1
|
Rizo-Roca D, Henderson JD, Zierath JR. Metabolomics in cardiometabolic diseases: Key biomarkers and therapeutic implications for insulin resistance and diabetes. J Intern Med 2025. [PMID: 40289598 DOI: 10.1111/joim.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cardiometabolic diseases-including Type 2 diabetes and obesity-remain leading causes of global mortality. Recent advancements in metabolomics have facilitated the identification of metabolites that are integral to the development of insulin resistance, a characteristic feature of cardiometabolic disease. Key metabolites, such as branched-chain amino acids (BCAAs), ceramides, glycine, and glutamine, have emerged as valuable biomarkers for early diagnosis, risk stratification, and potential therapeutic targets. Elevated BCAAs and ceramides are strongly associated with insulin resistance and Type 2 diabetes, whereas glycine exhibits an inverse relationship with insulin resistance, making it a promising therapeutic target. Metabolites involved in energy stress, including ketone bodies, lactate, and nicotinamide adenine dinucleotide (NAD⁺), regulate insulin sensitivity and metabolic health, with ketogenic diets and NAD⁺ precursor supplementation showing potential benefits. Additionally, the novel biomarker N-lactoyl-phenylalanine further underscores the complexity of metabolic regulation and its therapeutic potential. This review underscores the potential of metabolite-based diagnostics and precision medicine, which could enhance efforts in the prevention, diagnosis, and treatment of cardiometabolic diseases, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- David Rizo-Roca
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - John D Henderson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Banoei MM, Hutchison J, Panenka W, Wong A, Wishart DS, Winston BW. Metabolomic in severe traumatic brain injury: exploring primary, secondary injuries, diagnosis, and severity. Crit Care 2025; 29:26. [PMID: 39815318 PMCID: PMC11737060 DOI: 10.1186/s13054-025-05258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI. METHODS Serum samples from 59 adult patients with sTBI and 35 age- and sex-matched orthopedic injury controls were subjected to quantitative metabolomics, including proton nuclear magnetic resonance (1H-NMR) and direct infusion/liquid chromatography-tandem mass spectrometry (DI/LC-MS/MS), to identify and quantify metabolites on days 1 and 4 post-injury. In addition, we used advanced analytical methods to discover metabo-patterns associated with sTBI diagnosis and those related to probable primary and secondary brain injury. RESULTS Our results showed different serum metabolic profiles between sTBI and orthopedic injury (OI) controls, with significant changes in measured metabolites on day 1 and day 4 post-brain injury. The number of altered metabolites and the extent of their change were more pronounced on day 4 as compared to day 1 post-injury, suggesting an evolution of mechanisms from primary to secondary brain injury. Data showed high sensitivity and specificity in separating sTBI from OI controls for diagnosis. Energy-related metabolites such as glucose, pyruvate, lactate, mannose, and polyamine metabolism metabolites (spermine and putrescine), as well as increased acylcarnitines and sphingomyelins, occurred mainly on day 1 post-injury. Metabolites of neurotransmission, catecholamine, and excitotoxicity mechanisms such as glutamate, phenylalanine, tyrosine, and branched-chain amino acids (BCAAs) increased to a greater degree on day 4. Further, there was an association of multiple metabolites, including acylcarnitines (ACs), lysophosphatidylcholines (LysoPCs), glutamate, and phenylalanine, with injury severity at day 4, while lactate, glucose, and pyruvate correlated with injury severity on day 1. CONCLUSION The results demonstrate that serum metabolomics has diagnostic potential for sTBI and may reflect molecular mechanisms of primary and secondary brain injuries when comparing metabolite profiles between day 1 and day 4 post-injury. These early changes in serum metabolites may provide insight into molecular pathways or mechanisms of primary injury and ongoing secondary injuries, revealing potential therapeutic targets for sTBI. This work also highlights the need for further research and validation of sTBI metabolite biomarkers in a larger cohort.
Collapse
Affiliation(s)
- Mohammad M Banoei
- Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - James Hutchison
- Department of Critical Care and Neuroscience and Mental Health Research Program, The Hospital for Sick Children and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - William Panenka
- Department of Psychiatry, Faculty of Medicine, University of British Colombia, Vancouver, BC, Canada
| | - Andy Wong
- Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - David S Wishart
- Departments of Biological Sciences, Computing Sciences and Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Brent W Winston
- Department of Critical Care Medicine, Cumming School of Medicine, Health Research Innovation Center (HRIC), University of Calgary, Room 4C64, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada.
- Dr. Brent W. Winston, Departments of Critical Care Medicine, Medicine and Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Haj-Husein I, Kubow S, Koski KG. Untargeted Lipidomic Profiling of Amniotic Fluid Reveals Dysregulated Lipid Metabolism in Healthy Normal-Weight Mothers with Fetal Macrosomia. Nutrients 2024; 16:3804. [PMID: 39599591 PMCID: PMC11597394 DOI: 10.3390/nu16223804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Alterations in maternal lipid metabolism have been elucidated by several studies in relation to macrosomia. However, the lipidome of the intrauterine compartment associated with macrosomia, particularly in early pregnancy, remains largely unknown. OBJECTIVES (1) To compare the lipidomic profile of early 2nd trimester amniotic fluid (AF) of healthy mothers with normal body mass index who gave birth to large-for-gestational age (LGA) versus appropriate-for-gestational age (AGA) infants; and (2) to examine if insulin and glucose concentrations in AF were associated with the AF lipidomic profile. METHODS In this nested case-control study, bio-banked AF samples were collected from pregnant women undergoing routine amniocentesis at 12-22 weeks of gestation. A subsample of 15 LGA infants (cases) were contrasted with 15 AGA infants (controls). An untargeted lipidomics analysis using liquid chromatography quadrupole time-of-flight mass spectrometry was conducted. Univariate and multivariate statistical analyses (principal component analysis and partial least-squares discriminant analysis) were used to extract differentially abundant (DA) features with high variable importance in projection (VIP) scores. RESULTS LGA AF was characterized by elevations of 30 phosphatidic acid species. Among other DA features, sphingomyelin (SM 14:0;O2/20:1) had the highest VIP score and was markedly elevated in LGA AF. Neither insulin nor glucose was associated with 2nd trimester AF lipidomic profiles in these healthy, normal-weight mothers. CONCLUSION These findings provide evidence of early dysregulated lipid metabolism in healthy, normal-weight mothers with LGA infants.
Collapse
Affiliation(s)
- Isra’a Haj-Husein
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC H9X 3V9, Canada; (S.K.); (K.G.K.)
| | | | | |
Collapse
|
4
|
Ahern MM, Artegoitia VM, Bosviel R, Newman JW, Keim NL, Krishnan S. Fat burning capacity in a mixed macronutrient meal protocol does not reflect metabolic flexibility in women who are overweight or obese. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.29.24312791. [PMID: 39252930 PMCID: PMC11383504 DOI: 10.1101/2024.08.29.24312791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Introduction Metabolic flexibility, the ability to switch from glucose to fat as a fuel source, is considered a marker of metabolic health. Higher fat oxidation is often associated with greater flexibility and insulin sensitivity, while lower fat oxidation is linked to metabolic inflexibility and insulin resistance. However, our study challenges the universal validity of this relationship, uncovering a more nuanced understanding of the complex interplay between fuel source switching and fat oxidation, especially in the presence of insulin resistance. Methods In an 8-week controlled feeding intervention, overweight to obese women with insulin resistance (as defined by McAuley's index) were randomized to consume either a diet based on the Dietary Guidelines for Americans 2010 (DGA) or a 'Typical' American Diet (TAD), n = 22 each. Participants were given a high-fat mixed macronutrient challenge test (MMCT) (60% fat, 28% carbohydrates, and 12% protein) at weeks 0, 2, and 8. Plasma lipids, metabolome, and lipidome were measured at 0, 0.5, 3, and 6h postprandial (PP); substrate oxidation measures were also recorded at 0,1 3, and 6h PP. Metabolic flexibility was evaluated as the change in fat oxidation from fasting to PP. Mixed model and multivariate analyses were used to evaluate the effect of diet on these outcomes, and to identify variables of interest to metabolic flexibility. Results Intervention diets (DGA and TAD) did not differentially affect substrate oxidation or metabolic flexibility, and equivalence tests indicated that groups could be combined for subsequent analyses. Participants were classified into three groups based on the % of consumed MMCT fat was oxidized in the 6h post meal period at weeks 0, 2 and 8. Low fat burners (LB, n = 6, burned <30% of fat in MMCT) and high fat burners (HB, n = 7, burned > 40% of fat in MMCT) at all weeks. Compared to LB, HB group had higher fat mass, total mass, lean mass, BMI, lower HDLc and lower RER (p < 0.05), but not different % body fat or % lean mass. During week 0, at 1h PP, LB had an increase in % fat oxidation change from 0h compared to HB (p<0.05), suggesting higher metabolic flexibility. This difference disappeared later in the PP phase, and we did not detect this beyond week 0. Partial least squares discriminant analysis (PLSDA (regular and repeated measures (sPLSDA)) models identified that LB group, in the late PP phase, was associated with higher rates of disappearance of acylcarnitines (AC) and lysophosphatidylcholines (LPC) from plasma (Q2: 0.20, R2X: 0.177, R2Y: 0.716). Conclusion In women with insulin resistance, a high fat burning capacity does not imply high metabolic flexibility, and not all women with insulin resistance are metabolically inflexible. LPCs and ACs are promising biomarkers of metabolic flexibility.
