1
|
Kim Y, Gräsing D, Alia A, Wiebeler C, Matysik J. Solid-State NMR Analysis of the Dynamics of Cofactors: Comparison of Heliobacterial and Purple Bacterial Reaction Centers. J Phys Chem B 2024; 128:11525-11545. [PMID: 39514084 DOI: 10.1021/acs.jpcb.4c04082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photosynthetic reaction centers (RCs) serve as natural engines converting solar energy to chemical energy. Understanding the principles of efficient charge separation and light-induced electron transfer (ET) between the chlorophyll-type pigments might guide the synthesis for artificial photosynthetic systems. We present detailed insight into the dynamics at the atomic level using solid-state NMR techniques applied to the RCs of Heliobacillus (Hb.) mobilis (HbRCs) and the purple bacterium Rhodobacter (R.) sphaeroides (PbRCs). It is assumed that heliobacteria were among the first phototrophic organisms; therefore, their RC can be regarded as ancient. They are constructed homodimerically with perfect C2 symmetry, enabling ET over both branches of cofactors. Modern RCs of R. sphaeroides wild-type (WT) have higher redox power and are functionally highly asymmetric. The dynamics of the cofactors in both RCs has been explored using nuclear hyperpolarization, induced by the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Based on the individual incorporation of 13C positions of the cofactors (through supplementation by 13C-δ-aminolevulinic acid), photo-CIDNP magic-angle spinning (MAS) NMR experiments provide access to the local dynamics of the cofactors along the ET path over a broad range of time scales. Theoretical analysis of the dynamic deformation of these macrocycles is also discussed in terms of function. The dynamics observed in HbRCs appears to be correlated to ET. The cofactors in PbRC are significantly less dynamic than those in the HbRC. Relevance for efficiency and redox properties are discussed.
Collapse
Affiliation(s)
- Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - A Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, The Netherlands
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
- Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| |
Collapse
|
2
|
Kurle-Tucholski P, Wiebeler C, Köhler L, Qin R, Zhao Z, Šimėnas M, Pöppl A, Matysik J. Red Shift in the Absorption Spectrum of Phototropin LOV1 upon the Formation of a Semiquinone Radical: Reconstructing the Orbital Architecture. J Phys Chem B 2024; 128:4344-4353. [PMID: 38688080 PMCID: PMC11089501 DOI: 10.1021/acs.jpcb.4c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Flavin mononucleotide (FMN) is a ubiquitous blue-light pigment due to its ability to drive one- and two-electron transfer reactions. In both light-oxygen-voltage (LOV) domains of phototropin from the green algae Chlamydomonas reinhardtii, FMN is noncovalently bound. In the LOV1 cysteine-to-serine mutant (C57S), light-induced electron transfer from a nearby tryptophan occurs, and a transient spin-correlated radical pair (SCRP) is formed. Within this photocycle, nuclear hyperpolarization is created by the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. In a side reaction, a stable protonated semiquinone radical (FMNH·) forms undergoing a significant bathochromic shift of the first electronic transition from 445 to 591 nm. The incorporation of phototropin LOV1-C57S into an amorphous trehalose matrix, stabilizing the radical, allows for application of various magnetic resonance experiments at ambient temperatures, which are combined with quantum-chemical calculations. As a result, the bathochromic shift of the first absorption band is explained by lifting the degeneracy of the molecular orbital energy levels for electrons with alpha and beta spins in FMNH· due to the additional electron.
Collapse
Affiliation(s)
- Patrick Kurle-Tucholski
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
- Institut
für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Lisa Köhler
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Ruonan Qin
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Ziyue Zhao
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Mantas Šimėnas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Andreas Pöppl
- Felix
Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraße 5, D-04103, Leipzig, Germany
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| |
Collapse
|
3
|
Kurle-Tucholski P, Köhler L, Zhao Z, Link G, Wiebeler C, Matysik J. Stabilization of a flavoprotein for solid-state photo-CIDNP MAS NMR at room temperature by embedding in a glassy sugar matrix. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107497. [PMID: 37295281 DOI: 10.1016/j.jmr.2023.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Hyperpolarization via the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect can be detected in frozen solutions of electron transfer proteins generating a radical-pair upon illumination. The effect has been observed in various natural photosynthetic reaction centers and in light-oxygen-voltage (LOV) sensing domains incorporating a flavin mononucleotide (FMN) as chromophore. In LOV domains, where a highly conserved cysteine is mutated to a flavin to interrupt its natural photochemistry, a radical-pair is generated by electron transfer from a nearby tryptophan to the photoexcited triplet state of FMN. During the photocycle, both the LOV domain and the chromophore are photochemically degraded, e.g., by the formation of singlet oxygen. This limits the time for collection of hyperpolarized nuclear magnetic resonance (NMR) data. We show that embedding of the protein into a trehalose sugar glass matrix stabilizes the protein for 13C solid-state photo-CIDNP NMR experiments which can be conducted at room temperature in a powder sample. Additionally, this preparation allows for incorporation of high amounts of protein further boosting the intensity of the detected signals from FMN and tryptophan at natural abundance. Signal assignment is aided by quantum chemical calculations of absolute shieldings. The underlying mechanism for the surprising absorption-only signal pattern is not yet understood. Comparison to calculated isotropic hyperfine couplings imply that the enhancement is not due to the classical radical-pair mechanism (RPM). Analysis of the anisotropic hyperfine couplings associated with solid-state photo-CIDNP mechanisms also show no simple correlation, suggesting a more complex underlying mechanism.
Collapse
Affiliation(s)
- Patrick Kurle-Tucholski
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Ziyue Zhao
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Gerhard Link
- Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany; Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstraße 2, D-04103 Leipzig, Germany; Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
| |
Collapse
|
4
|
Matysik J, Ding Y, Kim Y, Kurle P, Yurkovskaya A, Ivanov K, Alia A. Photo-CIDNP in Solid State. APPLIED MAGNETIC RESONANCE 2021; 53:521-537. [PMID: 33840910 PMCID: PMC8021640 DOI: 10.1007/s00723-021-01322-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 05/27/2023]
Abstract
Photo-CIDNP (photo-chemically induced dynamic nuclear polarization) refers to nuclear polarization created by the spin-chemical evolution of spin-correlated radical pairs (SCRPs). This phenomenon occurs in gases, liquids and solids. Based on the solid-state photo-CIDNP effect observed under magic-angle spinning (MAS), photo-CIDNP MAS NMR has been developed as analytical method. Here we report the origin, the theory and the state of the art of this method.
Collapse
Affiliation(s)
- Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Yonghong Ding
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Yunmi Kim
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | - Patrick Kurle
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103 Leipzig, Germany
| | | | - Konstantin Ivanov
- International Tomography Center, Institutskaya, 630090 Novosibirsk, Russia
| | - A. Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|