1
|
Abrantes R, Pimentel V, Sebastião C, Miranda MNS, Seabra S, Silva AR, Diniz A, Ascenção B, Piñeiro C, Koch C, Rodrigues C, Caldas C, Morais C, Faria D, da Silva EG, Teófilo E, Monteiro F, Roxo F, Maltez F, Rodrigues F, Gaião G, Ramos H, Costa I, Diogo I, Germano I, Simões J, Oliveira J, Ferreira J, Poças J, da Cunha JS, Soares J, Mansinho K, Pedro L, Aleixo MJ, Gonçalves MJ, Manata MJ, Mouro M, Serrado M, Caixeiro M, Marques N, Costa O, Pacheco P, Proença P, Rodrigues P, Pinho R, Tavares R, de Abreu RC, Côrte-Real R, Serrão R, Sarmento E Castro R, Nunes S, Faria T, Baptista T, Simões D, Mendão L, Martins MRO, Gomes P, Pingarilho M, Abecasis AB. Determinants of HIV-1 transmission clusters and transmitted drug resistance in men who have sex with men: A multicenter study in Portugal (2014-2019). Int J Infect Dis 2025; 155:107888. [PMID: 40107342 DOI: 10.1016/j.ijid.2025.107888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION In the EU/EEA, men who have sex with men (MSM) is a priority group for the prevention and control of HIV-1 infection. In Portugal, the 2023 HIV incidence rate was 8.2 per 100,000 inhabitants, with 876 new infections, 41.7% in MSM. We aim to characterize HIV-1 transmission clusters (TC) and transmitted drug resistance (TDR) and its sociodemographic, behavioral, clinical, and viral genomic determinants in MSM newly diagnosed in Portugal between 2014 and 2019. METHODS A total of 340 MSM newly diagnosed with HIV-1 infection at 17 hospitals in Portugal were included. TC was identified with branch support ≥90% and 1.5% genetic distance. Logistic regression models were used to examine factors associated with TC and TDR. RESULTS We identified 38 TC with 104 MSM, which includes 81 (26.6%) of the 305 MSM from our sample included in cluster analysis. The overall prevalence of TDR was 8.2%. Only HIV-1 subtype C was significantly associated with TDR. Overall, 10.5% of the clusters had at least 1 surveillance drug resistance mutation. There was no significant difference in the prevalence of TDR or the proportion of Portuguese and migrant MSM inside and outside clusters. Age at diagnosis, district of residence, unprotected sex with a woman, HIV testing, presenter status, and HIV-1 subtype were significantly associated with TC. CONCLUSION Specific subgroups of MSM are contributing to HIV-1 clustered transmission in Portugal. However, no association was found between TDR and sociodemographic or behavioral factors. Directed prevention measures should focus on those subgroups.
Collapse
Affiliation(s)
- Ricardo Abrantes
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon (IHMT/UNL), Lisbon, Portugal.
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Cruz Sebastião
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Mafalda N S Miranda
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Sofia Seabra
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Ana Rita Silva
- Serviço de Infeciologia, Hospital Beatriz Ângelo, Loures, Portugal
| | - António Diniz
- U. Imunodeficiência, Hospital Pulido Valente, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Bianca Ascenção
- Serviço de Infeciologia, Centro Hospitalar de Setúbal, Setúbal, Portugal
| | - Carmela Piñeiro
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Carmo Koch
- Centro de Biologia Molecular, Serviço de Imunohemoterapia do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Catarina Rodrigues
- Serviço de Medicina 1.4, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Cátia Caldas
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Célia Morais
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Domitília Faria
- Serviço de Medicina 3, Hospital de Portimão, Unidade Local de Saúde do Algarve, Portimão, Portugal
| | | | - Eugénio Teófilo
- Serviço de Medicina 2.3, Hospital de Santo António dos Capuchos, Centro Hospitalar de Lisboa Central, Lisbon, Portugal
| | - Fátima Monteiro
- Centro de Biologia Molecular, Serviço de Imunohemoterapia do Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Fausto Roxo
- Hospital de Dia de Doenças Infeciosas, Hospital Distrital de Santarém, Santarém, Portugal
| | - Fernando Maltez
- Serviço de Doenças Infeciosas, Hospital Curry Cabral, Centro Hospitalar de Lisboa, Lisbon, Portugal; Instituto de Saúde Ambiental da Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Fernando Rodrigues
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Guilhermina Gaião
- Serviço de Patologia Clínica, Hospital de Sta Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Helena Ramos
- Serviço de Patologia Clínica, Centro Hospitalar do Porto, Porto, Portugal
| | - Inês Costa
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), Lisbon, Portugal
| | - Isabel Diogo
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), Lisbon, Portugal
| | - Isabel Germano
- Serviço de Medicina 1.4, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Joana Simões
- Serviço de Medicina 1.4, Hospital de São José, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Joaquim Oliveira
- Serviço de Infeciologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - José Ferreira
