1
|
Huang C, Yang J, Chen S, Han SI, Zhang H, Samuel J, Van Schaik E, de Figueiredo P, Han A. μREACT: A microfluidic system for rapid evaluation of trans-kingdom interactions. Biosens Bioelectron 2025; 267:116838. [PMID: 39393191 DOI: 10.1016/j.bios.2024.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Trans-kingdom interactions between cells play pivotal roles in shaping intricate ecological and biological networks. However, our grasp of these interactions remains incomplete. Specifically, the vast phylogenetic spectrum of microorganisms capable of interacting with a given host cell type remains obscure, primarily due to the absence of efficient, high-throughput, single-cell resolution systems that can rapidly decipher these interactions. Here, we introduce μREACT (Microfluidic system for Rapid Evaluation of bacterial Adherence and Communication in Trans-kingdom interactions), a microfluidic system designed to analyze interkingdom interactions. μREACT not only unveiled both recognized and previously unknown interactions but also enabled their detailed characterization. The system features the use of microfluidic dielectrophoretic separation of bacteria that adhere to host cells at single-cell (digital) resolution, and enabled the sorting of 107 adherent microorganisms per hour, representing a comparable throughput to conventional flow cytometry systems, but without requiring any labeling. The analysis of soil microbial samples using μREACT revealed several bacterial species previously known to have high adherence to mammalian host cells, as well as new interactions involving strains that displayed hallmarks of emerging endosymbiosis. Taken together, μREACT serves as a formidable tool for identifying and characterizing webs of interkingdom interactions. Its implications extend beyond discovery of such interactions, where it has the potential to provide new insights into fundamental mechanisms driving ecosystem dynamics and biological processes.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jing Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Shaorong Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Song-I Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - James Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Erin Van Schaik
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, 77807, USA
| | - Paul de Figueiredo
- Department of Molecular Microbiology and Immunology, The University of Missouri School of Medicine, Columbia, MO, 65211, USA; Christopher S Bond Life Sciences Center, The University of Missouri, Columbia, MO, 65211, USA; Department of Veterinary Pathobiology, The University of Missouri, Columbia, MO, 65211, USA; Department of Chemical and Biomedical Engineering, The University of Missouri, Columbia, MO, 65211, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
2
|
Li Y, Huang F, Dong S, Liu L, Lin L, Li Z, Zheng Y, Hu Z. Microbiota succession, species interactions, and metabolic functions during autotrophic biofloc formation in zero-water-exchange shrimp farming without organic carbon supplements. BIORESOURCE TECHNOLOGY 2024; 414:131584. [PMID: 39393653 DOI: 10.1016/j.biortech.2024.131584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Autotrophic bioflocs (ABF) exhibits lower energy consumption, more environment-friendly and cost-effective than heterotrophic bioflocs depending on organic carbon supplements. Whereas ABF has not been widely applied to aquaculture production. Here, ABF successfully performed to control ammonia and nitrite under harmless levels even when carbon-to-nitrogen ratio reduced to 2.0, during 12-week shrimp farming in commercial scale. ABF was mainly dominated by bacteria of Proteobacteria, Bacteroidota, Chloroflexi and eukaryotes of Bacillariophyta, Rotifera, Ciliophora. A notable shift occurred in ABF with the significant decreases of Proteobacteria and Rotifera replaced by Bacteroidota, Chloroflexi, and Bacillariophyta after four weeks. Nitrogen metabolism was synergistically executed by bacteria and microalgae, especially the positive interaction between Nitrospira and Halamphora for ABF nitrification establishment. Metagenomics confirmed the complete functional genes of key bacteria related to the cycling of carbon, nitrogen, and phosphorus by ABF. This study may promote the development application of ABF in low-carbon shrimp aquaculture.