Collapse
Affiliation(s)
- Mary M. Ahern
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson AZ 85721
| | - Virginia M. Artegoitia
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
| | - Rémy Bosviel
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Nancy L. Keim
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA 95616, USA
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA
| | - Sridevi Krishnan
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson AZ 85721
| |
Collapse
|
5
|
Mathioudaki A, Fanni G, Eriksson JW, Pereira MJ. Metabolomic Profiling of Adipose Tissue in Type 2 Diabetes: Associations with Obesity and Insulin Resistance. Metabolites 2024; 14:411. [PMID: 39195507 DOI: 10.3390/metabo14080411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
The global prevalence of Type 2 Diabetes (T2D) poses significant public health challenges due to its associated severe complications. Insulin resistance is central to T2D pathophysiology, particularly affecting adipose tissue function. This cross-sectional observational study investigates metabolic alterations in subcutaneous adipose tissue (SAT) associated with T2D to identify potential therapeutic targets. We conducted a comprehensive metabolomic analysis of SAT from 40 participants (20 T2D, 20 ND-T2D), matched for sex, age, and BMI (Body Mass Index). Metabolite quantification was performed using GC/MS and LC/MS/MS platforms. Correlation analyses were conducted to explore associations between metabolites and clinical parameters. We identified 378 metabolites, including significant elevations in TCA cycle (tricarboxylic acid cycle) intermediates, branched-chain amino acids (BCAAs), and carbohydrates, and a significant reduction in the nucleotide-related metabolites in T2D subjects compared to those without T2D. Obesity exacerbated these alterations, particularly in amino acid metabolism. Adipocyte size negatively correlated with BCAAs, while adipocyte glucose uptake positively correlated with unsaturated fatty acids and glycerophospholipids. Our findings reveal distinct metabolic dysregulation in adipose tissue in T2D, particularly in energy metabolism, suggesting potential therapeutic targets for improving insulin sensitivity and metabolic health. Future studies should validate these findings in larger cohorts and explore underlying mechanisms to develop targeted interventions.
Collapse
Affiliation(s)
- Argyri Mathioudaki
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| | - Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|
6
|
Barranco-Altirriba M, Alonso N, Weber RJM, Lloyd GR, Hernandez M, Yanes O, Capellades J, Jankevics A, Winder C, Falguera M, Franch-Nadal J, Dunn WB, Perera-Lluna A, Castelblanco E, Mauricio D. Lipidome characterisation and sex-specific differences in type 1 and type 2 diabetes mellitus. Cardiovasc Diabetol 2024; 23:109. [PMID: 38553758 PMCID: PMC10981308 DOI: 10.1186/s12933-024-02202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND In this study, we evaluated the lipidome alterations caused by type 1 diabetes (T1D) and type 2 diabetes (T2D), by determining lipids significantly associated with diabetes overall and in both sexes, and lipids associated with the glycaemic state. METHODS An untargeted lipidomic analysis was performed to measure the lipid profiles of 360 subjects (91 T1D, 91 T2D, 74 with prediabetes and 104 controls (CT)) without cardiovascular and/or chronic kidney disease. Ultra-high performance liquid chromatography-electrospray ionization mass spectrometry (UHPLC-ESI-MS) was conducted in two ion modes (positive and negative). We used multiple linear regression models to (1) assess the association between each lipid feature and each condition, (2) determine sex-specific differences related to diabetes, and (3) identify lipids associated with the glycaemic state by considering the prediabetes stage. The models were adjusted by sex, age, hypertension, dyslipidaemia, body mass index, glucose, smoking, systolic blood pressure, triglycerides, HDL cholesterol, LDL cholesterol, alternate Mediterranean diet score (aMED) and estimated glomerular filtration rate (eGFR); diabetes duration and glycated haemoglobin (HbA1c) were also included in the comparison between T1D and T2D. RESULTS A total of 54 unique lipid subspecies from 15 unique lipid classes were annotated. Lysophosphatidylcholines (LPC) and ceramides (Cer) showed opposite effects in subjects with T1D and subjects with T2D, LPCs being mainly up-regulated in T1D and down-regulated in T2D, and Cer being up-regulated in T2D and down-regulated in T1D. Also, Phosphatidylcholines were clearly down-regulated in subjects with T1D. Regarding sex-specific differences, ceramides and phosphatidylcholines exhibited important diabetes-associated differences due to sex. Concerning the glycaemic state, we found a gradual increase of a panel of 1-deoxyceramides from normoglycemia to prediabetes to T2D. CONCLUSIONS Our findings revealed an extensive disruption of lipid metabolism in both T1D and T2D. Additionally, we found sex-specific lipidome changes associated with diabetes, and lipids associated with the glycaemic state that can be linked to previously described molecular mechanisms in diabetes.
Collapse
Affiliation(s)
- Maria Barranco-Altirriba
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, B2SLab, Barcelona, Spain
- Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN), Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Servicio de Endocrinología y Nutrición, Hospital Universitario e Instituto de Investigación en Ciencias de la Salud Germans Trias i Pujol, Badalona, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gavin R Lloyd
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marta Hernandez
- Department of Endocrinology & Nutrition, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Oscar Yanes
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Department of Electronic Engineering, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Jordi Capellades
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Institut Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Catherine Winder
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Mireia Falguera
- Institut d'Investigació Biomèdica, Centre Atenció Primària Cervera, Gerència d'Atenció Primària, Universitat de Lleida, Institut Català de la Salut, Lleida, Spain
| | - Josep Franch-Nadal
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- DAP-Cat Group, Unitat de Suport a La Recerca Barcelona Ciutat, Institut Universitari d'Investigació en Atenció Primària Jordi Gol, Barcelona, Spain
| | - Warwick B Dunn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Metabolomics Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, L69 7ZB, Liverpool, UK
| | - Alexandre Perera-Lluna
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, B2SLab, Barcelona, Spain
- Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN), Madrid, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Esmeralda Castelblanco
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, 63110, St. Louis, MO, USA.
- Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina, 08007, Barcelona, Spain.
| | - Didac Mauricio
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain.
- Institut d'Investigació Biomèdica Sant Pau (IR Sant Pau), 08041, Barcelona, Spain.
- Faculty of Medicine, University of Vic, Vic, Spain.
| |
Collapse
|
7
|
Ahmad MS, Minaee N, Serrano-Contreras JI, Kaluarachchi M, Shen EYL, Boulange C, Ahmad S, Phetcharaburanin J, Holmes E, Wist J, Albaloshi AH, Alaama T, Damanhouri ZA, Lodge S. Exploring the Interactions between Obesity and Diabetes: Implications for Understanding Metabolic Dysregulation in a Saudi Arabian Adult Population. J Proteome Res 2024; 23:809-821. [PMID: 38230637 PMCID: PMC10846529 DOI: 10.1021/acs.jproteome.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The rising prevalence of obesity in Saudi Arabia is a major contributor to the nation's high levels of cardiometabolic diseases such as type 2 diabetes. To assess the impact of obesity on the diabetic metabolic phenotype presented in young Saudi Arabian adults, participants (n = 289, aged 18-40 years) were recruited and stratified into four groups: healthy weight (BMI 18.5-24.99 kg/m2) with (n = 57) and without diabetes (n = 58) or overweight/obese (BMI > 24.99 kg/m2) with (n = 102) and without diabetes (n = 72). Distinct plasma metabolic phenotypes associated with high BMI and diabetes were identified using nuclear magnetic resonance spectroscopy and ultraperformance liquid chromatography mass spectrometry. Increased plasma glucose and dysregulated lipoproteins were characteristics of obesity in individuals with and without diabetes, but the obesity-associated lipoprotein phenotype was partially masked in individuals with diabetes. Although there was little difference between diabetics and nondiabetics in the global plasma LDL cholesterol and phospholipid concentration, the distribution of lipoprotein particles was altered in diabetics with a shift toward denser and more atherogenic LDL5 and LDL6 particles, which was amplified in the presence of obesity. Further investigation is warranted in larger Middle Eastern populations to explore the dysregulation of metabolism driven by interactions between obesity and diabetes in young adults.
