1
|
Shayestehyekta M, Moradi M. Graphene oxide and silymarin combination: A novel approach to improving post-cryopreservation quality of ram sperm. Cryobiology 2025; 118:105199. [PMID: 39800041 DOI: 10.1016/j.cryobiol.2025.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Graphene oxide (GO) has been extensively studied for its diverse biomedical applications, including drug delivery, imaging, and tissue engineering. Silymarin, as a flavonoid complex derived from the milk thistle plant, has recently shown potential health benefits, particularly concerning reproductive health. This study aims to evaluate the effects of GO and silymarin supplementation, both individually and in combination, on the characteristics of frozen-thawed ram sperm. Semen samples were collected using standard artificial insemination (AI) techniques with an artificial vagina. The collected semen was evaluated and cryopreserved in a tris-based extender containing varying concentrations of silymarin and GO (0, 10, or 20 μg/mL) or their combination. Post-thaw assessments evaluated sperm motility, viability, morphological abnormalities, DNA integrity, membrane integrity, malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity, and total antioxidant capacity (TAC). Our findings revealed that the combination of 20 μg/mL silymarin and 20 μg/mL GO significantly enhanced total motility, viability, membrane integrity, and DNA integrity of sperm. Additionally, this treatment effectively reduced morphological abnormalities and MDA levels post-thawing. Notably, SOD and TAC activities were improved following the freeze-thaw compared to other treatment groups. In conclusion, the combination of silymarin and GO significantly improves the quality of frozen-thawed ram sperm by enhancing sperm parameters while reducing oxidative stress markers. The results suggest their potential as effective additives in cryopreservation protocols, providing a promising avenue for improving reproductive outcomes in rams and potentially other livestock species.
Collapse
Affiliation(s)
- Mohsen Shayestehyekta
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mojtaba Moradi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Lin H, Buerki-Thurnherr T, Kaur J, Wick P, Pelin M, Tubaro A, Carniel FC, Tretiach M, Flahaut E, Iglesias D, Vázquez E, Cellot G, Ballerini L, Castagnola V, Benfenati F, Armirotti A, Sallustrau A, Taran F, Keck M, Bussy C, Vranic S, Kostarelos K, Connolly M, Navas JM, Mouchet F, Gauthier L, Baker J, Suarez-Merino B, Kanerva T, Prato M, Fadeel B, Bianco A. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS NANO 2024; 18:6038-6094. [PMID: 38350010 PMCID: PMC10906101 DOI: 10.1021/acsnano.3c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Two-dimensional (2D) materials have attracted tremendous interest ever since the isolation of atomically thin sheets of graphene in 2004 due to the specific and versatile properties of these materials. However, the increasing production and use of 2D materials necessitate a thorough evaluation of the potential impact on human health and the environment. Furthermore, harmonized test protocols are needed with which to assess the safety of 2D materials. The Graphene Flagship project (2013-2023), funded by the European Commission, addressed the identification of the possible hazard of graphene-based materials as well as emerging 2D materials including transition metal dichalcogenides, hexagonal boron nitride, and others. Additionally, so-called green chemistry approaches were explored to achieve the goal of a safe and sustainable production and use of this fascinating family of nanomaterials. The present review provides a compact survey of the findings and the lessons learned in the Graphene Flagship.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| | - Tina Buerki-Thurnherr
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Jasreen Kaur
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Peter Wick
- Empa,
Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Aurelia Tubaro
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Mauro Tretiach
- Department
of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Emmanuel Flahaut
- CIRIMAT,
Université de Toulouse, CNRS, INPT,
UPS, 31062 Toulouse CEDEX 9, France
| | - Daniel Iglesias
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad
de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto
Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Giada Cellot
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Laura Ballerini
- International
School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Valentina Castagnola
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Fabio Benfenati
- Center
for
Synaptic Neuroscience and Technology, Istituto
Italiano di Tecnologia, 16132 Genova, Italy
- IRCCS
Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, 16163 Genoa, Italy
| | - Antoine Sallustrau