Collapse
Affiliation(s)
- Yuchun Li
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Fei Huang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Sheng Dong
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lingcheng Liu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Langli Lin
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ze Li
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yihong Zheng
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Encina-Robles J, Pérez-Villalobos V, Bustamante P. The HicAB System: Characteristics and Biological Roles of an Underappreciated Toxin-Antitoxin System. Int J Mol Sci 2024; 25:12165. [PMID: 39596231 PMCID: PMC11594946 DOI: 10.3390/ijms252212165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Small genetic elements known as toxin-antitoxin (TA) systems are abundant in bacterial genomes and involved in stress response, phage inhibition, mobile genetic elements maintenance and biofilm formation. Type II TA systems are the most abundant and diverse, and they are organized as bicistronic operons that code for proteins (toxin and antitoxin) able to interact through a nontoxic complex. However, HicAB is one of the type II TA systems that remains understudied. Here, we review the current knowledge of HicAB systems in different bacteria, their main characteristics and the existing evidence to associate them with some biological roles, are described. The accumulative evidence reviewed here, though modest, underscores that HicAB systems are underexplored TA systems with significant potential for future research.
Collapse
Affiliation(s)
| | | | - Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| |
Collapse
|
4
|
Fang M, Sun Y, Zhu Y, Chen Q, Chen Q, Liu Y, Zhang B, Chen T, Jin J, Yang T, Zhuang L. The potential of ferrihydrite-synthetic humic-like acid composite as a soil amendment for metal-contaminated agricultural soil: Immobilization mechanisms by combining abiotic and biotic perspectives. ENVIRONMENTAL RESEARCH 2024; 250:118470. [PMID: 38373548 DOI: 10.1016/j.envres.2024.118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
In-situ passivation technique has attracted increasing attention for metal-contaminated agricultural soil remediation. However, metal immobilization mechanisms are mostly illustrated based on metal speciation changes and alterations in soil physicochemical properties from a macroscopic and abiotic perspective. In this study, a ferrihydrite-synthetic humic-like acid composite (FH-SHLA) was fabricated and applied as a passivator for a 90-day soil incubation. The heavy metals immobilization mechanisms of FH-SHLA were investigated by combining both abiotic and biotic perspectives. Effects of FH-SHLA application on soil micro-ecology were also evaluated. The results showed that the 5%FH-SHLA treatment significantly decreased the DTPA-extractable Pb, Cd and Zn by 80.75%, 46.82% and 63.63% after 90 days of incubation (P < 0.05), respectively. Besides, 5% FH-SHLA addition significantly increased soil pH, soil organic matter content and cation exchange capacity (P < 0.05). The SEM, FTIR, and XPS characterizations revealed that the abiotic metal immobilization mechanisms by FH-SHLA included surface complexation, precipitation, electrostatic attraction, and cation-π interactions. For biotic perspective, in-situ microorganisms synergistically participated in the immobilization process via sulfide precipitation and Fe mineral production. FH-SHLA significantly altered the diversity and composition of the soil microbial community, and enhanced the intensity and complexity of the microbial co-occurrence network. Both metal bioavailability and soil physiochemical parameters played a vital role in shaping microbial communities, while the former contributed more. Overall, this study provides new insight into the heavy metal passivation mechanism and demonstrates that FH-SHLA is a promising and environmentally friendly amendment for metal-contaminated soil remediation.
