1
|
Haug M, Michael M, Ritter P, Kovbasyuk L, Vazakidou ME, Friedrich O. Levosimendan's Effects on Length-Dependent Activation in Murine Fast-Twitch Skeletal Muscle. Int J Mol Sci 2024; 25:6191. [PMID: 38892380 PMCID: PMC11172453 DOI: 10.3390/ijms25116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Levosimendan's calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan's acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the 'descending limb' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young's modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.
Collapse
Affiliation(s)
- Michael Haug
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Mena Michael
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Paul Ritter
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
| | - Larisa Kovbasyuk
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
| | - Maria Eleni Vazakidou
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan Str. 3, 91052 Erlangen, Germany; (M.M.); (P.R.); (L.K.); (M.E.V.); (O.F.)
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 6, 91052 Erlangen, Germany
- School of Biomedical Sciences, University of New South Wales, Wallace Wurth Building, 18 High St., Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Redox Balance Differentially Affects Biomechanics in Permeabilized Single Muscle Fibres-Active and Passive Force Assessments with the Myorobot. Cells 2022; 11:cells11233715. [PMID: 36496975 PMCID: PMC9740451 DOI: 10.3390/cells11233715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
An oxidizing redox state imposes unique effects on the contractile properties of muscle. Permeabilized fibres show reduced active force generation in the presence of H2O2. However, our knowledge about the muscle fibre's elasticity or flexibility is limited due to shortcomings in assessing the passive stress-strain properties, mostly due to technically limited experimental setups. The MyoRobot is an automated biomechatronics platform that is well-capable of not only investigating calcium responsiveness of active contraction but also features precise stretch actuation to examine the passive stress-strain behaviour. Both were carried out in a consecutive recording sequence on the same fibre for 10 single fibres in total. We denote a significantly diminished maximum calcium-saturated force for fibres exposed to ≥500 µM H2O2, with no marked alteration of the pCa50 value. In contrast to active contraction (e.g., maximum isometric force activation), passive restoration stress (force per area) significantly increases for fibres exposed to an oxidizing environment, as they showed a non-linear stress-strain relationship. Our data support the idea that a highly oxidizing environment promotes non-linear fibre stiffening and confirms that our MyoRobot platform is a suitable tool for investigating redox-related changes in muscle biomechanics.
Collapse
|
3
|
Spörrer M, Kah D, Gerum RC, Reischl B, Huraskin D, Dessalles CA, Schneider W, Goldmann WH, Herrmann H, Thievessen I, Clemen CS, Friedrich O, Hashemolhosseini S, Schröder R, Fabry B. The desmin mutation R349P increases contractility and fragility of stem cell-generated muscle micro-tissues. Neuropathol Appl Neurobiol 2021; 48:e12784. [PMID: 34850968 DOI: 10.1111/nan.12784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/18/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022]
Abstract
AIMS Desminopathies comprise hereditary myopathies and cardiomyopathies caused by mutations in the intermediate filament protein desmin that lead to severe and often lethal degeneration of striated muscle tissue. Animal and single cell studies hinted that this degeneration process is associated with massive ultrastructural defects correlating with increased susceptibility of the muscle to acute mechanical stress. The underlying mechanism of mechanical susceptibility, and how muscle degeneration develops over time, however, has remained elusive. METHODS Here, we investigated the effect of a desmin mutation on the formation, differentiation, and contractile function of in vitro-engineered three-dimensional micro-tissues grown from muscle stem cells (satellite cells) isolated from heterozygous R349P desmin knock-in mice. RESULTS Micro-tissues grown from desmin-mutated cells exhibited spontaneous unsynchronised contractions, higher contractile forces in response to electrical stimulation, and faster force recovery compared with tissues grown from wild-type cells. Within 1 week of culture, the majority of R349P desmin-mutated tissues disintegrated, whereas wild-type tissues remained intact over at least three weeks. Moreover, under tetanic stimulation lasting less than 5 s, desmin-mutated tissues partially or completely ruptured, whereas wild-type tissues did not display signs of damage. CONCLUSIONS Our results demonstrate that the progressive degeneration of desmin-mutated micro-tissues is closely linked to extracellular matrix fibre breakage associated with increased contractile forces and unevenly distributed tensile stress. This suggests that the age-related degeneration of skeletal and cardiac muscle in patients suffering from desminopathies may be similarly exacerbated by mechanical damage from high-intensity muscle contractions. We conclude that micro-tissues may provide a valuable tool for studying the organization of myocytes and the pathogenic mechanisms of myopathies.