Collapse
Affiliation(s)
- Muhammad Saeed Ahmad
- Department
of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K.
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Novia Minaee
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | | | - Manuja Kaluarachchi
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Eric Yi-Liang Shen
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
- Department
of Radiation Oncology, Chang Gung Memorial
Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Claire Boulange
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Sultan Ahmad
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jutarop Phetcharaburanin
- Department
of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Elaine Holmes
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Julien Wist
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
| | - Ahmed Hakem Albaloshi
- King
Abdulaziz Hospital and Endocrine and Diabetic Center, Jeddah 23436, Saudi Arabia
| | - Tareef Alaama
- Department
of Medicine, Faculty of Medicine, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Zoheir Abdullah Damanhouri
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Pharmacology, Faculty of Medicine, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samantha Lodge
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
8
|
Li J, Zhu N, Wang Y, Bao Y, Xu F, Liu F, Zhou X. Application of Metabolomics and Traditional Chinese Medicine for Type 2 Diabetes Mellitus Treatment. Diabetes Metab Syndr Obes 2023; 16:4269-4282. [PMID: 38164418 PMCID: PMC10758184 DOI: 10.2147/dmso.s441399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetes is a major global public health problem with high incidence and case fatality rates. Traditional Chinese medicine (TCM) is used to help manage Type 2 Diabetes Mellitus (T2DM) and has steadily gained international acceptance. Despite being generally accepted in daily practice, the TCM methods and hypotheses for understanding diseases lack applicability in the current scientific characterization systems. To date, there is no systematic evaluation system for TCM in preventing and treating T2DM. Metabonomics is a powerful tool to predict the level of metabolites in vivo, reveal the potential mechanism, and diagnose the physiological state of patients in time to guide the follow-up intervention of T2DM. Notably, metabolomics is also effective in promoting TCM modernization and advancement in personalized medicine. This review provides updated knowledge on applying metabolomics to TCM syndrome differentiation, diagnosis, biomarker discovery, and treatment of T2DM by TCM. Its application in diabetic complications is discussed. The combination of multi-omics and microbiome to fully elucidate the use of TCM to treat T2DM is further envisioned.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Na Zhu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yaqiong Wang
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yanlei Bao
- Department of Pharmacy, Liaoyuan People’s Hospital, Liaoyuan, People’s Republic of China
| | - Feng Xu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Fengjuan Liu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Xuefeng Zhou
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| |
Collapse
|
9
|
Fan Y, Zhang M, Ma J, Zhang Y, Yang J. Metabolomics analysis of the serum metabolic signature of nonalcoholic fatty liver disease combined with prediabetes model rats after the intervention of Lycium barbarum polysaccharides combined with aerobic activity. Biomed Chromatogr 2023; 37:e5562. [PMID: 36480472 DOI: 10.1002/bmc.5562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Metabolic disorders accompany nonalcoholic fatty liver disease (NAFLD), associated with prediabetes. Lycium barbarum polysaccharides (LBP) seem to be a potential prebiotic, and aerobic exercise has shown protective effects on NAFLD with prediabetes. However, their combined effects on NAFLD and prediabetes remain unclear. This study investigated the effects of LBP and aerobic exercise alone, and their combined effects on the metabolomics of serum, and explored the potential mechanisms utilizing a high-fat diet-induced rat model of NAFLD and prediabetes. It provided the metabolic basis for the pathogenesis and early diagnosis of prediabetes complicated with NAFLD. Untargeted metabolomics profiling was performed using ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry to analyze the changes in overall metabolites in each group of samples. An orthogonal partial least squares-discriminant analysis model with variable importance on projection >1 and p < 0.05 were used as the screening criteria to screen the significant differential metabolites and analyze the expression changes and functional pathways. Different intervention treatments showed clear discrimination by univariate and multivariate analyses. The model group had a high relative level of expression of lipids. Comparison between the two groups showed steroids with high expression after LBP and aerobic exercise treatment separately and alkaloids and fatty acyls with high expression after aerobic exercise and the combination intervention, respectively. Comparison of the five groups showed some of the metabolites to be differently expressed after the intervention improved lipid and fatty acid metabolism. The three types of intervention had sound effects on the changes in liver index for the diseases studied. Furthermore, the combination treatment may be a better choice for disease prevention and treatment than a single treatment. Our analysis of metabolomics confirmed that the different treatments had significant regulatory effects on the metabolic pathways. Our findings strongly support the possibility that aerobic exercise combined with LBP can be regarded as a potential therapeutic method for NAFLD in prediabetics.
Collapse
Affiliation(s)
- Yanna Fan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Mengwei Zhang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Jiamin Ma
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Yannan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| | - Jianjun Yang
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
10
|
Sanches JM, Zhao LN, Salehi A, Wollheim CB, Kaldis P. Pathophysiology of type 2 diabetes and the impact of altered metabolic interorgan crosstalk. FEBS J 2023; 290:620-648. [PMID: 34847289 DOI: 10.1111/febs.16306] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Diabetes is a complex and multifactorial disease that affects millions of people worldwide, reducing the quality of life significantly, and results in grave consequences for our health care system. In type 2 diabetes (T2D), the lack of β-cell compensatory mechanisms overcoming peripherally developed insulin resistance is a paramount factor leading to disturbed blood glucose levels and lipid metabolism. Impaired β-cell functions and insulin resistance have been studied extensively resulting in a good understanding of these pathways but much less is known about interorgan crosstalk, which we define as signaling between tissues by secreted factors. Besides hormones and organokines, dysregulated blood glucose and long-lasting hyperglycemia in T2D is associated with changes in metabolism with metabolites from different tissues contributing to the development of this disease. Recent data suggest that metabolites, such as lipids including free fatty acids and amino acids, play important roles in the interorgan crosstalk during the development of T2D. In general, metabolic remodeling affects physiological homeostasis and impacts the development of T2D. Hence, we highlight the importance of metabolic interorgan crosstalk in this review to gain enhanced knowledge of the pathophysiology of T2D, which may lead to new therapeutic approaches to treat this disease.
Collapse
Affiliation(s)
| | - Li Na Zhao
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University, Malmö, Sweden.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Philipp Kaldis
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
11
|
Fanni G, Eriksson JW, Pereira MJ. Several Metabolite Families Display Inflexibility during Glucose Challenge in Patients with Type 2 Diabetes: An Untargeted Metabolomics Study. Metabolites 2023; 13:metabo13010131. [PMID: 36677056 PMCID: PMC9863788 DOI: 10.3390/metabo13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metabolic inflexibility is a hallmark of insulin resistance and can be extensively explored with high-throughput metabolomics techniques. However, the dynamic regulation of the metabolome during an oral glucose tolerance test (OGTT) in subjects with type 2 diabetes (T2D) is largely unknown. We aimed to identify alterations in metabolite responses to OGTT in subjects with T2D using untargeted metabolomics of both plasma and subcutaneous adipose tissue (SAT) samples. Twenty subjects with T2D and twenty healthy controls matched for sex, age, and body mass index (BMI) were profiled with untargeted metabolomics both in plasma (755 metabolites) and in the SAT (588) during an OGTT. We assessed metabolite concentration changes 90 min after the glucose load, and those responses were compared between patients with T2D and controls. Post-hoc analyses were performed to explore the associations between glucose-induced metabolite responses and markers of obesity and glucose metabolism, sex, and age. During the OGTT, T2D subjects had an impaired reduction in plasma levels of several metabolite families, including acylcarnitines, amino acids, acyl ethanolamines, and fatty acid derivates (p < 0.05), compared to controls. Additionally, patients with T2D had a greater increase in plasma glucose and fructose levels during the OGTT compared to controls (p < 0.05). The plasma concentration change of most metabolites after the glucose load was mainly associated with indices of hyperglycemia rather than insulin resistance, insulin secretion, or BMI. In multiple linear regression analyses, hyperglycemia indices (glucose area under the curve (AUC) during OGTT and glycosylated hemoglobin (HbA1c)) were the strongest predictors of plasma metabolite changes during the OGTT. No differences were found in the adipose tissue metabolome in response to the glucose challenge between T2D and controls. Using a metabolomics approach, we show that T2D patients display attenuated responses in several circulating metabolite families during an OGTT. Besides the well-known increase in monosaccharides, the glucose-induced lowering of amino acids, acylcarnitines, and fatty acid derivatives was attenuated in T2D subjects compared to controls. These data support the hypothesis of inflexibility in several metabolic pathways, which may contribute to dysregulated substrate partitioning and turnover in T2D. These findings are not directly associated with changes in adipose tissue metabolism; therefore, other tissues, such as muscle and liver, are probably of greater importance.