- Serviço de Medicina 2, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - José Poças
- Serviço de Infeciologia, Centro Hospitalar de Setúbal, Setúbal, Portugal
| | - José Saraiva da Cunha
- Serviço de Infeciologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Jorge Soares
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Kamal Mansinho
- Serviço de Doenças Infeciosas, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Liliana Pedro
- Serviço de Medicina 3, Hospital de Portimão, Unidade Local de Saúde do Algarve, Portimão, Portugal
| | | | | | - Maria José Manata
- Serviço de Doenças Infeciosas, Hospital Curry Cabral, Centro Hospitalar de Lisboa, Lisbon, Portugal
| | - Margarida Mouro
- Serviço de Infeciologia, Hospital de Aveiro, Centro Hospitalar Baixo Vouga, Aveiro, Portugal
| | - Margarida Serrado
- U. Imunodeficiência, Hospital Pulido Valente, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Micaela Caixeiro
- Serviço de Infeciologia, Hospital Dr. Fernando da Fonseca, Amadora, Portugal
| | - Nuno Marques
- Serviço de Infeciologia, Hospital Garcia da Orta, Almada, Portugal
| | - Olga Costa
- Serviço de Patologia Clínica, Biologia Molecular, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Patrícia Pacheco
- Serviço de Infeciologia, Hospital Dr. Fernando da Fonseca, Amadora, Portugal
| | - Paula Proença
- Serviço de Infeciologia, Hospital de Faro, Centro Hospitalar Universitário do Algarve, Faro, Portugal
| | - Paulo Rodrigues
- Serviço de Infeciologia, Hospital Beatriz Ângelo, Loures, Portugal
| | - Raquel Pinho
- Serviço de Medicina 3, Hospital de Portimão, Unidade Local de Saúde do Algarve, Portimão, Portugal
| | - Raquel Tavares
- Serviço de Infeciologia, Hospital Beatriz Ângelo, Loures, Portugal
| | - Ricardo Correia de Abreu
- Serviço de Infeciologia, Unidade de Local de Saúde de Matosinhos, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Rita Côrte-Real
- Serviço de Patologia Clínica, Biologia Molecular, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Rosário Serrão
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário de São João, Porto, Portugal
| | | | - Sofia Nunes
- Serviço de Infeciologia, Hospital de Aveiro, Centro Hospitalar Baixo Vouga, Aveiro, Portugal
| | - Telo Faria
- Unidade Local de Saúde do Baixo Alentejo, Hospital José Joaquim Fernandes, Beja, Portugal
| | - Teresa Baptista
- Serviço de Doenças Infeciosas, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Daniel Simões
- Grupo de Ativistas em Tratamentos (GAT), Lisbon, Portugal
| | - Luis Mendão
- Grupo de Ativistas em Tratamentos (GAT), Lisbon, Portugal
| | - M Rosário O Martins
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Perpétua Gomes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), Lisbon, Portugal; Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon (IHMT/UNL), Lisbon, Portugal
| | - Ana B Abecasis
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon (IHMT/UNL), Lisbon, Portugal
| |
Collapse
|
2
|
Miranda MNS, Pimentel V, Gomes P, Martins MDRO, Seabra SG, Kaiser R, Böhm M, Seguin-Devaux C, Paredes R, Bobkova M, Zazzi M, Incardona F, Pingarilho M, Abecasis AB. The Role of Late Presenters in HIV-1 Transmission Clusters in Europe. Viruses 2023; 15:2418. [PMID: 38140659 PMCID: PMC10746990 DOI: 10.3390/v15122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Investigating the role of late presenters (LPs) in HIV-1 transmission is important, as they can contribute to the onward spread of HIV-1 virus before diagnosis, when they are not aware of their HIV status. OBJECTIVE To characterize individuals living with HIV-1 followed up in Europe infected with subtypes A, B, and G and to compare transmission clusters (TC) in LP vs. non-late presenter (NLP) populations. METHODS Information from a convenience sample of 2679 individuals living with HIV-1 was collected from the EuResist Integrated Database between 2008 and 2019. Maximum likelihood (ML) phylogenies were constructed using FastTree. Transmission clusters were identified using Cluster Picker. Statistical analyses were performed using R. RESULTS 2437 (91.0%) sequences were from subtype B, 168 (6.3%) from subtype A, and 74 (2.8%) from subtype G. The median age was 39 y/o (IQR: 31.0-47.0) and 85.2% of individuals were males. The main transmission route was via homosexual (MSM) contact (60.1%) and 85.0% originated from Western Europe. In total, 54.7% of individuals were classified as LPs and 41.7% of individuals were inside TCs. In subtype A, individuals in TCs were more frequently males and natives with a recent infection. For subtype B, individuals in TCs were more frequently individuals with MSM transmission route and with a recent infection. For subtype G, individuals in TCs were those with a recent infection. When analyzing cluster size, we found that LPs more frequently belonged to small clusters (<8 individuals), particularly dual clusters (2 individuals). CONCLUSION LP individuals are more present either outside or in small clusters, indicating a limited role of late presentation to HIV-1 transmission.
