1
|
Liu P, Klyushin A, Chandramathy Surendran P, Fedorov A, Xie W, Zeng C, Huang X. Carbon Encapsulation of Supported Metallic Iridium Nanoparticles: An in Situ Transmission Electron Microscopy Study and Implications for Hydrogen Evolution Reaction. ACS NANO 2023. [PMID: 38047675 DOI: 10.1021/acsnano.3c10850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Carbon-supported metal nanoparticles (NPs) comprise an important class of heterogeneous catalysts. The interaction between the metal and carbon support influences the overall material properties, viz., the catalytic performance. Herein we use in situ and ex situ transmission electron microscopy (TEM) in combination with in situ X-ray spectroscopy (XPS) to investigate the encapsulation of metallic iridium NPs by carbon in an Ir/C catalyst. Real-time atomic-scale imaging visualizes particle reshaping and increased graphitization of the carbon support upon heating of Ir/C in vacuum. According to in situ TEM results, carbon overcoating grows over Ir NPs during the heating process, starting from ca. 550 °C. With the carbon overlayers formed, no sintering and migration of Ir NPs is observed at 800 °C, yet the initial Ir NPs sinter at or below 550 °C, i.e., at a temperature associated with an incomplete particle encapsulation. The carbon overlayer corrugates when the temperature is decreased from 800 to 200 °C and this process is associated with the particle surface reconstruction and is reversible, such that the corrugated carbon overlayer can be smoothed out by increasing the temperature back to 800 °C. The catalytic performance (activity and stability) of the encapsulated Ir NPs in the hydrogen evolution reaction (HER) is higher than that of the initial (nonencapsulated) state of Ir/C. Overall, this work highlights microscopic details of the currently understudied phenomenon of the carbon encapsulation of supported noble metal NPs and demonstrates additionally that the encapsulation by carbon is an effective measure for tuning the catalytic performance.
Collapse
Affiliation(s)
- Panpan Liu
- College of Chemistry, Fuzhou University, 350108 Fuzhou, P. R. China
- Qingyuan Innovation Laboratory, 362100 Quanzhou, P. R. China
| | - Alexander Klyushin
- Department of Inorganic Chemistry, Fritz-Haber Institute of Max Planck Society, 14195 Berlin, Germany
- Research Group Catalysis for Energy, Helmholtz-Zentrum Berlin for Materials and Energy (BESSY II), Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | | | - Alexey Fedorov
- Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Wangjing Xie
- College of Chemistry, Fuzhou University, 350108 Fuzhou, P. R. China
- Qingyuan Innovation Laboratory, 362100 Quanzhou, P. R. China
| | - Chaobin Zeng
- Hitachi High-Tech Scientific Solutions (Beijing) Co., Ltd., 100015 Beijing, P. R. China
| | - Xing Huang
- College of Chemistry, Fuzhou University, 350108 Fuzhou, P. R. China
- Qingyuan Innovation Laboratory, 362100 Quanzhou, P. R. China
- Department of Inorganic Chemistry, Fritz-Haber Institute of Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
2
|
Lee F, Tripathi M, Sanchez Salas R, Ogilvie SP, Amorim Graf A, Jurewicz I, Dalton AB. Localised strain and doping of 2D materials. NANOSCALE 2023; 15:7227-7248. [PMID: 37038962 DOI: 10.1039/d2nr07252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
There is a growing interest in 2D materials-based devices as the replacement for established materials, such as silicon and metal oxides in microelectronics and sensing, respectively. However, the atomically thin nature of 2D materials makes them susceptible to slight variations caused by their immediate environment, inducing doping and strain, which can vary between, and even microscopically within, devices. One of the misapprehensions for using 2D materials is the consideration of unanimous intrinsic properties over different support surfaces. The interfacial interaction, intrinsic structural disorder and external strain modulate the properties of 2D materials and govern the device performance. The understanding, measurement and control of these factors are thus one of the significant challenges for the adoption of 2D materials in industrial electronics, sensing, and polymer composites. This topical review provides a comprehensive overview of the effect of strain-induced lattice deformation and its relationship with physical and electronic properties. Using the example of graphene and MoS2 (as the prototypical 2D semiconductor), we rationalise the importance of scanning probe techniques and Raman spectroscopy to elucidate strain and doping in 2D materials. These effects can be directly and accurately characterised through Raman shifts in a non-destructive manner. A generalised model has been presented that deconvolutes the intertwined relationship between strain and doping in graphene and MoS2 that could apply to other members of the 2D materials family. The emerging field of straintronics is presented, where the controlled application of strain over 2D materials induces tuneable physical and electronic properties. These perspectives highlight practical considerations for strain engineering and related microelectromechanical applications.