Collapse
|
12
|
Morgan-Benita J, Sánchez-Reyna AG, Espino-Salinas CH, Oropeza-Valdez JJ, Luna-García H, Galván-Tejada CE, Galván-Tejada JI, Gamboa-Rosales H, Enciso-Moreno JA, Celaya-Padilla J. Metabolomic Selection in the Progression of Type 2 Diabetes Mellitus: A Genetic Algorithm Approach. Diagnostics (Basel) 2022; 12:diagnostics12112803. [PMID: 36428864 PMCID: PMC9689091 DOI: 10.3390/diagnostics12112803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
According to the World Health Organization (WHO), type 2 diabetes mellitus (T2DM) is a result of the inefficient use of insulin by the body. More than 95% of people with diabetes have T2DM, which is largely due to excess weight and physical inactivity. This study proposes an intelligent feature selection of metabolites related to different stages of diabetes, with the use of genetic algorithms (GA) and the implementation of support vector machines (SVMs), K-Nearest Neighbors (KNNs) and Nearest Centroid (NEARCENT) and with a dataset obtained from the Instituto Mexicano del Seguro Social with the protocol name of the following: "Análisis metabolómico y transcriptómico diferencial en orina y suero de pacientes pre diabéticos, diabéticos y con nefropatía diabética para identificar potenciales biomarcadores pronósticos de daño renal" (differential metabolomic and transcriptomic analyses in the urine and serum of pre-diabetic, diabetic and diabetic nephropathy patients to identify potential prognostic biomarkers of kidney damage). In order to analyze which machine learning (ML) model is the most optimal for classifying patients with some stage of T2DM, the novelty of this work is to provide a genetic algorithm approach that detects significant metabolites in each stage of progression. More than 100 metabolites were identified as significant between all stages; with the data analyzed, the average accuracies obtained in each of the five most-accurate implementations of genetic algorithms were in the range of 0.8214-0.9893 with respect to average accuracy, providing a precise tool to use in detections and backing up a diagnosis constructed entirely with metabolomics. By providing five potential biomarkers for progression, these extremely significant metabolites are as follows: "Cer(d18:1/24:1) i2", "PC(20:3-OH/P-18:1)", "Ganoderic acid C2", "TG(16:0/17:1/18:1)" and "GPEtn(18:0/20:4)".
Collapse
Affiliation(s)
- Jorge Morgan-Benita
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico
| | - Ana G. Sánchez-Reyna
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico
| | - Carlos H. Espino-Salinas
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico
| | - Juan José Oropeza-Valdez
- Metabolomics and Proteomics Laboratory, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Huizilopoztli Luna-García
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico
| | - Carlos E. Galván-Tejada
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico
| | - Jorge I. Galván-Tejada
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico
| | - Hamurabi Gamboa-Rosales
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico
| | | | - José Celaya-Padilla
- Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Mexico
- Correspondence:
| |
Collapse
|
13
|
Zhong J, Cheung CYY, Su X, Lee CH, Ru Y, Fong CHY, Liu Y, Cheung CKY, Lam KSL, Cai Z, Xu A. Specific triacylglycerol, diacylglycerol, and lyso-phosphatidylcholine species for the prediction of type 2 diabetes: a ~ 16-year prospective study in Chinese. Cardiovasc Diabetol 2022; 21:234. [PMCID: PMC9637304 DOI: 10.1186/s12933-022-01677-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022] Open
Abstract
Background Bioactive lipids play an important role in insulin secretion and sensitivity, contributing to the pathophysiology of type 2 diabetes (T2D). This study aimed to identify novel lipid species associated with incident T2D in a nested case–control study within a long-term prospective Chinese community-based cohort with a median follow-up of ~ 16 years. Methods Plasma samples from 196 incident T2D cases and 196 age- and sex-matched non-T2D controls recruited from the Hong Kong Cardiovascular Risk Factor Prevalence Study (CRISPS) were first analyzed using untargeted lipidomics. Potential predictive lipid species selected by the Boruta analysis were then verified by targeted lipidomics. The associations between these lipid species and incident T2D were assessed. Effects of novel lipid species on insulin secretion in mouse islets were investigated. Results Boruta analysis identified 16 potential lipid species. After adjustment for body mass index (BMI), triacylglycerol/high-density lipoprotein (TG/HDL) ratio and the presence of prediabetes, triacylglycerol (TG) 12:0_18:2_22:6, TG 16:0_11:1_18:2, TG 49:0, TG 51:1 and diacylglycerol (DG) 18:2_22:6 were independently associated with increased T2D risk, whereas lyso-phosphatidylcholine (LPC) O-16:0, LPC P-16:0, LPC O-18:0 and LPC 18:1 were independently associated with decreased T2D risk. Addition of the identified lipid species to the clinical prediction model, comprised of BMI, TG/HDL ratio and the presence of prediabetes, achieved a 3.8% improvement in the area under the receiver operating characteristics curve (AUROC) (p = 0.0026). Further functional study revealed that, LPC O-16:0 and LPC O-18:0 significantly potentiated glucose induced insulin secretion (GSIS) in a dose-dependent manner, whereas neither DG 18:2_22:6 nor TG 12:0_18:2_22:6 had any effect on GSIS. Conclusions Addition of the lipid species substantially improved the prediction of T2D beyond the model based on clinical risk factors. Decreased levels of LPC O-16:0 and LPC O-18:0 may contribute to the development of T2D via reduced insulin secretion. Supplementary Information The online version contains supplementary material available at 10.1186/s12933-022-01677-4.
Collapse
Affiliation(s)
- Junda Zhong
- grid.194645.b0000000121742757Department of Medicine, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Chloe Y. Y. Cheung
- grid.194645.b0000000121742757Department of Medicine, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Xiuli Su
- grid.221309.b0000 0004 1764 5980State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chi-Ho Lee
- grid.194645.b0000000121742757Department of Medicine, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Yi Ru
- grid.221309.b0000 0004 1764 5980State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Carol H. Y. Fong
- grid.194645.b0000000121742757Department of Medicine, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Yan Liu
- grid.194645.b0000000121742757Department of Medicine, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Cynthia K. Y. Cheung
- grid.194645.b0000000121742757Department of Medicine, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Karen S. L. Lam
- grid.194645.b0000000121742757Department of Medicine, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Zongwei Cai
- grid.221309.b0000 0004 1764 5980State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Aimin Xu
- grid.194645.b0000000121742757Department of Medicine, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China ,grid.194645.b0000000121742757Department of Pharmacology & Pharmacy, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
14
|
Diamanti K, Cavalli M, Pereira MJ, Pan G, Castillejo-López C, Kumar C, Mundt F, Komorowski J, Deshmukh AS, Mann M, Korsgren O, Eriksson JW, Wadelius C. Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues. Cell Rep Med 2022; 3:100763. [PMID: 36198307 PMCID: PMC9589007 DOI: 10.1016/j.xcrm.2022.100763] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Environmental and genetic factors cause defects in pancreatic islets driving type 2 diabetes (T2D) together with the progression of multi-tissue insulin resistance. Mass spectrometry proteomics on samples from five key metabolic tissues of a cross-sectional cohort of 43 multi-organ donors provides deep coverage of their proteomes. Enrichment analysis of Gene Ontology terms provides a tissue-specific map of altered biological processes across healthy, prediabetes (PD), and T2D subjects. We find widespread alterations in several relevant biological pathways, including increase in hemostasis in pancreatic islets of PD, increase in the complement cascade in liver and pancreatic islets of PD, and elevation in cholesterol biosynthesis in liver of T2D. Our findings point to inflammatory, immune, and vascular alterations in pancreatic islets in PD that are hypotheses to be tested for potential contributions to hormonal perturbations such as impaired insulin and increased glucagon production. This multi-tissue proteomic map suggests tissue-specific metabolic dysregulations in T2D.