Collapse
Affiliation(s)
- Mingzhi Fang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yi Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qi Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
5
|
Lu YT, Hsin CH, Chuang CY, Huang CC, Su MC, Wen WS, Wang SH, Chen YY, Lee CY, Li YX, Lu YC, Chang TH, Yang SF. Microbial Dysbiosis in Nasopharyngeal Carcinoma: A Pilot Study on Biomarker Potential. J Otolaryngol Head Neck Surg 2024; 53:19160216241304365. [PMID: 39704233 PMCID: PMC11660277 DOI: 10.1177/19160216241304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/01/2024] [Indexed: 12/21/2024] Open
Abstract
IMPORTANCE Nasopharyngeal carcinoma (NPC) is closely linked to microorganisms, especially intra-tumoral microbiota. However, the role of commensal microbiota in NPC remains underexplored, with implications for understanding disease mechanisms. OBJECTIVE This study aims to analyze and compare the bacterial microbiota in the nasopharynx and middle meatus (MM) of individuals with NPC and those without NPC. Additionally, the study seeks to identify potential microbial biomarkers that can distinguish between NPC and non-NPC (nNPC) individuals. DESIGN Cross-sectional study. SETTING Study conducted in a clinical setting with NPC and non-NPC participants to evaluate microbial diversity relevant to NPC. PARTICIPANTS Ten NPC cases and 15 non-NPC controls were recruited based on clinical eligibility. MAIN OUTCOME MEASURES Bacterial microbiota sampling from the nasopharynx and MM was analyzed by 16S rRNA sequencing. Microbiota diversity (alpha and beta diversity indices), presence of bacterial taxa with biomarker potential, and prediction model accuracy [area under the curve (AUC)]. RESULTS Microbiota diversity was significantly lower in NPC patients versus controls. In nasopharyngeal samples, alpha diversity (Chao1 index, P = .02) and beta diversity (PERMANOVA, P = .001) differed notably between groups, though MM samples showed no significant difference (Chao1 index, P = .23). Machine learning identified Pseudomonas, Cutibacterium, and Finegoldia as potential NPC biomarkers (AUC = 0.86). CONCLUSIONS AND RELEVANCE This pioneering study highlights dysbiosis in nasopharyngeal microbiota among NPC patients. Findings suggest that Pseudomonas, Cutibacterium, and Finegoldia may be useful biomarkers for NPC diagnosis, warranting further investigation into microbial roles in NPC pathogenesis.
Collapse
Affiliation(s)
- Yen-Ting Lu
- Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Han Hsin
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Yi Chuang
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Cheng-Chen Huang
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Mao-Chang Su
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Sheng Wen
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Hung Wang
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, Taiwan
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Cheng-Yang Lee
- Office of Information Technology, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Yu-Xuan Li
- Office of Information Technology, Taipei Medical University, Taipei City, Taiwan
| | - Ying-Chou Lu
- Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei City, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Hollensteiner J, Schneider D, Poehlein A, Brinkhoff T, Daniel R. Pan-genome analysis of six Paracoccus type strain genomes reveal lifestyle traits. PLoS One 2023; 18:e0287947. [PMID: 38117845 PMCID: PMC10732464 DOI: 10.1371/journal.pone.0287947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/15/2023] [Indexed: 12/22/2023] Open
Abstract
The genus Paracoccus capable of inhabiting a variety of different ecological niches both, marine and terrestrial, is globally distributed. In addition, Paracoccus is taxonomically, metabolically and regarding lifestyle highly diverse. Until now, little is known on how Paracoccus can adapt to such a range of different ecological niches and lifestyles. In the present study, the genus Paracoccus was phylogenomically analyzed (n = 160) and revisited, allowing species level classification of 16 so far unclassified Paracoccus sp. strains and detection of five misclassifications. Moreover, we performed pan-genome analysis of Paracoccus-type strains, isolated from a variety of ecological niches, including different soils, tidal flat sediment, host association such as the bluespotted cornetfish, Bugula plumosa, and the reef-building coral Stylophora pistillata to elucidate either i) the importance of lifestyle and adaptation potential, and ii) the role of the genomic equipment and niche adaptation potential. Six complete genomes were de novo hybrid assembled using a combination of short and long-read technologies. These Paracoccus genomes increase the number of completely closed high-quality genomes of type strains from 15 to 21. Pan-genome analysis revealed an open pan-genome composed of 13,819 genes with a minimal chromosomal core (8.84%) highlighting the genomic adaptation potential and the huge impact of extra-chromosomal elements. All genomes are shaped by the acquisition of various mobile genetic elements including genomic islands, prophages, transposases, and insertion sequences emphasizing their genomic plasticity. In terms of lifestyle, each mobile genetic elements should be evaluated separately with respect to the ecological context. Free-living genomes, in contrast to host-associated, tend to comprise (1) larger genomes, or the highest number of extra-chromosomal elements, (2) higher number of genomic islands and insertion sequence elements, and (3) a lower number of intact prophage regions. Regarding lifestyle adaptations, free-living genomes share genes linked to genetic exchange via T4SS, especially relevant for Paracoccus, known for their numerous extrachromosomal elements, enabling adaptation to dynamic environments. Conversely, host-associated genomes feature diverse genes involved in molecule transport, cell wall modification, attachment, stress protection, DNA repair, carbon, and nitrogen metabolism. Due to the vast number of adaptive genes, Paracoccus can quickly adapt to changing environmental conditions.