Collapse
Affiliation(s)
- Mafalda N. S. Miranda
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), 1349-008 Lisbon, Portugal; (V.P.); (M.d.R.O.M.); (S.G.S.); (M.P.); (A.B.A.)
| | - Victor Pimentel
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), 1349-008 Lisbon, Portugal; (V.P.); (M.d.R.O.M.); (S.G.S.); (M.P.); (A.B.A.)
| | - Perpétua Gomes
- Laboratório de Biologia Molecular (LMCBM, SPC, CHLO-HEM), 1349-019 Lisbon, Portugal;
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, 2829-511 Costa da Caparica, Portugal
| | - Maria do Rosário O. Martins
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), 1349-008 Lisbon, Portugal; (V.P.); (M.d.R.O.M.); (S.G.S.); (M.P.); (A.B.A.)
| | - Sofia G. Seabra
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), 1349-008 Lisbon, Portugal; (V.P.); (M.d.R.O.M.); (S.G.S.); (M.P.); (A.B.A.)
| | - Rolf Kaiser
- Institute of Virology, University Hospital of Cologne, University of Cologne, 50923 Cologne, Germany; (R.K.); (M.B.)
- DZIF, Deutsches Zentrum für Infektionsforschung, German Center for Infection Research, Partner Site Bonn-Cologne, 50923 Cologne, Germany
| | - Michael Böhm
- Institute of Virology, University Hospital of Cologne, University of Cologne, 50923 Cologne, Germany; (R.K.); (M.B.)
- DZIF, Deutsches Zentrum für Infektionsforschung, German Center for Infection Research, Partner Site Bonn-Cologne, 50923 Cologne, Germany
| | - Carole Seguin-Devaux
- Laboratory of Retrovirology, Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg;
| | - Roger Paredes
- Infectious Diseases Department, IrsiCaixa AIDS Research Institute, Hospital University Hospital Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Marina Bobkova
- Gamaleya National Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Francesca Incardona
- IPRO—InformaPRO S.r.l., 00152 Rome, Italy;
- EuResist Network, 00152 Rome, Italy
| | - Marta Pingarilho
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), 1349-008 Lisbon, Portugal; (V.P.); (M.d.R.O.M.); (S.G.S.); (M.P.); (A.B.A.)
| | - Ana B. Abecasis
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, New University of Lisbon (IHMT/UNL), 1349-008 Lisbon, Portugal; (V.P.); (M.d.R.O.M.); (S.G.S.); (M.P.); (A.B.A.)
| |
Collapse
|
3
|
Differential patterns of postmigration HIV-1 infection acquisition among Portuguese immigrants of different geographical origins. AIDS 2022; 36:997-1005. [PMID: 35220350 DOI: 10.1097/qad.0000000000003203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the dynamics of phylogenetic transmission clusters involving immigrants of Portuguese Speaking Countries living in Portugal. DESIGN/METHODS We included genomic sequences, sociodemographic and clinical data from 772 HIV migrants followed in Portugal between 2001 and 2017. To reconstruct HIV-1 transmission clusters, we applied phylogenetic inference from 16 454 patients: 772 migrants, 2973 Portuguese and 12 709 global controls linked to demographic and clinical data. Transmission clusters were defined using: clusters with SH greater than 90% (phylogenetic support), genetic distance less than 3.5% and clusters that included greater than 66% of patients from one specific geographic origin compared with the total of sequences within the cluster. Logistic regression was performed to assess factors associated with clustering. RESULTS Three hundred and six (39.6%) of migrants were included in transmission clusters. This proportion differed substantially by region of origin [Brazil 54% vs. Portuguese Speaking African Countries (PALOPs) 36%, P < 0.0001] and HIV-1 infecting subtype (B 52%, 43% subtype G and 32% CRF02_AG, P < 0.001). Belonging to a transmission cluster was independently associated with treatment-naive patients, CD4+ greater than 500, with recent calendar years of sampling, origin from PALOPs and with seroconversion. Among Brazilian migrants - mainly infected with subtype B - 40.6% were infected by Portuguese. Among migrants from PALOPs - mainly infected with subtypes G and CFR02_AG - the transmission occurred predominantly within the migrants' community (53 and 80%, respectively). CONCLUSION The acquisition of infection among immigrants living in Portugal differs according to the country of origin. These results can contribute to monitor the HIV epidemic and prevent new HIV infections among migrants.