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Frédéric Taran
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Mathilde Keck
- Département
Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Cyrill Bussy
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Sandra Vranic
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, Faculty of Biology, Medicine and Health, University of Manchester,
Manchester Academic Health Science Centre, National Graphene Institute, Manchester M13 9PT, United
Kingdom
| | - Mona Connolly
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - José Maria Navas
- Instituto Nacional de Investigación y Tecnología
Agraria
y Alimentaria (INIA), CSIC, Carretera de la Coruña Km 7,5, E-28040 Madrid, Spain
| | - Florence Mouchet
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - Laury Gauthier
- Laboratoire
Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 31000 Toulouse, France
| | - James Baker
- TEMAS Solutions GmbH, 5212 Hausen, Switzerland
| | | | - Tomi Kanerva
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Bengt Fadeel
- Nanosafety
& Nanomedicine Laboratory, Institute
of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Alberto Bianco
- CNRS,
UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, ISIS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
3
|
Tan B, Hu J, Wu F. Cholesterols Induced Distinctive Entry of the Graphene Nanosheet into the Cell Membrane. ACS OMEGA 2024; 9:9216-9225. [PMID: 38434853 PMCID: PMC10905697 DOI: 10.1021/acsomega.3c08236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Graphene nanosheets are highly valued in the biomedical field due to their potential applications in drug delivery, biological imaging, and biosensors. Their biological effects on mammalian cells may be influenced by cholesterols, which are crucial components in cell membranes that take part in many vital processes. Therefore, it is particularly important to investigate the effect of cholesterols on the transport mechanism of graphene nanosheets in the cell membrane as well as the final stable configuration of graphene, which may have an impact on cytotoxicity. In this paper, the molecular details of a graphene nanosheet interacting with a 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine (DPPC) membrane with cholesterols were studied using molecular dynamics simulations. Results showed that the structure of the graphene nanosheet transits from the cut-in state in a pure DPPC membrane to being sandwiched between two DPPC leaflets when cholesterols reach a certain concentration. The underlying mechanism showed that cholesterols are preferentially adsorbed on the graphene nanosheet, which causes a larger disturbance to the nearby DPPC tails and thus guides the graphene nanosheet into the core of lipid bilayers to form a sandwiched structure. Our results are helpful for understanding the fundamental interaction mechanism between the graphene nanosheet and cell membrane and to explore the potential applications of the graphene nanosheet in biomedical sciences.
Collapse
Affiliation(s)
- Binbin Tan
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juanmei Hu
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fengmin Wu
- Key Laboratory of Optical
Field Manipulation
of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
4
|
Cimini C, Moussa F, Taraschi A, Ramal-Sanchez M, Colosimo A, Capacchietti G, Mokh S, Valbonetti L, Tagaram I, Bernabò N, Barboni B. Pre-Treatment of Swine Oviductal Epithelial Cells with Progesterone Increases the Sperm Fertilizing Ability in an IVF Model. Animals (Basel) 2022; 12:ani12091191. [PMID: 35565617 PMCID: PMC9103098 DOI: 10.3390/ani12091191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/21/2022] Open
Abstract
Mammalian spermatozoa are infertile immediately after ejaculation and need to undergo a functional modification, called capacitation, in order to acquire their fertilizing ability. Since oviductal epithelial cells (SOECs) and progesterone (P4) are two major modulators of capacitation, here we investigated their impact on sperm functionality by using an IVF swine model. To that, we treated SOECs with P4 at 10, 100, and 1000 ng/mL before the coincubation with spermatozoa, thus finding that P4 at 100 ng/mL does not interfere with the cytoskeleton dynamics nor the cells’ doubling time, but it promotes the sperm capacitation by increasing the number of spermatozoa per polyspermic oocyte (p < 0.05). Moreover, we found that SOECs pre-treatment with P4 100 ng/mL is able to promote an increase in the sperm fertilizing ability, without needing the hormone addition at the time of fertilization. Our results are probably due to the downregulation in the expression of OVGP1, SPP1 and DMBT1 genes, confirming an increase in the dynamism of our system compared to the classic IVF protocols. The results obtained are intended to contribute to the development of more physiological and efficient IVF systems.