Collapse
Affiliation(s)
- Klev Diamanti
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marco Cavalli
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Casimiro Castillejo-López
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chanchal Kumar
- Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Department of Medicine, Novum, Huddinge, Sweden
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jan Komorowski
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland; Washington National Primate Research Center, Seattle, WA, USA; Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Long M, Sanchez-Martinez A, Longo M, Suomi F, Stenlund H, Johansson AI, Ehsan H, Salo VT, Montava-Garriga L, Naddafi S, Ikonen E, Ganley IG, Whitworth AJ, McWilliams TG. DGAT1 activity synchronises with mitophagy to protect cells from metabolic rewiring by iron depletion. EMBO J 2022; 41:e109390. [PMID: 35411952 PMCID: PMC9108618 DOI: 10.15252/embj.2021109390] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
Mitophagy removes defective mitochondria via lysosomal elimination. Increased mitophagy coincides with metabolic reprogramming, yet it remains unknown whether mitophagy is a cause or consequence of such state changes. The signalling pathways that integrate with mitophagy to sustain cell and tissue integrity also remain poorly defined. We performed temporal metabolomics on mammalian cells treated with deferiprone, a therapeutic iron chelator that stimulates PINK1/PARKIN-independent mitophagy. Iron depletion profoundly rewired the metabolome, hallmarked by remodelling of lipid metabolism within minutes of treatment. DGAT1-dependent lipid droplet biosynthesis occurred several hours before mitochondrial clearance, with lipid droplets bordering mitochondria upon iron chelation. We demonstrate that DGAT1 inhibition restricts mitophagy in vitro, with impaired lysosomal homeostasis and cell viability. Importantly, genetic depletion of DGAT1 in vivo significantly impaired neuronal mitophagy and locomotor function in Drosophila. Our data define iron depletion as a potent signal that rapidly reshapes metabolism and establishes an unexpected synergy between lipid homeostasis and mitophagy that safeguards cell and tissue integrity.
Collapse
Affiliation(s)
- Maeve Long
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | - Marianna Longo
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, The Sir James Black Centre, University of Dundee, Dundee, UK
| | - Fumi Suomi
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Hans Stenlund
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Annika I Johansson
- Swedish Metabolomics Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Homa Ehsan
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Veijo T Salo
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Lambert Montava-Garriga
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, The Sir James Black Centre, University of Dundee, Dundee, UK
| | - Seyedehshima Naddafi
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Elina Ikonen
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Ian G Ganley
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, The Sir James Black Centre, University of Dundee, Dundee, UK
| | | | - Thomas G McWilliams
- Translational Stem Cell Biology & Metabolism Program, Research Programs Unit, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Ortiz-Martínez M, González-González M, Martagón AJ, Hlavinka V, Willson RC, Rito-Palomares M. Recent Developments in Biomarkers for Diagnosis and Screening of Type 2 Diabetes Mellitus. Curr Diab Rep 2022; 22:95-115. [PMID: 35267140 PMCID: PMC8907395 DOI: 10.1007/s11892-022-01453-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus is a complex, chronic illness characterized by elevated blood glucose levels that occurs when there is cellular resistance to insulin action, pancreatic β-cells do not produce sufficient insulin, or both. Diabetes prevalence has greatly increased in recent decades; consequently, it is considered one of the fastest-growing public health emergencies globally. Poor blood glucose control can result in long-term micro- and macrovascular complications such as nephropathy, retinopathy, neuropathy, and cardiovascular disease. Individuals with diabetes require continuous medical care, including pharmacological intervention as well as lifestyle and dietary changes. RECENT FINDINGS The most common form of diabetes mellitus, type 2 diabetes (T2DM), represents approximately 90% of all cases worldwide. T2DM occurs more often in middle-aged and elderly adults, and its cause is multifactorial. However, its incidence has increased in children and young adults due to obesity, sedentary lifestyle, and inadequate nutrition. This high incidence is also accompanied by an estimated underdiagnosis prevalence of more than 50% worldwide. Implementing successful and cost-effective strategies for systematic screening of diabetes mellitus is imperative to ensure early detection, lowering patients' risk of developing life-threatening disease complications. Therefore, identifying new biomarkers and assay methods for diabetes mellitus to develop robust, non-invasive, painless, highly-sensitive, and precise screening techniques is essential. This review focuses on the recent development of new clinically validated and novel biomarkers as well as the methods for their determination that represent cost-effective alternatives for screening and early diagnosis of T2DM.
Collapse
Affiliation(s)
- Margarita Ortiz-Martínez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Mirna González-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México.
| | - Alexandro J Martagón
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - Victoria Hlavinka
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Richard C Willson
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo León, México
| |
Collapse
|
17
|
Virseda-Berdices A, Rojo D, Martínez I, Berenguer J, González-García J, Brochado-Kith O, Fernández-Rodríguez A, Díez C, Hontañon V, Pérez-Latorre L, Micán R, Barbas C, Resino S, Jiménez-Sousa MA. Metabolomic changes after DAAs therapy are related to the improvement of cirrhosis and inflammation in HIV/HCV-coinfected patients. Pharmacotherapy 2022; 147:112623. [PMID: 35032770 DOI: 10.1016/j.biopha.2022.112623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND A better understanding of the evolution of cirrhosis after hepatitis C virus (HCV) clearance is essential since the reversal of liver injury may not happen. We aimed to assess the evolution of plasma metabolites after direct-acting antivirals (DAAs) therapy and their association with liver disease scores in HIV/HCV-coinfected patients with advanced HCV-related cirrhosis. METHODS We performed a prospective study in 49 cirrhotic patients who started DAAs therapy. Data and samples were collected at baseline and 36 weeks after SVR. Metabolomics analysis was carried out using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Inflammation-related biomarkers were analyzed using ProcartaPlex Immunoassays. RESULTS At 36 weeks after SVR, patients experienced significant decrease in taurocholic acid, 2,3-butanediol, and LPC(18:0); while several phosphatidylcholines (LPC(16:1), LPC(18:1), LPC(20:4), and PC(16:0/9:0(CHO))/PC(16:0/9:0(COH)), 2-keto-n-caproic acid/2-keto-isocaproic acid and N-methyl alanine increased, compared to baseline. The plasma decrease in taurocholic acid was associated with a reduction in Child-Turcotte-Pugh (CTP) (AMR=3.39; q-value=0.006) and liver stiffness measurement (LSM) (AMR=1.06; q-value<0.001), the plasma increase in LPC(20:4) was related to a reduction in LSM (AMR=0.98; q-value=0.027), and the rise of plasma 2-keto-n-caproic acid/2-keto-isocaproic acid was associated with a reduction in CTP (AMR=0.35; q-value=0.004). Finally, plasma changes in taurocholic acid were directly associated with inflammation-related biomarkers, while changes in LPC(20:4) were inversely associated. CONCLUSIONS Plasma metabolomic profile changed after HCV clearance with all oral-DAAs in HIV/HCV-coinfected with advanced HCV-related cirrhosis. Changes in plasma levels of LPC (20: 4), 2-keto-n-caproic acid/2-keto-isocaproic acid, and taurocholic acid were related to improvements in cirrhosis scores and inflammatory status of patients.
Collapse
Affiliation(s)
- Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, Urbanización Montepríncipe, 28925 Alcorcón, Madrid, Spain.
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Juan Berenguer
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| | - Juan González-García
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - Oscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Cristina Díez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| | - Víctor Hontañon
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - Leire Pérez-Latorre
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unidad de Enfermedades Infecciosas/VIH; Hospital General Universitario "Gregorio Marañón", Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| | - Rafael Micán
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain.
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, Urbanización Montepríncipe, 28925 Alcorcón, Madrid, Spain.