Collapse
Affiliation(s)
- Jacqueline Hollensteiner
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Maurya S, Arya CK, Parmar N, Sathyanarayanan N, Joshi CG, Ramanathan G. Genomic profiling and characteristics of a C1 degrading heterotrophic fresh-water bacterium Paracoccus sp. strain DMF. Arch Microbiol 2023; 206:6. [PMID: 38015256 DOI: 10.1007/s00203-023-03729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Paracoccus species are metabolically versatile gram-negative, aerobic facultative methylotrophic bacteria showing enormous promise for environmental and bioremediation studies. Here we report, the complete genome analysis of Paracoccus sp. strain DMF (P. DMF) that was isolated from a domestic wastewater treatment plant in Kanpur, India (26.4287 °N, 80.3891 °E) based on its ability to degrade a recalcitrant organic solvent N, N-dimethylformamide (DMF). The results reveal a genome size of 4,202,269 base pairs (bp) with a G + C content of 67.9%. The assembled genome comprises 4141 coding sequences (CDS), 46 RNA sequences, and 2 CRISPRs. Interestingly, catabolic operons related to the conventional marine-based methylated amines (MAs) degradation pathway were functionally annotated within the genome of an obligated aerobic heterotroph that is P. DMF. The genomic data-based characterization presented here for the novel heterotroph P. DMF aims to improve the understanding of the phenotypic gene products, enzymes, and pathways involved with greater emphasis on facultative methylotrophic motility-based latent pathogenicity.
Collapse
Affiliation(s)
- Shiwangi Maurya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Chetan Kumar Arya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Nidhi Parmar
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382 011, India
| | - Nitish Sathyanarayanan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat, 382 011, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
8
|
Meng F, Guo S, Zhang L, Lu Y, Li M, Tan Y, Zha K, Yuan S. Ecological mechanisms of biofilm development in the hybrid sludge-biofilm process: Implications for process start-up and optimization. WATER RESEARCH 2023; 245:120587. [PMID: 37717335 DOI: 10.1016/j.watres.2023.120587] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
The hybrid sludge-biofilm processes have been widely applied for the construction or upgradation of biological wastewater treatment process. Ecological mechanisms of biofilm development remain unclear in the hybrid ecosystem, because of the intricate interactive effects between sludge and biofilms. Herein, the establishment principles of biofilms with distinct coexisting sludge amounts were uncovered by varying sludge retention times (SRTs) from 5 to 40 days in the hybrid process. With the increasing of SRTs, biofilm biomass decreased with the increase of suspended sludge, resulting in lower biofilm proportion. As estimated by the Gompertz growth model, the increased sludge amounts (i.e., higher SRTs of 20 and 40 days) prolonged the initial colonization stage and decreased the specific development rate of biofilms when compared to lower sludge amounts with the shorter SRTs (i.e., 5 and 10 days). Null model analysis demonstrated that deterministic homogenous selection could facilitate the colonization and accumulation of biofilms with less coexisting sludge (SRT of 10 days). However, stochastic ecological drift and homogenizing dispersal dominated the colonization and accumulation stages of biofilms with more coexisting sludge (SRT of 20 days), respectively. The ecological networks reflected that positively-related taxa presented taxonomic relatedness, whereas high inconsistency of taxonomic relatedness was observed among aggregate forms or development stages as affected by varied SRTs. The high incidence of intra-taxa co-occurrence patterns suggested that taxa with similar ecological niches could be specifically selected in biofilms when being exposed with less coexisting sludge. This study uncovered ecological mechanisms of biofilm development driven by varying the SRTs of suspended sludge, which would help to propose appropriate strategies for the efficient start-up and optimization of the hybrid sludge-biofilm system.