Collapse
|
4
|
Limnaios S, Kostaki EG, Adamis G, Astriti M, Chini M, Mangafas N, Lazanas M, Patrinos S, Metallidis S, Tsachouridou O, Papastamopoulos V, Kakalou E, Chatzidimitriou D, Antoniadou A, Papadopoulos A, Psichogiou M, Basoulis D, Gova M, Pilalas D, Paraskeva D, Chrysos G, Paparizos V, Kourkounti S, Sambatakou H, Bolanos V, Sipsas NV, Lada M, Barbounakis E, Kantzilaki E, Panagopoulos P, Maltezos E, Drimis S, Sypsa V, Lagiou P, Magiorkinis G, Hatzakis A, Skoura L, Paraskevis D. Dating the Origin and Estimating the Transmission Rates of the Major HIV-1 Clusters in Greece: Evidence about the Earliest Subtype A1 Epidemic in Europe. Viruses 2022; 14:v14010101. [PMID: 35062305 PMCID: PMC8782043 DOI: 10.3390/v14010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Our aim was to estimate the date of the origin and the transmission rates of the major local clusters of subtypes A1 and B in Greece. Phylodynamic analyses were conducted in 14 subtype A1 and 31 subtype B clusters. The earliest dates of origin for subtypes A1 and B were in 1982.6 and in 1985.5, respectively. The transmission rate for the subtype A1 clusters ranged between 7.54 and 39.61 infections/100 person years (IQR: 9.39, 15.88), and for subtype B clusters between 4.42 and 36.44 infections/100 person years (IQR: 7.38, 15.04). Statistical analysis revealed that the average difference in the transmission rate between the PWID and the MSM clusters was 6.73 (95% CI: 0.86 to 12.60; p = 0.026). Our study provides evidence that the date of introduction of subtype A1 in Greece was the earliest in Europe. Transmission rates were significantly higher for PWID than MSM clusters due to the conditions that gave rise to an extensive PWID HIV-1 outbreak ten years ago in Athens, Greece. Transmission rate can be considered as a valuable measure for public health since it provides a proxy of the rate of epidemic growth within a cluster and, therefore, it can be useful for targeted HIV prevention programs.
Collapse
Affiliation(s)
- Stefanos Limnaios
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Georgios Adamis
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (M.A.)
| | - Myrto Astriti
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (M.A.)
| | - Maria Chini
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Nikos Mangafas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Marios Lazanas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | | | - Simeon Metallidis
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Olga Tsachouridou
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Vasileios Papastamopoulos
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Eleni Kakalou
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Dimitrios Chatzidimitriou
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (L.S.)
| | - Anastasia Antoniadou
- 4th Department of Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Medicine, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Mina Psichogiou
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Basoulis
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Maria Gova
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Dimitrios Pilalas
- Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitra Paraskeva
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Georgios Chrysos
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Vasileios Paparizos
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Sofia Kourkounti
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Helen Sambatakou
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Vasileios Bolanos
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Nikolaos V. Sipsas
- Department of Pathophysiology, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Malvina Lada
- 2nd Department of Internal Medicine, Sismanogleion General Hospital, 15126 Marousi, Greece;
| | - Emmanouil Barbounakis
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Evrikleia Kantzilaki
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Periklis Panagopoulos
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (E.M.)
| | - Efstratios Maltezos
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (E.M.)
| | - Stelios Drimis
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Vana Sypsa
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
| | - Lemonia Skoura
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (L.S.)
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.L.); (E.G.K.); (M.G.); (V.S.); (P.L.); (G.M.); (A.H.)
- Correspondence:
| |
Collapse
|
5
|
Souto B, Triunfante V, Santos-Pereira A, Martins J, Araújo PMM, Osório NS. Evolutionary dynamics of HIV-1 subtype C in Brazil. Sci Rep 2021; 11:23060. [PMID: 34845263 PMCID: PMC8629974 DOI: 10.1038/s41598-021-02428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
The extensive genetic diversity of HIV-1 is a major challenge for the prevention and treatment of HIV-1 infections. Subtype C accounts for most of the HIV-1 infections in the world but has been mainly localized in Southern Africa, Ethiopia and India. For elusive reasons, South Brazil harbors the largest HIV-1 subtype C epidemic in the American continent that is elsewhere dominated by subtype B. To investigate this topic, we collected clinical data and viral sequences from 2611 treatment-naïve patients diagnosed with HIV-1 in Brazil. Molecular epidemiology analysis supported 35 well-delimited transmission clusters of subtype C highlighting transmission within South Brazil but also from the South to all other Brazilian regions and internationally. Individuals infected with subtype C had lower probability to be deficient in CD4+ T cells when compared to subtype B. The HIV-1 epidemics in the South was characterized by high female-to-male infection ratios and women-to-child transmission. Our results suggest that HIV-1 subtype C probably takes advantage of longer asymptomatic periods to maximize transmission and is unlikely to outcompete subtype B in settings where the infection of women is relatively less relevant. This study contributes to elucidate factors possibly underlying the geographical distribution and expansion patterns of the most spread HIV-1 subtypes.