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - María Angeles Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
18
|
Hu C, Li HW, Ke JQ, Yu XC, Zhao MY, Shi XY, Wu LJ, Tang XL, Xiong YH. Metabolic profiling of lysophosphatidylcholines in chlorpromazine hydrochloride- and N-acetyl- p-amino-phenoltriptolide-induced liver injured rats based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Hum Exp Toxicol 2022; 41:9603271221108320. [PMID: 35722787 DOI: 10.1177/09603271221108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chlorpromazine hydrochloride (CH) and N-acetyl-p-amino-phenoltriptolide (APAP) are typical acentral dopamine receptor antagonists and antipyretic analgesics in clinical applications, respectively. However, it has been reported that these 2 drugs could cause liver damage. Lysophosphatidylcholines (LPCs) have multiple physiological functions and are metabolized primarily in the liver, where it undergoes significant changes when the liver is damaged. In the study, 15 LPCs in the rat serum with CH- and APAP-induced liver injury were quantified based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, and multivariate statistical analyses including principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were combined to understand CH- and APAP-induced liver injury from the perspective of LPC metabolic profiling. The quantitative results showed that there were significant changes in 10 LPCs and 5 LPCs after CH- and APAP-administration, separately. The results of PCA and OPLS-DA indicated that CH- and APAP-induced liver injury could be well distinguished by the LPC metabolic profiling, and 7 LPCs and 1 LPC biomarkers that could characterize CH- and APAP-induced liver damage in turn had been screened. This study will not only provide a new perspective for the clinical diagnosis of CH- and APAP-induced liver injury, but also offer a reference for further study of their hepatotoxicity mechanisms.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Hong-Wei Li
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Jia-Qun Ke
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xue-Chun Yu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Mei-Yu Zhao
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xin-Yue Shi
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Lin-Jing Wu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xi-Lan Tang
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Yin-Hua Xiong
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| |
Collapse
|
19
|
Multiomics and digital monitoring during lifestyle changes reveal independent dimensions of human biology and health. Cell Syst 2021; 13:241-255.e7. [PMID: 34856119 DOI: 10.1016/j.cels.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/15/2021] [Accepted: 11/09/2021] [Indexed: 01/04/2023]
Abstract
We explored opportunities for personalized and predictive health care by collecting serial clinical measurements, health surveys, genomics, proteomics, autoantibodies, metabolomics, and gut microbiome data from 96 individuals who participated in a data-driven health coaching program over a 16-month period with continuous digital monitoring of activity and sleep. We generated a resource of >20,000 biological samples from this study and a compendium of >53 million primary data points for 558,032 distinct features. Multiomics factor analysis revealed distinct and independent molecular factors linked to obesity, diabetes, liver function, cardiovascular disease, inflammation, immunity, exercise, diet, and hormonal effects. For example, ethinyl estradiol, a common oral contraceptive, produced characteristic molecular and physiological effects, including increased levels of inflammation and impact on thyroid, cortisol levels, and pulse, that were distinct from other sources of variability observed in our study. In total, this work illustrates the value of combining deep molecular and digital monitoring of human health. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
|
20
|
Yones SA, Csombordi R, Komorowski J, Diamanti K. MetaFetcheR: An R Package for Complete Mapping of Small-Compound Data. Metabolites 2021; 11:metabo11110743. [PMID: 34822401 PMCID: PMC8620779 DOI: 10.3390/metabo11110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Small-compound databases contain a large amount of information for metabolites and metabolic pathways. However, the plethora of such databases and the redundancy of their information lead to major issues with analysis and standardization. A lack of preventive establishment of means of data access at the infant stages of a project might lead to mislabelled compounds, reduced statistical power, and large delays in delivery of results. We developed MetaFetcheR, an open-source R package that links metabolite data from several small-compound databases, resolves inconsistencies, and covers a variety of use-cases of data fetching. We showed that the performance of MetaFetcheR was superior to existing approaches and databases by benchmarking the performance of the algorithm in three independent case studies based on two published datasets.
Collapse
Affiliation(s)
- Sara A. Yones
- Department of Cellular and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden; (R.C.); (J.K.)
- Correspondence: (S.A.Y.); (K.D.); Tel.: +46-76-592-2512 (S.A.Y.); +46-73-926-7648 (K.D.)
| | - Rajmund Csombordi
- Department of Cellular and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden; (R.C.); (J.K.)
| | - Jan Komorowski
- Department of Cellular and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden; (R.C.); (J.K.)
- Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland
- Washington National Primate Research Center, Seattle, WA 98121, USA
- Swedish Collegium for Advanced Study, 752 38 Uppsala, Sweden
| | - Klev Diamanti
- Department of Cellular and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden; (R.C.); (J.K.)
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Correspondence: (S.A.Y.); (K.D.); Tel.: +46-76-592-2512 (S.A.Y.); +46-73-926-7648 (K.D.)
| |
Collapse
|
21
|
Pessoa Rodrigues C, Chatterjee A, Wiese M, Stehle T, Szymanski W, Shvedunova M, Akhtar A. Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice. Nat Commun 2021; 12:6212. [PMID: 34707105 PMCID: PMC8551339 DOI: 10.1038/s41467-021-26277-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Noncommunicable diseases (NCDs) account for over 70% of deaths world-wide. Previous work has linked NCDs such as type 2 diabetes (T2D) to disruption of chromatin regulators. However, the exact molecular origins of these chronic conditions remain elusive. Here, we identify the H4 lysine 16 acetyltransferase MOF as a critical regulator of central carbon metabolism. High-throughput metabolomics unveil a systemic amino acid and carbohydrate imbalance in Mof deficient mice, manifesting in T2D predisposition. Oral glucose tolerance testing (OGTT) reveals defects in glucose assimilation and insulin secretion in these animals. Furthermore, Mof deficient mice are resistant to diet-induced fat gain due to defects in glucose uptake in adipose tissue. MOF-mediated H4K16ac deposition controls expression of the master regulator of glucose metabolism, Pparg and the entire downstream transcriptional network. Glucose uptake and lipid storage can be reconstituted in MOF-depleted adipocytes in vitro by ectopic Glut4 expression, PPARγ agonist thiazolidinedione (TZD) treatment or SIRT1 inhibition. Hence, chronic imbalance in H4K16ac promotes a destabilisation of metabolism triggering the development of a metabolic disorder, and its maintenance provides an unprecedented regulatory epigenetic mechanism controlling diet-induced obesity.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Aindrila Chatterjee
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Meike Wiese
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Stehle
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Witold Szymanski
- Proteomics Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Shvedunova
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany.
| |
Collapse
|
22
|
Surendran A, Atefi N, Zhang H, Aliani M, Ravandi A. Defining Acute Coronary Syndrome through Metabolomics. Metabolites 2021; 11:685. [PMID: 34677400 PMCID: PMC8540033 DOI: 10.3390/metabo11100685] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023] Open
Abstract
As an emerging platform technology, metabolomics offers new insights into the pathomechanisms associated with complex disease conditions, including cardiovascular diseases. It also facilitates assessing the risk of developing the disease before its clinical manifestation. For this reason, metabolomics is of growing interest for understanding the pathogenesis of acute coronary syndromes (ACS), finding new biomarkers of ACS, and its associated risk management. Metabolomics-based studies in ACS have already demonstrated immense potential for biomarker discovery and mechanistic insights by identifying metabolomic signatures (e.g., branched-chain amino acids, acylcarnitines, lysophosphatidylcholines) associated with disease progression. Herein, we discuss the various metabolomics approaches and the challenges involved in metabolic profiling, focusing on ACS. Special attention has been paid to the clinical studies of metabolomics and lipidomics in ACS, with an emphasis on ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Arun Surendran
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
- Mass Spectrometry and Proteomics Core Facility, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Negar Atefi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
| | - Hannah Zhang
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
| | - Michel Aliani
- Faculty of Agricultural and Food Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada;
| | - Amir Ravandi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital, Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; (A.S.); (N.A.); (H.Z.)
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
- Section of Cardiology, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
23
|
Cavalli M, Diamanti K, Dang Y, Xing P, Pan G, Chen X, Wadelius C. The Thioesterase ACOT1 as a Regulator of Lipid Metabolism in Type 2 Diabetes Detected in a Multi-Omics Study of Human Liver. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:652-659. [PMID: 34520261 PMCID: PMC8812507 DOI: 10.1089/omi.2021.0093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Type 2 diabetes (T2D) is characterized by pathophysiological alterations in lipid metabolism. One strategy to understand the molecular mechanisms behind these abnormalities is to identify cis-regulatory elements (CREs) located in chromatin-accessible regions of the genome that regulate key genes. In this study we integrated assay for transposase-accessible chromatin followed by sequencing (ATAC-seq) data, widely used to decode chromatin accessibility, with multi-omics data and publicly available CRE databases to identify candidate CREs associated with T2D for further experimental validations. We performed high-sensitive ATAC-seq in nine human liver samples from normal and T2D donors, and identified a set of differentially accessible regions (DARs). We identified seven DARs including a candidate enhancer for the ACOT1 gene that regulates the balance of acyl-CoA and free fatty acids (FFAs) in the cytoplasm. The relevance of ACOT1 regulation in T2D was supported by the analysis of transcriptomics and proteomics data in liver tissue. Long-chain acyl-CoA thioesterases (ACOTs) are a group of enzymes that hydrolyze acyl-CoA esters to FFAs and coenzyme A. ACOTs have been associated with regulation of triglyceride levels, fatty acid oxidation, mitochondrial function, and insulin signaling, linking their regulation to the pathogenesis of T2D. Our strategy integrating chromatin accessibility with DNA binding and other types of omics provides novel insights on the role of genetic regulation in T2D and is extendable to other complex multifactorial diseases.