Collapse
Affiliation(s)
- Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Sixian Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China
| | - Lidan Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yi Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Mengdi Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yongtao Tan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Keqi Zha
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, PR China.
| |
Collapse
|
9
|
Characteristics and Comparative Genomic Analysis of a Novel Virus, VarioGold, the First Bacteriophage of Variovorax. Int J Mol Sci 2022; 23:ijms232113539. [DOI: 10.3390/ijms232113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Variovorax represents a widespread and ecologically significant genus of soil bacteria. Despite the ecological importance of these bacteria, our knowledge about the viruses infecting Variovorax spp. is quite poor. This study describes the isolation and characterization of the mitomycin-induced phage, named VarioGold. To the best of our knowledge, VarioGold represents the first characterized virus for this genus. Comparative genomic analyses suggested that VarioGold is distinct from currently known bacteriophages at both the nucleotide and protein levels; thus, it could be considered a new virus genus. In addition, another 37 prophages were distinguished in silico within the complete genomic sequences of Variovorax spp. that are available in public databases. The similarity networking analysis highlighted their general high diversity, which, despite clustering with previously described phages, shows their unique genetic load. Therefore, the novelty of Variovorax phages warrants the great enrichment of databases, which could, in turn, improve bioinformatic strategies for finding (pro)phages.
Collapse
|
10
|
Salam LB, Obayori OS. Functional characterization of the ABC transporters and transposable elements of an uncultured Paracoccus sp. recovered from a hydrocarbon-polluted soil metagenome. Folia Microbiol (Praha) 2022; 68:299-314. [PMID: 36329216 DOI: 10.1007/s12223-022-01012-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Environmental microorganisms usually exhibit a high level of genomic plasticity and metabolic versatility that allow them to be well-adapted to diverse environmental challenges. This study used shotgun metagenomics to decipher the functional and metabolic attributes of an uncultured Paracoccus recovered from a polluted soil metagenome and determine whether the detected attributes are influenced by the nature of the polluted soil. Functional and metabolic attributes of the uncultured Paracoccus were elucidated via functional annotation of the open reading frames (ORFs) of its contig. Functional tools deployed for the analysis include KEGG, KEGG KofamKOALA, Clusters of Orthologous Groups of proteins (COG), Comprehensive Antibiotic Resistance Database (CARD), and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT V6) for antibiotic resistance genes, TnCentral for transposable element, Transporter Classification Database (TCDB) for transporter genes, and FunRich for gene enrichment analysis. Analyses revealed the preponderance of ABC transporter genes responsible for the transport of oligosaccharides (malK, msmX, msmK, lacK, smoK, aglK, togA, thuK, treV, msiK), monosaccharides (glcV, malK, rbsC, rbsA, araG, ytfR, mglA), amino acids (thiQ, ynjD, thiZ, glnQ, gluA, gltL, peb1C, artP, aotP, bgtA, artQ, artR), and several others. Also detected are transporter genes for inorganic/organic nutrients like phosphate/phosphonate, nitrate/nitrite/cyanate, sulfate/sulfonate, bicarbonate, and heavy metals such as nickel/cobalt, molybdate/tungstate, and iron, among others. Antibiotic resistance genes that mediate efflux, inactivation, and target protection were detected, while transposable elements carrying resistance phenotypes for antibiotics and heavy metals were also annotated. The findings from this study have established the resilience, adaptability, and survivability of the uncultured Paracoccus in the hydrocarbon-polluted soil.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology Unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| | | |
Collapse
|
11
|
Huang Z, Zhan M, Cheng G, Lin R, Zhai X, Zheng H, Wang Q, Yu Y, Xu Z. IHNV Infection Induces Strong Mucosal Immunity and Changes of Microbiota in Trout Intestine. Viruses 2022; 14:v14081838. [PMID: 36016461 PMCID: PMC9415333 DOI: 10.3390/v14081838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The fish intestinal mucosa is among the main sites through which environmental microorganisms interact with the host. Therefore, this tissue not only constitutes the first line of defense against pathogenic microorganisms but also plays a crucial role in commensal colonization. The interaction between the mucosal immune system, commensal microbiota, and viral pathogens has been extensively described in the mammalian intestine. However, very few studies have characterized these interactions in early vertebrates such as teleosts. In this study, rainbow trout (Oncorhynchus mykiss) was infected with infectious hematopoietic necrosis virus (IHNV) via a recently developed immersion method to explore the effects of viral infection on gut immunity and microbial community structure. IHNV successfully invaded the gut mucosa of trout, resulting in severe tissue damage, inflammation, and an increase