Collapse
Affiliation(s)
- Bernardino Souto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.,Department of Medicine, Federal University of São Carlos, São Carlos, Brazil
| | - Vera Triunfante
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana Santos-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro M M Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
6
|
Parczewski M, Sulkowska E, Urbańska A, Scheibe K, Serwin K, Grabarczyk P. Transmitted HIV drug resistance and subtype patterns among blood donors in Poland. Sci Rep 2021; 11:12734. [PMID: 34140600 PMCID: PMC8211697 DOI: 10.1038/s41598-021-92210-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Surveillance on the HIV molecular variability, risk of drug resistance transmission and evolution of novel viral variants among blood donors remains an understudied aspect of hemovigilance. This nationwide study analyses patterns of HIV diversity and transmitted resistance mutations. Study included 185 samples from the first time and repeat blood donors with HIV infection identified by molecular assay. HIV protease, reverse transcriptase and integrase were sequenced using population methods. Drug resistance mutation (DRM) patterns were analyzed based on the Stanford Interpretation Algorithm and standardized lists of transmitted mutations. Phylogeny was used to investigate subtyping, clustering and recombination patterns. HIV-1 subtype B (89.2%) followed by subtype A6 (7.6%) were predominant, while in three (1.6%) cases, novel recombinant B/A6 variants were identified. Non-B variants were more common among repeat donors (14.5%) compared to the first time ones (1.8%), p = 0.011, with higher frequency (9.9%) of A6 variant in the repeat donor group, p = 0.04. Major NRTI DRMs were observed in 3.8%, NNRTI and PI in 0.6% and INSTI 1.1% of cases. Additionally, E157Q polymorphism was observed in 9.8% and L74I in 11.5% of integrase sequences. Transmission of drug resistance among blood donors remains infrequent. Subtype patters increase in complexity with emergence of novel intersubtype A6B recombinants.
Collapse
Affiliation(s)
- Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University, Arkońska 4, 71-455, Szczecin, Poland.
| | - Ewa Sulkowska
- Institute of Haematology and Transfusion Medicine in Warsaw, Warsaw, Poland
| | - Anna Urbańska
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University, Arkońska 4, 71-455, Szczecin, Poland
| | - Kaja Scheibe
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University, Arkońska 4, 71-455, Szczecin, Poland
| | - Karol Serwin
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University, Arkońska 4, 71-455, Szczecin, Poland
| | - Piotr Grabarczyk
- Institute of Haematology and Transfusion Medicine in Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Nationwide Study of Drug Resistance Mutations in HIV-1 Infected Individuals under Antiretroviral Therapy in Brazil. Int J Mol Sci 2021; 22:ijms22105304. [PMID: 34069929 PMCID: PMC8157590 DOI: 10.3390/ijms22105304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/02/2022] Open
Abstract
The success of antiretroviral treatment (ART) is threatened by the emergence of drug resistance mutations (DRM). Since Brazil presents the largest number of people living with HIV (PLWH) in South America we aimed at understanding the dynamics of DRM in this country. We analyzed a total of 20,226 HIV-1 sequences collected from PLWH undergoing ART between 2008–2017. Results show a mild decline of DRM over the years but an increase of the K65R reverse transcriptase mutation from 2.23% to 12.11%. This increase gradually occurred following alterations in the ART regimens replacing zidovudine (AZT) with tenofovir (TDF). PLWH harboring the K65R had significantly higher viral loads than those without this mutation (p < 0.001). Among the two most prevalent HIV-1 subtypes (B and C) there was a significant (p < 0.001) association of K65R with subtype C (11.26%) when compared with subtype B (9.27%). Nonetheless, evidence for K65R transmission in Brazil was found both for C and B subtypes. Additionally, artificial neural network-based immunoinformatic predictions suggest that K65R could enhance viral recognition by HLA-B27 that has relatively low prevalence in the Brazilian population. Overall, the results suggest that tenofovir-based regimens need to be carefully monitored particularly in settings with subtype C and specific HLA profiles.