Collapse
Affiliation(s)
- Marina Spörrer
- Biophysics Group, Department of Physics, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Delf Kah
- Biophysics Group, Department of Physics, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Richard C Gerum
- Biophysics Group, Department of Physics, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Barbara Reischl
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, FAU, Erlangen, Germany
| | - Danyil Huraskin
- Institute of Biochemistry, Medical Faculty, FAU, Erlangen, Germany
| | - Claire A Dessalles
- Biophysics Group, Department of Physics, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany.,LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Werner Schneider
- Biophysics Group, Department of Physics, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Wolfgang H Goldmann
- Biophysics Group, Department of Physics, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), FAU, Erlangen, Germany
| | - Harald Herrmann
- Muscle Research Center Erlangen (MURCE), FAU, Erlangen, Germany.,Institute of Neuropathology, University Hospital Erlangen, FAU, Erlangen, Germany
| | - Ingo Thievessen
- Biophysics Group, Department of Physics, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), FAU, Erlangen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, FAU, Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), FAU, Erlangen, Germany
| | - Said Hashemolhosseini
- Institute of Biochemistry, Medical Faculty, FAU, Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), FAU, Erlangen, Germany
| | - Rolf Schröder
- Muscle Research Center Erlangen (MURCE), FAU, Erlangen, Germany.,Institute of Neuropathology, University Hospital Erlangen, FAU, Erlangen, Germany
| | - Ben Fabry
- Biophysics Group, Department of Physics, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany.,Muscle Research Center Erlangen (MURCE), FAU, Erlangen, Germany
| |
Collapse
|
4
|
Haug M, Ritter P, Michael M, Reischl B, Schurmann S, Prols G, Friedrich O. Structure-Function Relationships in Muscle Fibres: MyoRobot online Assessment of Muscle Fibre Elasticity and Sarcomere Length Distributions. IEEE Trans Biomed Eng 2021; 69:148-155. [PMID: 34133271 DOI: 10.1109/tbme.2021.3089739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Muscle biomechanics is set by the spacing of repetitive striation patterns of individual sarcomeres within single muscle fibres of stacked myofibrils. Sarcomere lengths (SL) are rather unequally distributed than of equal distance. This non-uniformity may affect both, force production as well as passive-elastic deformation. However, online recording of SL during axially imposed strains is cumbersome due to a lack of compact technologies. METHODS To fuse SL pattern recognition with restoration force assessments during quasi-static axial stretch, we implemented live tracking of SL distributions simultaneous to voice-coil actuated stretch and restoration force recordings in our MyoRobot 2.0 automated biomechatronics platform. Both were obtained online during stretchrelaxation cycles of murine single muscle fibres. RESULTS Under quasi-static stretch conditions (∼1 μm/s fibre length changes), almost no apparent hysteresis was detected in single fibres. SL showed a non-uniform distribution. While mean SL varied between 2.6 μm and 3.4 μm upon 140% stretch, two populations of fibres were noticed: one showing a minor change in SL distribution with stretch, and one becoming more equally distributed upon stretch. CONCLUSION A roughly 5% SL variability under rest either diminishes or remains almost unaltered upon elastic axial deformation. This may reflect differential impact of mostly extra-sarcomeric components to stretch in this stretch range. SIGNIFICANCE The augmented functionality of the MyoRobot 2.0 towards online sarcomere analyses within single fibres shall provide a valuable tool for the muscle community to study the contribution of serial elastic and force producing elements in health and disease models.