in gut mucus. Moreover, viral infection triggered a strong innate and adaptive immune response in the gut, and RNA−seq analysis indicated that both antiviral and antibacterial immune pathways were induced, suggesting that the viral infection was accompanied by secondary bacterial infection. Furthermore, 16S rRNA sequencing also revealed that IHNV infection induced severe dysbiosis, which was characterized by large increases in the abundance of Bacteroidetes and pathobiont proliferation. Moreover, the fish that survived viral infection exhibited a reversal of tissue damage and inflammation, and their microbiome was restored to its pre−infection state. Our findings thus demonstrated that the relationships between the microbiota and gut immune system are highly sensitive to the physiological changes triggered by viral infection. Therefore, opportunistic bacterial infection must also be considered when developing strategies to control viral infection.
Collapse
Affiliation(s)
- Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengting Zhan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaofeng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xue Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiou Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
12
|
Dai H, Sun Y, Wan D, Abbasi HN, Guo Z, Geng H, Wang X, Chen Y. Simultaneous denitrification and phosphorus removal: A review on the functional strains and activated sludge processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155409. [PMID: 35469879 DOI: 10.1016/j.scitotenv.2022.155409] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Eutrophication has attracted extensive attention owing to its harmful effects to the organisms and aquatic environment. Studies on the functional microorganisms with the ability of simultaneously nitrogen (N) and phosphorus (P) removal is of great significance for alleviating eutrophication. Thus far, several strains from various genera have been reported to accomplish simultaneous N and P removal, which is primarily observed in Bacillus, Pseudomonas, Paracoccus, and Arthrobacter. The mechanism of N and P removal by denitrifying P accumulating organisms (DPAOs) is different from the traditional biological N and P removal. The denitrifying P removal (DPR) technology based on the metabolic function of DPAOs can overcome the problem of carbon source competition and sludge age contradiction in traditional biological N and P removal processes and can be applied to the treatment of urban sewage with low C/N ratio. This paper reviews the mechanism of N and P removal by DPAOs from the aspect of the metabolic pathways and enzymatic processes. The research progress on DPR processes is also summarized and elucidated. Further research should focus on the efficient removal of N and P by improving the performance of functional microorganisms and development of new coupling processes. This review can serve as a basis for screening DPAOs with high N and P removal efficiency and developing new DPR processes in the future.
Collapse
Affiliation(s)
- Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Sun
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Dong Wan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Haq Nawaz Abbasi
- Department of Environmental science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Zechong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hongya Geng
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China.
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Puri A, Bajaj A, Singh Y, Lal R. Harnessing taxonomically diverse and metabolically versatile genus Paracoccus for bioplastic synthesis and xenobiotic biodegradation. J Appl Microbiol 2022; 132:4208-4224. [PMID: 35294092 DOI: 10.1111/jam.15530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/26/2022]
Abstract
The genus Paracoccus represents a taxonomically diverse group comprising more than 80 novel species isolated from various pristine and polluted environments. The species are characterized as coccoid shaped Gram-negative bacteria with versatile metabolic attributes and classified as autotrophs, heterotrophs and/or methylotrophs. Present study highlights the up-to-date global taxonomic diversity and critically discusses the significance of genome analysis for identifying the genomic determinants related to functional attributes mainly bioplastic synthesis and biodegradation potential that makes these isolates commercially viable. The analysis accentuates polyphasic and genomic attributes of Paracoccus spp. which could be harnessed for commercial applications and emphasizes the need of integrating genome based computational analysis for evolutionary species and functional diversification. The work reflects on the underexplored genetic potential for bioplastic synthesis which can be harnessed using advanced genomic methods. It also underlines the degradation potential and possible use of naturally-occurring pollutant-degrading Paracoccus isolates for development of biodegradation system and efficient removal of contaminants. The work contemplates plausible use of such potent isolates to establish the plant-microbe interaction, contributing towards contaminated land reclamation. Overall; the work signifies need and application of genome analysis to identify and explore prospective potential of Paracoccus spp. for environmental application towards achieving sustainability.