Collapse
Affiliation(s)
- Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Klev Diamanti
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Yonglong Dang
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Pengwei Xing
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Xingqi Chen
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Gong P, Wang M, Yang W, Chang X, Wang L, Chen F. Integrated metabolomics coupled with pattern recognition and pathway analysis to reveal molecular mechanism of cadmium-induced diabetic nephropathy. Toxicol Res (Camb) 2021; 10:777-791. [PMID: 34484669 DOI: 10.1093/toxres/tfab059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/28/2021] [Accepted: 06/06/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is becoming a worldwide public health problem and its pathophysiological mechanism is not well understood. Emerging evidences indicated that cadmium (Cd), an industrial material but also an environmental toxin, may be involved in the development and progression of diabetes and diabetes-related kidney disease. However, the underlying mechanism is still unclear. Herein, a DN animal model was constructed by exposing to Cd, the metabolomic profiling of DN mice were obtained by using ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), pattern recognition and pathway analysis were performed to screen potential biomarker. Moreover, western blotting was employed to verify the possible mechanism involved in the occurrence of Cd-induced DN. A total of 66 metabolites in serum have been screened out and identified as biomarkers, including free fatty acids, phospholipids, sphingomyelins, glycerides, and others. Significant differences were demonstrated between the metabolic profiles, including decreased levels of phospholipid and increased content of triglyceride, diacylglycerols, ceramide, lysophosphatidylcholine in Cd-induced DN mice compared with control. Protein expression level of p38 MAPK and Wnt/β-catenin were significantly increased. UPLC-Q-TOF/MS-based serum metabolomics coupled with pattern recognition methods and pathway analysis provide a powerful approach to identify potential biomarkers and is a new strategy to predict the underlying mechanism of disease caused by environmental toxicant.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Mengrao Wang
- School of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiangna Chang
- School of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lan Wang
- School of Food and Biotechnology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
25
|
Knuplez E, Sturm EM, Marsche G. Emerging Role of Phospholipase-Derived Cleavage Products in Regulating Eosinophil Activity: Focus on Lysophospholipids, Polyunsaturated Fatty Acids and Eicosanoids. Int J Mol Sci 2021; 22:4356. [PMID: 33919453 PMCID: PMC8122506 DOI: 10.3390/ijms22094356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and 'pro-inflammatory' phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.
Collapse
Affiliation(s)
| | | | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (E.K.); (E.M.S.)
| |
Collapse
|
26
|
Natarajan K, Ullgren A, Khoshnood B, Johansson C, Laffita-Mesa JM, Pannee J, Zetterberg H, Blennow K, Graff C. Plasma metabolomics of presymptomatic PSEN1-H163Y mutation carriers: a pilot study. Ann Clin Transl Neurol 2021; 8:579-591. [PMID: 33476461 PMCID: PMC7951103 DOI: 10.1002/acn3.51296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE PSEN1-H163Y carriers, at the presymptomatic stage, have reduced 18 FDG-PET binding in the cerebrum of the brain (Scholl et al., Neurobiol Aging 32:1388-1399, 2011). This could imply dysfunctional energy metabolism in the brain. In this study, plasma of presymptomatic PSEN1 mutation carriers was analyzed to understand associated metabolic changes. METHODS We analyzed plasma from noncarriers (NC, n = 8) and presymptomatic PSEN1-H163Y mutation carriers (MC, n = 6) via untargeted metabolomics using gas and liquid chromatography coupled with mass spectrometry, which identified 1199 metabolites. All the metabolites were compared between MC and NC using univariate analysis, as well as correlated with the ratio of Aβ1-42/A β 1-40 , using Spearman's correlation. Altered metabolites were subjected to Ingenuity Pathway Analysis (IPA). RESULTS Based on principal component analysis the plasma metabolite profiles were divided into dataset A and dataset B. In dataset A, when comparing between presymptomatic MC and NC, the levels of 79 different metabolites were altered. Out of 79, only 14 were annotated metabolites. In dataset B, 37 metabolites were significantly altered between presymptomatic MC and NC and nine metabolites were annotated. In both datasets, annotated metabolites represent amino acids, fatty acyls, bile acids, hexoses, purine nucleosides, carboxylic acids, and glycerophosphatidylcholine species. 1-docosapentaenoyl-GPC was positively correlated, uric acid and glucose were negatively correlated with the ratio of plasma Aβ1-42 /Aβ1-40 (P < 0.05). INTERPRETATION This study finds dysregulated metabolite classes, which are changed before the disease symptom onset. Also, it provides an opportunity to compare with sporadic Alzheimer's Disease. Observed findings in this study need to be validated in a larger and independent Familial Alzheimer's Disease (FAD) cohort.
Collapse
Affiliation(s)
- Karthick Natarajan
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Abbe Ullgren
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Behzad Khoshnood
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Charlotte Johansson
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - José M Laffita-Mesa
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Josef Pannee
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, England
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Caroline Graff
- Division for Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, QA12, Karolinska University Hospital-Solna, Stockholm, Sweden
| |
Collapse
|
27
|
Chauhan DS, Gupta P, Pottoo FH, Amir M. Secondary Metabolites in the Treatment of Diabetes Mellitus: A Paradigm Shift. Curr Drug Metab 2020; 21:493-511. [PMID: 32407267 DOI: 10.2174/1389200221666200514081947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/07/2020] [Accepted: 03/10/2020] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus (DM) is a chronic, polygenic and non-infectious group of diseases that occurs due to insulin resistance or its low production by the pancreas and is also associated with lifelong damage, dysfunction and collapse of various organs. Management of diabetes is quite complex having many bodily and emotional complications and warrants efficient measures for prevention and control of the same. As per the estimates of the current and future diabetes prevalence, around 425 million people were diabetic in 2017 which is anticipated to rise up to 629 million by 2045. Various studies have vaguely proven the fact that several vitamins, minerals, botanicals and secondary metabolites demonstrate hypoglycemic activity in vivo as well as in vitro. Flavonoids, anthocyanin, catechin, lipoic acid, coumarin metabolites, etc. derived from herbs were found to elicit a significant influence on diabetes. However, the prescription of herbal compounds depend on various factors, including the degree of diabetes progression, comorbidities, feasibility, economics as well as their ADR profile. For instance, cinnamon could be a more favorable choice for diabetic hypertensive patients. Diabecon®, Glyoherb® and Diabeta Plus® are some of the herbal products that had been launched in the market for the favorable or adjuvant therapy of diabetes. Moreover, Aloe vera leaf gel extract demonstrates significant activity in diabetes. The goal of this review was to inscribe various classes of secondary metabolites, in particular those obtained from plants, and their role in the treatment of DM. Recent advancements in recognizing the markers which can be employed for identifying altered metabolic pathways, biomarker discovery, limitations, metabolic markers of drug potency and off-label effects are also reviewed.