Collapse
|
8
|
Marcelino R, Gramacho F, Martin F, Brogueira P, Janeiro N, Afonso C, Badura R, Valadas E, Mansinho K, Caldeira L, Taveira N, Marcelino JM. Antibody response against selected epitopes in the HIV-1 envelope gp41 ectodomain contributes to reduce viral burden in HIV-1 infected patients. Sci Rep 2021; 11:8993. [PMID: 33903642 PMCID: PMC8076315 DOI: 10.1038/s41598-021-88274-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/09/2021] [Indexed: 01/26/2023] Open
Abstract
The ectodomain of gp41 is the target of potent binding and neutralizing antibodies (NAbs) and is being explored in new strategies for antibody-based HIV vaccines. Previous studies have suggested that the W164A-3S (3S) and EC26-2A4 (EC26) peptides located in the gp41 ectodomain may be potential HIV vaccine candidates. We assessed 3S- and EC26-specific binding antibody responses and related neutralizing activity in a large panel of chronic HIV-1-infected Portuguese individuals on ART. A similar proportion of participants had antibodies binding to 3S (9.6%) and EC26 (9.9%) peptides but the level of reactivity against 3S was significantly higher compared to EC26, except in the rare patients with double peptide reactivity. The higher antigenicity of 3S was unrelated with disease stage, as assessed by CD4+ T cell counts, but it was directly related with plasma viral load. Most patients that were tested (89.9%, N = 268) showed tier 1 neutralizing activity, the potency being inversely associated with plasma viral load. In the subset of patients that were tested for neutralization of tier 2 isolates, neutralization breadth was inversely correlated with plasma viral load and directly correlated with CD4+ T cell counts. These results are consistent with a role for neutralizing antibodies in controlling viral replication and preventing the decline of CD4+ T lymphocytes. Importantly, in patients with 3S-specific antibodies, neutralizing titers were inversely correlated with viral RNA levels and proviral DNA levels. Moreover, patients with 3S and/or EC26-specific antibodies showed a 1.9-fold higher tier 2 neutralization score than patients without antibodies suggesting that 3S and/or EC26-specific antibodies contribute to neutralization breadth and potency in HIV-1 infected patients. Overall, these results suggest that antibodies targeting the S3 and EC26 epitopes may contribute to reduce viral burden and provide further support for the inclusion of 3S and EC26 epitopes in HIV-1 vaccine candidates.
Collapse
Affiliation(s)
- Rute Marcelino
- Global Health and Tropical Medicine-GHTM, Instituto de Higiene e Medicina Tropical-IHMT, Universidade Nova de Lisboa-UNL, 1349-008, Lisboa, Portugal.,Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511, Monte de Caparica, Portugal
| | - Filipa Gramacho
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal
| | - Francisco Martin
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal
| | - Pedro Brogueira
- Serviço de Doenças Infeciosas, Hospital Egas Moniz-HEM, Centro Hospitalar Lisboa Ocidental-CHLO, E.P.E., Lisboa, 1349-019, Lisboa, Portugal
| | - Nuno Janeiro
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Claudia Afonso
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Robert Badura
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Emília Valadas
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Kamal Mansinho
- Serviço de Doenças Infeciosas, Hospital Egas Moniz-HEM, Centro Hospitalar Lisboa Ocidental-CHLO, E.P.E., Lisboa, 1349-019, Lisboa, Portugal
| | - Luís Caldeira
- Hospital de Santa Maria-HSM, Centro Hospitalar Lisboa Norte-CHLN, E.P.E., Lisboa, 1649-028, Lisboa, Portugal.,Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina, Universidade de Lisboa-UL, Lisboa, 1649-028, Lisboa, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal.,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511, Monte de Caparica, Portugal
| | - José M Marcelino
- Global Health and Tropical Medicine-GHTM, Instituto de Higiene e Medicina Tropical-IHMT, Universidade Nova de Lisboa-UNL, 1349-008, Lisboa, Portugal. .,Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, 1649-003, Lisboa, Portugal. .,Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz, Monte de Caparica, 2829-511, Monte de Caparica, Portugal.