Collapse
Affiliation(s)
- Akshita Puri
- Department of Zoology, University of Delhi, Delhi, India.,Present addresses: P.G.T.D, Zoology, R.T.M Nagpur University, Nagpur, 440033, India
| | - Abhay Bajaj
- Department of Zoology, University of Delhi, Delhi, India.,Present addresses: CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India.,Present addresses: NASI Senior Scientist Platinum Jubilee Fellow, The Energy and Resources Institute Darbari Seth Block, IHC Complex, Lodhi Road New Delhi-110003, India
| |
Collapse
|
14
|
Takada K, Hama K, Sasaki T, Otsuka Y. The hokW-sokW Locus Encodes a Type I Toxin-Antitoxin System That Facilitates the Release of Lysogenic Sp5 Phage in Enterohemorrhagic Escherichia coli O157. Toxins (Basel) 2021; 13:toxins13110796. [PMID: 34822580 PMCID: PMC8621323 DOI: 10.3390/toxins13110796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
The toxin-antitoxin (TA) genetic modules control various bacterial events, such as plasmid maintenance, persister cell formation, and phage defense. They also exist in mobile genetic elements, including prophages; however, their physiological roles remain poorly understood. Here, we demonstrate that hokW-sokW, a putative TA locus encoded in Sakai prophage 5 (Sp5) in enterohemorrhagic Escherichia coli O157: H7 Sakai strain, functions as a type I TA system. Bacterial growth assays showed that the antitoxic activity of sokW RNA against HokW toxin partially requires an endoribonuclease, RNase III, and an RNA chaperone, Hfq. We also demonstrated that hokW-sokW assists Sp5-mediated lysis of E. coli cells when prophage induction is promoted by the DNA-damaging agent mitomycin C (MMC). We found that MMC treatment diminished sokW RNA and increased both the expression level and inner membrane localization of HokW in a RecA-dependent manner. Remarkably, the number of released Sp5 phages decreased by half in the absence of hokW-sokW. These results suggest that hokW-sokW plays a novel role as a TA system that facilitates the release of Sp5 phage progeny through E. coli lysis.
Collapse
|
15
|
Zhao X, Chen L, Ren Q, Wu Z, Fang S, Jiang Y, Chen Y, Zhong Y, Wang D, Wu J, Zhang G. Potential Applications in Sewage Bioremediation of the Highly Efficient Pyridine-Transforming Paenochrobactrum sp. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Sakarika M, Candry P, Depoortere M, Ganigué R, Rabaey K. Impact of substrate and growth conditions on microbial protein production and composition. BIORESOURCE TECHNOLOGY 2020; 317:124021. [PMID: 32829116 DOI: 10.1016/j.biortech.2020.124021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Production of microbial protein (MP) from recovered resources - e.g. CO2-sourced formate and acetate - could provide protein while enabling CO2 capture. To assess the protein quality obtained from this process, pure cultures and enriched communities were selected and characterized kinetically, stoichiometrically and nutritionally. Growth on acetate resulted in up to 5.3 times higher maximum specific growth rate (μmax) than formate (i.e. 0.15-0.41 h-1 for acetate compared to 0.061-0.29 h-1 for formate at pH = 7). The protein content was a function of the growth phase, with the highest values during stationary phase, ranging between 18 and 82%CDW protein depending on the organism and substrate. The negative correlation between biomass productivity and protein content indicated a trade-off between production rate and product quality. The final product (i.e. dried MP) quality was in most cases superior to soybean and all cultures were rich in threonine, phenylalanine and tyrosine, regardless of the carbon source.
