1
|
Yang B, Ma D, Zhu X, Wu Z, An Q, Zhao J, Gao X, Zhang L. Roles of TRP and PIEZO receptors in autoimmune diseases. Expert Rev Mol Med 2024; 26:e10. [PMID: 38659380 PMCID: PMC11140548 DOI: 10.1017/erm.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 04/26/2024]
Abstract
Autoimmune diseases are pathological autoimmune reactions in the body caused by various factors, which can lead to tissue damage and organ dysfunction. They can be divided into organ-specific and systemic autoimmune diseases. These diseases usually involve various body systems, including the blood, muscles, bones, joints and soft tissues. The transient receptor potential (TRP) and PIEZO receptors, which resulted in David Julius and Ardem Patapoutian winning the Nobel Prize in Physiology or Medicine in 2021, attracted people's attention. Most current studies on TRP and PIEZO receptors in autoimmune diseases have been carried out on animal model, only few clinical studies have been conducted. Therefore, this study aimed to review existing studies on TRP and PIEZO to understand the roles of these receptors in autoimmune diseases, which may help elucidate novel treatment strategies.
Collapse
Affiliation(s)
- Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xueqing Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
2
|
Tateishi U, Doi H. Transient receptor potential cation channel subfamily V member 1 (TRPV1) targeted PET imaging. Jpn J Clin Oncol 2024; 54:386-394. [PMID: 38251773 DOI: 10.1093/jjco/hyad194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) was identified using capsaicin, a pungent compound that is present in red pepper. The activation of TRPV1 induces an influx of calcium ions into cells and causes excitation of sensory neurons, associating with thermal sensing, sweating and pain. TRPV1 is also identified in various types of cancer cells. The expression of TRPV1 in cancer cells depends on the type of cancer and the stage of the disease. Therefore, TRPV1 has been considered a potential target of medicinal chemistry for drug development, and blocking its activation may lead to cancer therapy and pain relief. However, the details of the pathophysiological function of TRPV1 in vivo are still unclear. To explore practical use of TRPV1, we focused on positron emission tomography imaging and developed a 11C-radiolabeled tracer to visualize TRPV1.
Collapse
Affiliation(s)
- Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University Graduate School of Medicine, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Hisashi Doi
- Research Institute for Drug Discovery Science, Collaborative Creation Research Center, Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
3
|
Liao Z, Umar M, Huang X, Qin L, Xiao G, Chen Y, Tong L, Chen D. Transient receptor potential vanilloid 1: A potential therapeutic target for the treatment of osteoarthritis and rheumatoid arthritis. Cell Prolif 2024; 57:e13569. [PMID: 37994506 PMCID: PMC10905355 DOI: 10.1111/cpr.13569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/24/2023] Open
Abstract
This study aims to determine the molecular mechanisms and analgesic effects of transient receptor potential vanilloid 1 (TRPV1) in the treatments of osteoarthritis (OA) and rheumatoid arthritis (RA). We summarize and analyse current studies regarding the biological functions and mechanisms of TRPV1 in arthritis. We search and analyse the related literature in Google Scholar, Web of Science and PubMed databases from inception to September 2023 through the multi-combination of keywords like 'TRPV1', 'ion channel', 'osteoarthritis', 'rheumatoid arthritis' and 'pain'. TRPV1 plays a crucial role in regulating downstream gene expression and maintaining cellular function and homeostasis, especially in chondrocytes, synovial fibroblasts, macrophages and osteoclasts. In addition, TRPV1 is located in sensory nerve endings and plays an important role in nerve sensitization, defunctionalization or central sensitization. TRPV1 is a non-selective cation channel protein. Extensive evidence in recent years has established the significant involvement of TRPV1 in the development of arthritis pain and inflammation, positioning it as a promising therapeutic target for arthritis. TRPV1 likely represents a feasible therapeutic target for the treatment of OA and RA.
Collapse
Affiliation(s)
- Zhidong Liao
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co‐constructed by the Province and MinistryGuangxi Medical UniversityNanningGuangxiChina
| | - Muhammad Umar
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Xingyun Huang
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong KongHong KongChina
| | - Guozhi Xiao
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yan Chen
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Liping Tong
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Di Chen
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| |
Collapse
|
4
|
Kida T, Takahashi N, Mori MX, Sun JH, Oota H, Nishino K, Okauchi T, Ochi Y, Kano D, Tateishi U, Watanabe Y, Cui Y, Mori Y, Doi H. N-Methylamide-structured SB366791 derivatives with high TRPV1 antagonistic activity: toward PET radiotracers to visualize TRPV1. RSC Med Chem 2022; 13:1197-1204. [PMID: 36325399 PMCID: PMC9579943 DOI: 10.1039/d2md00158f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/27/2022] [Indexed: 09/08/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1)-targeted compounds were synthesized by modifying the structure of SB366791, a pharmaceutically representative TRPV1 antagonist. To avoid amide-iminol tautomerization, structurally supported N-methylated amides (i.e., 3-alkoxy-substitued N-meythylamide derivatives of SB366791) were evaluated using a Ca2+ influx assay, in which cells expressed recombinant TRPV1 in the presence of 1.0 μM capsaicin. The antagonistic activities of N-(3-methoxyphenyl)-N-methyl-4-chlorocinnamamide (2) (RLC-TV1004) and N-{3-(3-fluoropropoxy)phenyl}-N-methyl-4-chlorocinnamamide (4) (RLC-TV1006) were found to be approximately three-fold higher (IC50: 1.3 μM and 1.1 μM, respectively) than that of SB366791 (IC50: 3.7 μM). These results will help reinvigorate the potential of SB366791 in medicinal chemistry applications. The 3-methoxy and 3-fluoroalkoxy substituents were used to obtain radioactive [11C]methoxy- or [18F]fluoroalkoxy-incorporated tracers for in vivo positron emission tomography (PET). Using the 11C- or 18F-labeled derivatives, explorative PET imaging trials were performed in rats.
Collapse
Affiliation(s)
- Tatsuya Kida
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Nobuaki Takahashi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Jiacheng H Sun
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Hideto Oota
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Kosuke Nishino
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Takashi Okauchi
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Yuta Ochi
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Daisuke Kano
- Pharmaceutical department, National Cancer Center Hospital East 6-5-1 Kashiwanoha, Kashiwa-shi Chiba 277-8577 Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University Graduate School of Medicine 1-5-45, Yushima, Bunkyo-ku Tokyo 113-8519 Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Yilong Cui
- Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research 6-7-3 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| |
Collapse
|