| |
Collapse
|
9
|
Parczewski M, Scheibe K, Witak-Jędra M, Pynka M, Aksak-Wąs B, Urbańska A. Infection with HIV-1 subtype D adversely affects the live expectancy independently of antiretroviral drug use. INFECTION GENETICS AND EVOLUTION 2021; 90:104754. [PMID: 33540086 DOI: 10.1016/j.meegid.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION HIV-1 subtypes have been associated with less favourable clinical profiles, differences in disease progression and higher risk of neurocognitive deficit. In this study we aimed to analyse the long term survival disparities between patients infected with the most common HIV-1 variants observed in Poland. METHODS For the study data from 518 Caucasian non-immigrant patients of Polish origin infected with divergent HIV subtypes and variants [subtype A (n = 35, 6.8%), subtype B (n = 386, 74.5%), subtype C (n = 13, 2.5%), subtype D (n = 58, 11.19%) or other non-A,B,C,D (n = 26, 5.01%)variants] were analysed. Subtyping was performed using the partial pol (reverse transcriptase and protease) sequencing. HIV variant was coupled with clinical, virologic and survival data censored at 20 years of observation. Overall survival and on antiretroviral treatment survival was analysed using Kaplan-Meyer as well as unadjusted and multivariate Cox proportional hazards models. RESULTS Significantly higher mortality was observed among subtype D (28.8%) infected subjects compared to subtype B (11.7%, p = 0.0004). Increased risk of death among subtype D cases remained significant when cART treated individuals were analysed, with on-treatment mortality of 26.9% for subtype D (p = 0.006) compared to 10.73% in subtype B infected cases. Kaplan-Meyer survival estimates differed significantly across all investigated HIV-1 variant groups when overall 20 year mortality was analysed (log rank p = 0.029), being non-significant for the cART treated group. In multivariate model of overall 20 year survival, adjusted for age at diagnosis, gender, HCV and AIDS status, lymphocyte CD4 count, transmission route and HIV viral load, only age and subtype D were independently associated with higher likelihood of death [HR: 1.08 (95%CI: 1.03-1.14, p = 0.002) and HR: 7.91 (95%CI:2.33-26.86), p < 0.001, respectively]. In the on-treatment (cART) multivariate model of 20 year survival adjusted for the same parameters only subtype D remained as the independent factor associated with higher mortality risk [HR: 4.24 (95%CI:1.31-13.7), p = 0.02]. CONCLUSIONS Subtype D has an independent deleterious effect of survival, even in the setting of antiretroviral treatment. Observed effect indicated higher clinical vigilance for patients infected with this subtype even after long time of stable antiretroviral treatment.
Collapse
Affiliation(s)
- Miłosz Parczewski
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland.
| | - Kaja Scheibe
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Witak-Jędra
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Magdalena Pynka
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Bogusz Aksak-Wąs
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Urbańska
- Department of Infectious, Tropical Diseases and Immune Deficiency, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
10
|
Kostaki EG, Gova M, Adamis G, Xylomenos G, Chini M, Mangafas N, Lazanas M, Metallidis S, Tsachouridou O, Papastamopoulos V, Chatzidimitriou D, Kakalou E, Antoniadou A, Papadopoulos A, Psichogiou M, Basoulis D, Pilalas D, Papageorgiou I, Paraskeva D, Chrysos G, Paparizos V, Kourkounti S, Sambatakou H, Bolanos V, Sipsas NV, Lada M, Barbounakis E, Kantzilaki E, Panagopoulos P, Petrakis V, Drimis S, Gogos C, Hatzakis A, Beloukas A, Skoura L, Paraskevis D. A Nationwide Study about the Dispersal Patterns of the Predominant HIV-1 Subtypes A1 and B in Greece: Inference of the Molecular Transmission Clusters. Viruses 2020; 12:E1183. [PMID: 33086773 PMCID: PMC7589601 DOI: 10.3390/v12101183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/22/2023] Open
Abstract
Our aim was to investigate the dispersal patterns and parameters associated with local molecular transmission clusters (MTCs) of subtypes A1 and B in Greece (predominant HIV-1 subtypes). The analysis focused on 1751 (28.4%) and 2575 (41.8%) sequences of subtype A1 and B, respectively. Identification of MTCs was based on phylogenetic analysis. The analyses identified 38 MTCs including 2-1518 subtype A1 sequences and 168 MTCs in the range of 2-218 subtype B sequences. The proportion of sequences within MTCs was 93.8% (1642/1751) and 77.0% (1982/2575) for subtype A1 and B, respectively. Transmissions within MTCs for subtype A1 were associated with risk group (Men having Sex with Men vs. heterosexuals, OR = 5.34, p < 0.001) and Greek origin (Greek vs. non-Greek origin, OR = 6.05, p < 0.001) and for subtype B, they were associated with Greek origin (Greek vs. non-Greek origin, OR = 1.57, p = 0.019), younger age (OR = 0.96, p < 0.001), and more recent sampling (time period: 2011-2015 vs. 1999-2005, OR = 3.83, p < 0.001). Our findings about the patterns of across and within country dispersal as well as the parameters associated with transmission within MTCs provide a framework for the application of the study of molecular clusters for HIV prevention.