Collapse
Affiliation(s)
- Myrsini Sakarika
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Gent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Belgium(1)
| | - Pieter Candry
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Gent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Belgium(1)
| | - Mathilde Depoortere
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Gent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Belgium(1)
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Gent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Belgium(1)
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000 Gent, Belgium; Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Belgium(1).
| |
Collapse
|
17
|
Bujak K, Decewicz P, Kaminski J, Radlinska M. Identification, Characterization, and Genomic Analysis of Novel Serratia Temperate Phages from a Gold Mine. Int J Mol Sci 2020; 21:ijms21186709. [PMID: 32933193 PMCID: PMC7556043 DOI: 10.3390/ijms21186709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the genus Serratia inhabit a variety of ecological niches like water, soil, and the bodies of animals, and have a wide range of lifestyles. Currently, the complete genome sequences of 25 Serratia phages are available in the NCBI database. All of them were isolated from nutrient-rich environments like sewage, with the use of clinical Serratia strains as hosts. In this study, we identified a novel Serratia myovirus named vB_SspM_BZS1. Both the phage and its host Serratia sp. OS31 were isolated from the same oligotrophic environment, namely, an abandoned gold mine (Zloty Stok, Poland). The BZS1 phage was thoroughly characterized here in terms of its genomics, morphology, and infection kinetics. We also demonstrated that Serratia sp. OS31 was lysogenized by mitomycin-inducible siphovirus vB_SspS_OS31. Comparative analyses revealed that vB_SspM_BZS1 and vB_SspS_OS31 were remote from the known Serratia phages. Moreover, vB_SspM_BZS1 was only distantly related to other viruses. However, we discovered similar prophage sequences in genomes of various bacteria here. Additionally, a protein-based similarity network showed a high diversity of Serratia phages in general, as they were scattered across nineteen different clusters. In summary, this work broadened our knowledge on the diverse relationships of Serratia phages.
Collapse
|
18
|
Decewicz P, Golec P, Szymczak M, Radlinska M, Dziewit L. Identification and Characterization of the First Virulent Phages, Including a Novel Jumbo Virus, Infecting Ochrobactrum spp. Int J Mol Sci 2020; 21:ijms21062096. [PMID: 32197547 PMCID: PMC7139368 DOI: 10.3390/ijms21062096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
The Ochrobactrum genus consists of an extensive repertoire of biotechnologically valuable bacterial strains but also opportunistic pathogens. In our previous study, a novel strain, Ochrobactrum sp. POC9, which enhances biogas production in wastewater treatment plants (WWTPs) was identified and thoroughly characterized. Despite an insightful analysis of that bacterium, its susceptibility to bacteriophages present in WWTPs has not been evaluated. Using raw sewage sample from WWTP and applying the enrichment method, two virulent phages, vB_OspM_OC and vB_OspP_OH, which infect the POC9 strain, were isolated. These are the first virulent phages infecting Ochrobactrum spp. identified so far. Both phages were subjected to thorough functional and genomic analyses, which allowed classification of the vB_OspM_OC virus as a novel jumbo phage, with a genome size of over 227 kb. This phage encodes DNA methyltransferase, which mimics the specificity of cell cycle regulated CcrM methylase, a component of the epigenetic regulatory circuits in Alphaproteobacteria. In this study, an analysis of the overall diversity of Ochrobactrum-specific (pro)phages retrieved from databases and extracted in silico from bacterial genomes was also performed. Complex genome mining allowed us to build similarity networks to compare 281 Ochrobactrum-specific viruses. Analyses of the obtained networks revealed a high diversity of Ochrobactrum phages and their dissimilarity to the viruses infecting other bacteria.
Collapse
Affiliation(s)
- Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.D.); (M.R.)
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.G.); (M.S.)
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.G.); (M.S.)
| | - Monika Radlinska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.D.); (M.R.)
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (P.D.); (M.R.)
- Correspondence: ; Tel.: +48-225-541-406
| |
Collapse
|