Collapse
Affiliation(s)
- Frank Lee
- University of Sussex, Brighton, BN1 9RH, UK.
| | | | | | | | | | | | | |
Collapse
|
3
|
Xiao Y, Zheng W, Yuan B, Wen C, Lanza M. Highly Accurate Thickness Determination of 2D Materials. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yiping Xiao
- Institute of Functional Nano and Soft Materials Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren‐Ai Road Suzhou 215123 China
| | - Wenwen Zheng
- Institute of Functional Nano and Soft Materials Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren‐Ai Road Suzhou 215123 China
| | - Bin Yuan
- Institute of Functional Nano and Soft Materials Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren‐Ai Road Suzhou 215123 China
| | - Chao Wen
- Institute of Functional Nano and Soft Materials Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University 199 Ren‐Ai Road Suzhou 215123 China
| | - Mario Lanza
- Physical Sciences and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia
| |
Collapse
|
4
|
Tripathi M, Lee F, Michail A, Anestopoulos D, McHugh JG, Ogilvie SP, Large MJ, Graf AA, Lynch PJ, Parthenios J, Papagelis K, Roy S, Saadi MASR, Rahman MM, Pugno NM, King AAK, Ajayan PM, Dalton AB. Structural Defects Modulate Electronic and Nanomechanical Properties of 2D Materials. ACS NANO 2021; 15:2520-2531. [PMID: 33492930 DOI: 10.1021/acsnano.0c06701] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force microscopy and Raman spectroscopic mapping. Herein, we have identified and investigated different geometries of line defects in graphene and molybdenum disulfide such as standing collapsed wrinkles, folded wrinkles, and grain boundaries that exhibit distinct strain and doping. In addition, we apply nanomechanical atomic force microscopy to determine the influence of these defects on local stiffness. For wrinkles of similar height, the stiffness of graphene was found to be higher than that of molybdenum disulfide by 10-15% due to stronger in-plane covalent bonding. Interestingly, deflated graphene nanobubbles exhibited entirely different characteristics from wrinkles and exhibit the lowest stiffness of all graphene defects. Density functional theory reveals alteration of the bandstructures of graphene and MoS2 due to the wrinkled structure; such modulation is higher in MoS2 compared to graphene. Using this approach, we can ascertain that wrinkles are subject to significant strain but minimal doping, while edges show significant doping and minimal strain. Furthermore, defects in graphene predominantly show compressive strain and increased carrier density. Defects in molybdenum disulfide predominantly show tensile strain and reduced carrier density, with increasing tensile strain minimizing doping across all defects in both materials. The present work provides critical fundamental insights into the electronic and nanomechanical influence of intrinsic structural defects at the nanoscale, which will be valuable in straintronic device engineering.
Collapse
Affiliation(s)
- Manoj Tripathi
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Frank Lee
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Antonios Michail
- Department of Physics, University of Patras, Patras GR26504, Greece
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology- Hellas (FORTH/ICE-HT), Patras GR26504, Greece
| | - Dimitris Anestopoulos
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology- Hellas (FORTH/ICE-HT), Patras GR26504, Greece
| | - James G McHugh
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Sean P Ogilvie
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Matthew J Large
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Aline Amorim Graf
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Peter J Lynch
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - John Parthenios
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology- Hellas (FORTH/ICE-HT), Patras GR26504, Greece
| | - Konstantinos Papagelis
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology- Hellas (FORTH/ICE-HT), Patras GR26504, Greece
- School of Physics, Department of Solid State Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Nicola Maria Pugno
- Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Alice A K King
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Alan B Dalton
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, United Kingdom
| |
Collapse
|
5
|
Li P, Yang M, Liu Y, Qin H, Liu J, Xu Z, Liu Y, Meng F, Lin J, Wang F, Gao C. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat Commun 2020; 11:2645. [PMID: 32461580 PMCID: PMC7253461 DOI: 10.1038/s41467-020-16494-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022] Open
Abstract
Graphene has an extremely high in-plane strength yet considerable out-of-plane softness. High crystalline order of graphene assemblies is desired to utilize their in-plane properties, however, challenged by the easy formation of chaotic wrinkles for the intrinsic softness. Here, we find an intercalation modulated plasticization phenomenon, present a continuous plasticization stretching method to regulate spontaneous wrinkles of graphene sheets into crystalline orders, and fabricate continuous graphene papers with a high Hermans' order of 0.93. The crystalline graphene paper exhibits superior mechanical (tensile strength of 1.1 GPa, stiffness of 62.8 GPa) and conductive properties (electrical conductivity of 1.1 × 105 S m-1, thermal conductivity of 109.11 W m-1 K-1). We extend the ultrastrong graphene papers to the realistic laminated composites and achieve high strength combining with attractive conductive and electromagnetic shielding performance. The intercalation modulated plasticity is revealed as a vital state of graphene assemblies, contributing to their industrial processing as metals and plastics.
Collapse
Affiliation(s)
- Peng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Mincheng Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Huasong Qin
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Jingran Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, 710049, Xi'an, P. R. China
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China.
| | - Yilun Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, 710049, Xi'an, P. R. China.
| | - Fanxu Meng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Jiahao Lin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Fang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, 310027, Hangzhou, P. R. China.
| |
Collapse
|
6
|
Zhou M, Li S, Lu L, Cao W, Wang S, Xie W. The effect of surface wrinkles on the properties of water in graphene slit pores. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1754411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Musen Zhou
- 2011 College, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Sanmei Li
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Linghong Lu
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Wei Cao
- State Key Laboratory of Tribology, Tsinghua University, Beijing, People’s Republic of China
| | - Shanshan Wang
- College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Wenlong Xie
- China Petroleum Chemicals Kunshan Company, Kunshan, People’s Republic of China
| |
Collapse
|