Collapse
Affiliation(s)
- Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Maria Gova
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Georgios Adamis
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (G.X.)
| | - Georgios Xylomenos
- 1st Department of Internal Medicine, G. Gennimatas General Hospital, 11527 Athens, Greece; (G.A.); (G.X.)
| | - Maria Chini
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Nikos Mangafas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Marios Lazanas
- 3rd Department of Internal Medicine-Infectious Diseases Unit, “Korgialeneio-Benakeio” Red Cross General Hospital, 11526 Athens, Greece; (M.C.); (N.M.); (M.L.)
| | - Simeon Metallidis
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Olga Tsachouridou
- 1st Department of Internal Medicine, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Vasileios Papastamopoulos
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Dimitrios Chatzidimitriou
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Eleni Kakalou
- 5th Department of Internal Medicine and Infectious Diseases, Evaggelismos General Hospital, 10676 Athens, Greece; (V.P.); (E.K.)
| | - Anastasia Antoniadou
- 4th Department of Medicine, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Medicine, Attikon General Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.A.); (A.P.)
| | - Mina Psichogiou
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Basoulis
- 1st Department of Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.P.); (D.B.)
| | - Dimitrios Pilalas
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Ifigeneia Papageorgiou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Dimitra Paraskeva
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Georgios Chrysos
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Vasileios Paparizos
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Sofia Kourkounti
- HIV/AIDS Unit, A. Syngros Hospital of Dermatology and Venereology, 16121 Athens, Greece; (V.P.); (S.K.)
| | - Helen Sambatakou
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Vasileios Bolanos
- HIV Unit, 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (H.S.); (V.B.)
| | - Nikolaos V. Sipsas
- Department of Pathophysiology, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Malvina Lada
- 2nd Department of Internal Medicine, Sismanogleion General Hospital, 15126 Marousi, Greece;
| | - Emmanouil Barbounakis
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Evrikleia Kantzilaki
- Department of Internal Medicine, University Hospital of Heraklion “PAGNI”, Medical School, University of Crete, 71110 Heraklion, Greece; (E.B.); (E.K.)
| | - Periklis Panagopoulos
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (V.P.)
| | - Vasilis Petrakis
- Department of Internal Medicine, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.P.); (V.P.)
| | - Stelios Drimis
- Department of Internal Medicine, Tzaneio General Hospital, 18536 Piraeus, Greece; (D.P.); (G.C.); (S.D.)
| | - Charalambos Gogos
- Department of Internal Medicine and Infectious Diseases, University Hospital of Patras, 26504 Rio, Greece;
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| | - Apostolos Beloukas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool L697BE, UK
- Department of Biomedical Sciences, School of Health Sciences, University of West Attica, 12243 Athens, Greece
| | - Lemonia Skoura
- National AIDS Reference Centre of Northern Greece, Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (D.P.); (L.S.)
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.G.K.); (M.G.); (I.P.); (A.H.)
| |
Collapse
|
11
|
Araújo PMM, Martins JS, Osório NS. SNAPPy: A snakemake pipeline for scalable HIV-1 subtyping by phylogenetic pairing. Virus Evol 2019; 5:vez050. [PMID: 31768265 PMCID: PMC6863187 DOI: 10.1093/ve/vez050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) genome sequencing is routinely done for drug resistance monitoring in hospitals worldwide. Subtyping these extensive datasets of HIV-1 sequences is a critical first step in molecular epidemiology and evolution studies. The clinical relevance of HIV-1 subtypes is increasingly recognized. Several studies suggest subtype-related differences in disease progression, transmission route efficiency, immune evasion, and even therapeutic outcomes. HIV-1 subtyping is mainly done using web-servers. These tools have limitations in scalability and potential noncompliance with data protection legislation. Thus, the aim of this work was to develop an efficient method for large-scale local HIV-1 subtyping. We designed SNAPPy: a snakemake pipeline for scalable HIV-1 subtyping by phylogenetic pairing. It contains several tasks of phylogenetic inference and BLAST queries, which can be executed sequentially or in parallel, taking advantage of multiple-core processing units. Although it was built for subtyping, SNAPPy is also useful to perform extensive HIV-1 alignments. This tool facilitates large-scale sequence-based HIV-1 research by providing a local, resource efficient and scalable alternative for HIV-1 subtyping. It is capable of analyzing full-length genomes or partial HIV-1 genomic regions (GAG, POL, and ENV) and recognizes more than ninety circulating recombinant forms. SNAPPy is freely available at: https://github.com/PMMAraujo/snappy/releases.
Collapse
Affiliation(s)
- Pedro M M Araújo
- Life and Health Sciences Research institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana S Martins
- Life and Health Sciences Research institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|