Collapse
|
5
|
Pollmann C, Haug M, Reischl B, Prölß G, Pöschel T, Rupitsch SJ, Clemen CS, Schröder R, Friedrich O. Growing Old Too Early: Skeletal Muscle Single Fiber Biomechanics in Ageing R349P Desmin Knock-in Mice Using the MyoRobot Technology. Int J Mol Sci 2020; 21:ijms21155501. [PMID: 32752098 PMCID: PMC7432536 DOI: 10.3390/ijms21155501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Muscle biomechanics relies on active motor protein assembly and passive strain transmission through cytoskeletal structures. The desmin filament network aligns myofibrils at the z-discs, provides nuclear–sarcolemmal anchorage and may also serve as memory for muscle repositioning following large strains. Our previous analyses of R349P desmin knock-in mice, an animal model for the human R350P desminopathy, already depicted pre-clinical changes in myofibrillar arrangement and increased fiber bundle stiffness. As the effect of R349P desmin on axial biomechanics in fully differentiated single muscle fibers is unknown, we used our MyoRobot to compare passive visco-elasticity and active contractile biomechanics in single fibers from fast- and slow-twitch muscles from adult to senile mice, hetero- or homozygous for the R349P desmin mutation with wild type littermates. We demonstrate that R349P desmin presence predominantly increased axial stiffness in both muscle types with a pre-aged phenotype over wild type fibers. Axial viscosity and Ca2+-mediated force were largely unaffected. Mutant single fibers showed tendencies towards faster unloaded shortening over wild type fibers. Effects of aging seen in the wild type appeared earlier in the mutant desmin fibers. Our single-fiber experiments, free of extracellular matrix, suggest that compromised muscle biomechanics is not exclusively attributed to fibrosis but also originates from an impaired intermediate filament network.
Collapse
Affiliation(s)
- Charlotte Pollmann
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Bavaria, Germany; (C.P.); (B.R.); (G.P.); (O.F.)
| | - Michael Haug
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Bavaria, Germany; (C.P.); (B.R.); (G.P.); (O.F.)
- Graduate School in Advanced Optical Technologies, Paul-Gordan-Str. 6, 91052 Erlangen, Bavaria, Germany
- School of Medical Sciences, University of New South Wales, Wallace Wurth Building, 18 High St, Sydney, NSW 2052, Australia
- Correspondence:
| | - Barbara Reischl
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Bavaria, Germany; (C.P.); (B.R.); (G.P.); (O.F.)
| | - Gerhard Prölß
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Bavaria, Germany; (C.P.); (B.R.); (G.P.); (O.F.)
| | - Thorsten Pöschel
- Institute of Multi Scale Simulation of Particulate Systems, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelbachstr. 49b, 91052 Erlangen, Bavaria, Germany;
| | - Stefan J Rupitsch
- Institute of Sensor Technology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3/5, 91052 Erlangen, Bavaria, Germany;
| | - Christoph S Clemen
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Höhe, 51147 Cologne, North Rhine-Westphalia, Germany;
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Bavaria, Germany;
- Insitute of Vegetative Physiology, Medical Faculty, University of Cologne, Center of Physiology and Pathophysiology, Robert-Koch-Street 39, 50931 Cologne, North Rhine-Westphalia, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Bavaria, Germany;
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Bavaria, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Bavaria, Germany; (C.P.); (B.R.); (G.P.); (O.F.)
- Graduate School in Advanced Optical Technologies, Paul-Gordan-Str. 6, 91052 Erlangen, Bavaria, Germany
- School of Medical Sciences, University of New South Wales, Wallace Wurth Building, 18 High St, Sydney, NSW 2052, Australia
- Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Bavaria, Germany
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool St, Sydney, NSW 2010, Australia
- Optical Imaging Centre Erlangen OICE, Cauerstr. 3, 91058 Erlangen, Bavaria, Germany
| |
Collapse
|