Collapse
Affiliation(s)
- Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Fadl Moussa
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Doctoral School of Science, Technology Lebanese University, Beirut 1107, Lebanon
| | - Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Istituto Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Alessia Colosimo
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Samia Mokh
- National Council for Scientific Research (CNRS), Lebanese Atomic Energy Commission (LAEC), Laboratory for Analysis of Organic Compound (LACO), Beirut 8281, Lebanon;
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
| | - Israiel Tagaram
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNRIBBC/EMMA/Infrafrontier/IMPC), National Research Council, 00015 Rome, Italy
- Correspondence:
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (C.C.); (F.M.); (A.T.); (M.R.-S.); (A.C.); (G.C.); (L.V.); (I.T.); (B.B.)
| |
Collapse
|
5
|
Souza MR, Mazaro-Costa R, Rocha TL. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144354. [PMID: 33736249 DOI: 10.1016/j.scitotenv.2020.144354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 05/28/2023]
Abstract
The nanotechnology enabled the development of nanomaterials (NMs) with a variety of industrial, biomedical, and consumer applications. However, the mechanism of action (MoA) and toxicity of NMs remain unclear, especially in the male reproductive system. Thus, this study aimed to perform a bibliometric and systematic review of the literature on the toxic effects of different types of NMs on the male reproductive system and function in mammalian models. A series of 236 articles related to the in vitro and in vivo reproductive toxicity of NMs in mammalian models were analyzed. The data concerning the bioaccumulation, experimental conditions (types of NMs, species, cell lines, exposure period, and routes of exposure), and the MoA and toxicity of NMs were summarized and discussed. Results showed that this field of research began in 2005 and has experienced an exponential increase since 2012. Revised data confirmed that the NMs have the ability to cross the blood-testis barrier and bioaccumulate in several organs of the male reproductive system, such as testis, prostate, epididymis, and seminal vesicle. A similar MoA and toxicity were observed after in vitro and in vivo exposure to NMs. The NM reproductive toxicity was mainly related to ROS production, oxidative stress, DNA damage and apoptosis. In conclusion, the NM exposure induces bioaccumulation and toxic effects on male reproductive system of mammal models, confirming its potential risk to human and environmental health. The knowledge concerning the NM reproductive toxicity contributes to safety and sustainable use of nanotechnology.
Collapse
Affiliation(s)
- Maingredy Rodrigues Souza
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Renata Mazaro-Costa
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil.
| |
Collapse
|
6
|
Feng Y, Zhang Y, Liu G, Liu X, Gao S. Interaction of graphene oxide with artificial cell membranes: Role of anionic phospholipid and cholesterol in nanoparticle attachment and membrane disruption. Colloids Surf B Biointerfaces 2021; 202:111685. [PMID: 33721805 DOI: 10.1016/j.colsurfb.2021.111685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 11/30/2022]
Abstract
A mechanistic understanding of the interaction of graphene oxide (GO) with cell membranes is critical for predicting the biological effects of GO following accidental exposure and biomedical applications. We herein used a quartz crystal microbalance with dissipation monitoring (QCM-D) to probe the interaction of GO with model cell membranes modified with anionic lipids or cholesterol under biologically relevant conditions. The attachment efficiency of GO on supported lipid bilayers (SLBs) decreased with increasing anionic lipid content and was unchanged with varying cholesterol content. In addition, the incorporation of anionic lipids to the SLBs rendered the attachment of GO partially reversible upon a decrease in solution ionic strength. These results demonstrate the critical role of lipid bilayer surface charge in controlling GO attachment and release. We also employed the fluorescent dye leakage technique to quantify the role of anionic lipids and cholesterol in vesicle disruption caused by GO. Notably, we observed a linear correlation between the amount of dye leakage from the vesicles and the attachment efficiencies of GO on the SLBs, confirming that membrane disruption is preceded by GO attachment. This study highlights the non-negligible role of lipid bilayer composition in controlling the physicochemical interactions between cell membranes and GO.
Collapse
Affiliation(s)
- Yiping Feng
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218-2686, United States; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Yijian Zhang
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xitong Liu
- Department of Civil and Environmental Engineering, The George Washington University, Washington, D.C. 20052, United States.
