si, in situ and real-time growth monitoring data exhibit transient features at a critical layer thickness of ~2 nm, which is a fingerprint of an interface-mediated crystalline-to-amorphous phase transition, while such behavior is not observed for Ta films that crystallize into their metastable tetragonal β-Ta allotropic phase. The potential of optical and electrical diagnostic tools is also explored to reveal complex interfacial reactions and their effect on growth of Pd films on a-Si or a-Ge interlayers. For all case studies presented in the article, in situ data are complemented with and benchmarked against ex situ structural and morphological analyses.
Collapse
Affiliation(s)
- Jonathan Colin
- Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, TSA 41123, CEDEX 9, 86073 Poitiers, France; (J.C.); (A.J.); (C.F.); (A.M.)
| | - Andreas Jamnig
- Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, TSA 41123, CEDEX 9, 86073 Poitiers, France; (J.C.); (A.J.); (C.F.); (A.M.)
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden;
| | - Clarisse Furgeaud
- Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, TSA 41123, CEDEX 9, 86073 Poitiers, France; (J.C.); (A.J.); (C.F.); (A.M.)
| | - Anny Michel
- Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, TSA 41123, CEDEX 9, 86073 Poitiers, France; (J.C.); (A.J.); (C.F.); (A.M.)
| | - Nikolaos Pliatsikas
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden;
| | - Kostas Sarakinos
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83 Linköping, Sweden;
| | - Gregory Abadias
- Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ENSMA, 11 Boulevard Marie et Pierre Curie, TSA 41123, CEDEX 9, 86073 Poitiers, France; (J.C.); (A.J.); (C.F.); (A.M.)
| |
Collapse
|
14
|
Goetz S, Bauch M, Dimopoulos T, Trassl S. Ultrathin sputter-deposited plasmonic silver nanostructures. NANOSCALE ADVANCES 2020; 2:869-877. [PMID: 36133228 PMCID: PMC9418784 DOI: 10.1039/c9na00762h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, ultrathin silver plasmonic nanostructures are fabricated by sputter deposition on substrates patterned by nanoimprint lithography, without additional lift-off processes. Detailed investigation of silver growth on different substrates results in a structured, defect-free silver film with thickness down to 6 nm, deposited on a thin layer of doped zinc oxide. Variation of the aspect ratio of the nanostructure reduces grain formation at the flanks, allowing for well-separated disk and hole arrays, even though conventional magnetron sputtering is less directional than evaporation. The resulting disk-hole array features high average transmittance in the visible range of 71% and a strong plasmonic dipole resonance in the near-infrared region. It is shown that the ultrathin Ag film exhibits even lower optical losses in the NIR range compared to known bulk optical properties. The presented FDTD simulations agree well with experimental spectra and show that for defect-free, ultrathin Ag nanostructures, bulk optical properties of Ag are sufficient for a reliable simulation-based design.
Collapse
Affiliation(s)
- Selina Goetz
- AIT Austrian Institute of Technology, Center for Energy, Photovoltaic Systems Giefinggasse 4 1210 Vienna Austria
| | - Martin Bauch
- AIT Austrian Institute of Technology, Center for Energy, Photovoltaic Systems Giefinggasse 4 1210 Vienna Austria
| | - Theodoros Dimopoulos
- AIT Austrian Institute of Technology, Center for Energy, Photovoltaic Systems Giefinggasse 4 1210 Vienna Austria
| | - Stephan Trassl
- HUECK FOLIEN GmbH Gewerbepark 30 4342 Baumgartenberg Austria
| |
Collapse
|
15
|
Gervilla V, Almyras GA, Lü B, Sarakinos K. Coalescence dynamics of 3D islands on weakly-interacting substrates. Sci Rep 2020; 10:2031. [PMID: 32029784 PMCID: PMC7005323 DOI: 10.1038/s41598-020-58712-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/16/2020] [Indexed: 11/21/2022] Open
Abstract
We use kinetic Monte Carlo simulations and analytical modelling to study coalescence of three-dimensional (3D) nanoscale faceted silver island pairs on weakly-interacting fcc(111) substrates, with and without concurrent supply of mobile adatoms from the vapor phase. Our simulations show that for vapor flux arrival rates F < 1 monolayer/second (ML/s) coalescence manifests itself by one of the islands absorbing the other via sidewall facet migration. This process is mediated by nucleation and growth of two-dimensional (2D) layers on the island facets, while the supply of mobile atoms increases the nucleation probability and shortens the time required for coalescence completion. When F is increased above 1 ML/s, coalescence is predominantly governed by deposition from the vapor phase and the island pair reaches a compact shape via agglomeration. The crucial role of facets for the coalescence dynamics is further supported by a mean-field thermodynamic description of the nucleation energetics and kinetics. Our findings explain experimental results which show that two-dimensional film growth morphology on weakly-interacting substrates is promoted when the rate of island coalescence is suppressed. The present study also highlights that deviations of experimentally reported film morphological evolutions in weakly-interacting film/substrate systems from predictions based on the sintering and particle growth theories may be understood in light of the effect of deposition flux atoms on the energetics and kinetics of facet-layer nucleation during coalescence.
Collapse
Affiliation(s)
- V Gervilla
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83, Linköping, Sweden.
| | - G A Almyras
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83, Linköping, Sweden
| | - B Lü
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83, Linköping, Sweden
| | - K Sarakinos
- Nanoscale Engineering Division, Department of Physics, Chemistry and Biology, Linköping University, SE 581 83, Linköping, Sweden
| |
Collapse
|