Collapse
Affiliation(s)
| | - Paras Gupta
- Department of Clinical Research, DIPSAR, Pushp Vihar Sec-3, New Dehli, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohd Amir
- Department of Natural Product & Alternative Medicine, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
28
|
Salgüero S, Rojo D, Berenguer J, González-García J, Fernández-Rodríguez A, Brochado-Kith O, Díez C, Hontañon V, Virseda-Berdices A, Martínez J, Ibañez-Samaniego L, Llop-Herrera E, Barbas C, Resino S, Jiménez-Sousa MA. Plasma metabolomic fingerprint of advanced cirrhosis stages among HIV/HCV-coinfected and HCV-monoinfected patients. Liver Int 2020; 40:2215-2227. [PMID: 32593189 DOI: 10.1111/liv.14580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/24/2020] [Accepted: 06/16/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV), human immunodeficiency virus (HIV) and cirrhosis induce metabolic disorders. Here, we aimed to evaluate the association of plasma metabolites with Child-Turcotte-Pugh (CTP) score and hepatic decompensation in HIV/HCV-coinfected and HCV-monoinfected patients with advanced cirrhosis. METHODS A cross-sectional study was carried out in 62 HIV/HCV-coinfected and 28 HCV-monoinfected patients. Metabolomics analysis was performed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). The statistical association analysis was performed by partial least squares discriminant analysis (PLS-DA) and generalized linear model (GLM) with binomial distribution (to analyse HIV coinfection, high alcohol intake, treatment with statins, previous HCV therapy failure and decompensation) and ordinal logistic regression (OLR) models to analyse different stages of cirrhosis (CTP score). RESULTS The statistical analysis identified plasma metabolites associated with HIV coinfection, high alcohol intake, CTP score and hepatic decompensation. Overall, fatty acids, bile acids, aromatic and sulphur amino acids, butyrate derivatives, oxidized phospholipids, energy-related metabolites and bacterial fermentation-related metabolites were increased in more advanced cirrhosis stages; while lysophosphatidylcholines and lysophosphatidylethanolamines, branched-chain amino acids (BCAA) and metabolites of tricarboxylic acid cycle, among others, were decreased in more advanced cirrhosis. Most of the significant metabolites displayed a similar trend after stratifying for HIV/HCV- and HCV-infected patients. Glycolic acid, LPC (16:0) and taurocholic acid had high accuracy for discriminating patients according to decompensated cirrhosis (CTP ≥ 7). CONCLUSION Altered plasma metabolomic profile was associated with advanced stages of cirrhosis in HIV/HCV-coinfected and HCV-monoinfected patients.
Collapse
Affiliation(s)
- Sergio Salgüero
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.,Unidad de Análisis Clínicos. Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Juan Berenguer
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Juan González-García
- Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Oscar Brochado-Kith
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Cristina Díez
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario "Gregorio Marañón", Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Victor Hontañon
- Servicio de Medicina Interna-Unidad de VIH, Hospital Universitario La Paz, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPAZ), Madrid, Spain
| | - Ana Virseda-Berdices
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier Martínez
- Servicio de Aparato Digestivo, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Luis Ibañez-Samaniego
- Servicio de Aparato Digestivo, Hospital General Universitario "Gregorio Marañón", Madrid, Spain
| | - Elba Llop-Herrera
- Departamento de Gastroenterología, Hospital Universitario Puerta de Hierro-Majadahonda, Majadahonda, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María A Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | |
Collapse
|
29
|
Yan Z, Wu H, Zhou H, Chen S, He Y, Zhang W, Chen T, Yao H, Su W. Integrated metabolomics and gut microbiome to the effects and mechanisms of naoxintong capsule on type 2 diabetes in rats. Sci Rep 2020; 10:10829. [PMID: 32616735 PMCID: PMC7331749 DOI: 10.1038/s41598-020-67362-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Naoxintong Capsule (NXT) is a Traditional Chinese Medicine formulation which has been widely applied in treating cardiovascular and cerebrovascular diseases. Previous studies also reported the potential effects of NXT against diabetes and certain complications, yet its mechanisms remain largely obscured. Herein, in this study, we investigated the anti-diabetic effects of NXT as well as its potential mechanisms. Type 2 diabetes (T2D) was induced in rats by 10-week high-fat diet in companion with a low-dose streptozotocin injection. NXT was administrated for additional 8 weeks. The results showed that NXT exerted potent efficacy against T2D by alleviating hyperglycemia and hyperlipidemia, ameliorating insulin resistance, mitigating inflammation, relieving hypertension, and reducing myocardial injuries. To investigate its mechanisms, by integrating sequencing of gut microbiota and serum untargeted metabolomics, we showed that NXT could significantly recover the disturbances of gut microbiota and metabolic phenotypes in T2D rats. Several feature pathways, such as arachidonic acid metabolism, fatty acid β-oxidation and glycerophospholipid metabolism, were identified as the potential mechanisms of NXT in vivo. In summary, our study has comprehensively revealed the anti-diabetic effects of NXT which could be considered as a promising strategy for treating metabolic disorders, T2D and diabetic related complications in clinical practice.
Collapse
Affiliation(s)
- Zenghao Yan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Haokui Zhou
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Shuo Chen
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yan He
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Weijian Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Taobin Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangdong, 510260, People's Republic of China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
30
|
Semba RD. Perspective: The Potential Role of Circulating Lysophosphatidylcholine in Neuroprotection against Alzheimer Disease. Adv Nutr 2020; 11:760-772. [PMID: 32190891 PMCID: PMC7360459 DOI: 10.1093/advances/nmaa024] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer disease (AD), the most common cause of dementia, is a progressive disorder involving cognitive impairment, loss of learning and memory, and neurodegeneration affecting wide areas of the cerebral cortex and hippocampus. AD is characterized by altered lipid metabolism in the brain. Lower concentrations of long-chain PUFAs have been described in the frontal cortex, entorhinal cortex, and hippocampus in the brain in AD. The brain can synthesize only a few fatty acids; thus, most fatty acids must enter the brain from the blood. Recent studies show that PUFAs such as DHA (22:6) are transported across the blood-brain barrier (BBB) in the form of lysophosphatidylcholine (LPC) via a specific LPC receptor at the BBB known as the sodium-dependent LPC symporter 1 (MFSD2A). Higher dietary PUFA intake is associated with decreased risk of cognitive decline and dementia in observational studies; however, PUFA supplementation, with fatty acids esterified in triacylglycerols did not prevent cognitive decline in clinical trials. Recent studies show that LPC is the preferred carrier of PUFAs across the BBB into the brain. An insufficient pool of circulating LPC containing long-chain fatty acids could potentially limit the supply of long-chain fatty acids to the brain, including PUFAs such as DHA, and play a role in the pathobiology of AD. Whether adults with low serum LPC concentrations are at greater risk of developing cognitive decline and AD remains a major gap in knowledge. Preventing and treating cognitive decline and the development of AD remain a major challenge. The LPC pathway is a promising area for future investigators to identify modifiable risk factors for AD.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
32
|
Diamanti K, Visvanathar R, Pereira MJ, Cavalli M, Pan G, Kumar C, Skrtic S, Risérus U, Eriksson JW, Kullberg J, Komorowski J, Wadelius C, Ahlström H. Integration of whole-body [ 18F]FDG PET/MRI with non-targeted metabolomics can provide new insights on tissue-specific insulin resistance in type 2 diabetes. Sci Rep 2020; 10:8343. [PMID: 32433479 PMCID: PMC7239946 DOI: 10.1038/s41598-020-64524-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
Alteration of various metabolites has been linked to type 2 diabetes (T2D) and insulin resistance. However, identifying significant associations between metabolites and tissue-specific phenotypes requires a multi-omics approach. In a cohort of 42 subjects with different levels of glucose tolerance (normal, prediabetes and T2D) matched for age and body mass index, we calculated associations between parameters of whole-body positron emission tomography (PET)/magnetic resonance imaging (MRI) during hyperinsulinemic euglycemic clamp and non-targeted metabolomics profiling for subcutaneous adipose tissue (SAT) and plasma. Plasma metabolomics profiling revealed that hepatic fat content was positively associated with tyrosine, and negatively associated with lysoPC(P-16:0). Visceral adipose tissue (VAT) and SAT insulin sensitivity (Ki), were positively associated with several lysophospholipids, while the opposite applied to branched-chain amino acids. The adipose tissue metabolomics revealed a positive association between non-esterified fatty acids and, VAT and liver Ki. Bile acids and carnitines in adipose tissue were inversely associated with VAT Ki. Furthermore, we detected several metabolites that were significantly higher in T2D than normal/prediabetes. In this study we present novel associations between several metabolites from SAT and plasma with the fat fraction, volume and insulin sensitivity of various tissues throughout the body, demonstrating the benefit of an integrative multi-omics approach.
Collapse
Affiliation(s)
- Klev Diamanti
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robin Visvanathar
- Department of Surgical Sciences, section of Radiology, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Chanchal Kumar
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Karolinska Institute/AstraZeneca Integrated CardioMetabolic Centre (KI/AZ ICMC), Department of Medicine, Novum, Huddinge, Sweden
| | - Stanko Skrtic
- Pharmaceutical Technology & Development, AstraZeneca AB, Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, section of Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, Mölndal, Sweden
| | - Jan Komorowski
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Institute of Computer Science, PAN, Warsaw, Poland
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, section of Radiology, Uppsala University, Uppsala, Sweden.
- Antaros Medical AB, Mölndal, Sweden.
| |
Collapse
|
33
|
Liu P, Zhu W, Chen C, Yan B, Zhu L, Chen X, Peng C. The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 2020; 247:117443. [DOI: 10.1016/j.lfs.2020.117443] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
|