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
7
|
Ramal-Sanchez M, Fontana A, Valbonetti L, Ordinelli A, Bernabò N, Barboni B. Graphene and Reproduction: A Love-Hate Relationship. NANOMATERIALS 2021; 11:nano11020547. [PMID: 33671591 PMCID: PMC7926437 DOI: 10.3390/nano11020547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
Since its discovery, graphene and its multiple derivatives have been extensively used in many fields and with different applications, even in biomedicine. Numerous efforts have been made to elucidate the potential toxicity derived from their use, giving rise to an adequate number of publications with varied results. On this basis, the study of the reproductive function constitutes a good tool to evaluate not only the toxic effects derived from the use of these materials directly on the individual, but also the potential toxicity passed on to the offspring. By providing a detailed scientometric analysis, the present review provides an updated overview gathering all the research studies focused on the use of graphene and graphene-based materials in the reproductive field, highlighting the consequences and effects reported to date from experiments performed in vivo and in vitro and in different animal species (from Archea to mammals). Special attention is given to the oxidized form of graphene, graphene oxide, which has been recently investigated for its ability to increase the in vitro fertilization outcomes. Thus, the potential use of graphene oxide against infertility is hypothesized here, probably by engineering the spermatozoa and thus manipulating them in a safer and more efficient way.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- Correspondence:
| | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- National Research Council (IBCN), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, 00015 Rome, Italy
| | | | - Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
- National Research Council (IBCN), CNR-Campus International Development (EMMA-INFRAFRONTIER-IMPC), Monterotondo Scalo, 00015 Rome, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (L.V.); (N.B.); (B.B.)
| |
Collapse
|
8
|
Bernabò N, Valbonetti L, Raspa M, Fontana A, Palestini P, Botto L, Paoletti R, Fray M, Allen S, Machado-Simoes J, Ramal-Sanchez M, Pilato S, Scavizzi F, Barboni B. Graphene Oxide Improves in vitro Fertilization in Mice With No Impact on Embryo Development and Preserves the Membrane Microdomains Architecture. Front Bioeng Biotechnol 2020; 8:629. [PMID: 32612987 PMCID: PMC7308453 DOI: 10.3389/fbioe.2020.00629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/22/2020] [Indexed: 12/04/2022] Open
Abstract
During the latest years, human infertility worsened all over the world and is nowadays reputed as a global public health issue. As a consequence, the adoption of Assisted Reproductive Technologies (ARTs) such as In Vitro Fertilization (IVF) is undergoing an impressive increase. In this context, one of the most promising strategies is the innovative adoption of extra-physiological materials for advanced sperm preparation methods. Here, by using a murine model, the addition of Graphene Oxide (GO) at a specific concentration has demonstrated to increase the spermatozoa fertilizing ability in an IVF assay, finding that 0.5 μg/ml GO addition to sperm suspensions before IVF is able to increase both the number of fertilized oocytes and embryos created with a healthy offspring given by Embryo Transplantation (ET). In addition, GO treatment has been found more effective than that carried out with methyl-β-cyclodextrin, which represents the gold standard in promoting in vitro fertility of mice spermatozoa. Subsequent biochemical characterization of its interaction with male gametes has been additionally performed. As a result, it was found that GO exerts its positive effect by extracting cholesterol from membranes, without affecting the integrity of microdomains and thus preserving the sperm functions. In conclusion, GO improves IVF outcomes in vitro and in vivo, defining new perspectives for innovative strategies in the treatment of human infertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Luca Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Marcello Raspa
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Antonella Fontana
- Department of Pharmacy, D’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | | | | | - Juliana Machado-Simoes
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Marina Ramal-Sanchez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Pilato
- Department of Pharmacy, D’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Ferdinando Scavizzi
- National Research Council – Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
9
|
Ahmad A, Ullah S, Khan A, Ahmad W, Khan AU, Khan UA, Rahman AU, Yuan Q. Graphene oxide selenium nanorod composite as a stable electrode material for energy storage devices. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01204-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|