1
|
Mazur-Rosmus W, Krzyżak AT. The effect of elimination of gibbs ringing, noise and systematic errors on the DTI metrics and tractography in a rat brain. Sci Rep 2024; 14:15010. [PMID: 38951163 PMCID: PMC11217413 DOI: 10.1038/s41598-024-66076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Diffusion tensor imaging (DTI) metrics and tractography can be biased due to low signal-to-noise ratio (SNR) and systematic errors resulting from image artifacts and imperfections in magnetic field gradients. The imperfections include non-uniformity and nonlinearity, effects caused by eddy currents, and the influence of background and imaging gradients. We investigated the impact of systematic errors on DTI metrics of an isotropic phantom and DTI metrics and tractography of a rat brain measured at high resolution. We tested denoising and Gibbs ringing removal methods combined with the B matrix spatial distribution (BSD) method for magnetic field gradient calibration. The results showed that the performance of the BSD method depends on whether Gibbs ringing is removed and the effectiveness of stochastic error removal. Region of interest (ROI)-based analysis of the DTI metrics showed that, depending on the size of the ROI and its location in space, correction methods can remove systematic bias to varying degrees. The preprocessing pipeline proposed and dedicated to this type of data together with the BSD method resulted in an even - 90% decrease in fractional anisotropy (FA) (globally and locally) in the isotropic phantom and - 45% in the rat brain. The largest global changes in the rat brain tractogram compared to the standard method without preprocessing (sDTI) were noticed after denoising. The direction of the first eigenvector obtained from DTI after denoising, Gibbs ringing removal and BSD differed by an average of 56 and 10 degrees in the ROI from sDTI and from sDTI after denoising and Gibbs ringing removal, respectively. The latter can be identified with the amount of improvement in tractography due to the elimination of systematic errors related to imperfect magnetic field gradients. Based on the results, the systematic bias for high resolution data mainly depended on SNR, but the influence of non-uniform gradients could also be seen. After denoising, the BSD method was able to further correct both the metrics and tractography of the diffusion tensor in the rat brain by taking into account the actual distribution of magnetic field gradients independent of the examined object and uniquely dependent on the scanner and sequence. This means that in vivo studies are also subject to this type of errors, which should be taken into account when processing such data.
Collapse
Affiliation(s)
| | - Artur T Krzyżak
- AGH University of Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland.
| |
Collapse
|
2
|
Yu W, Yan W, Yi J, Cheng L, Luo P, Sun J, Gou S, Fu P. Application of Diffusion Kurtosis Imaging and Blood Oxygen Level-Dependent Magnetic Resonance Imaging in Kidney Injury Associated with ANCA-Associated Vasculitis. Tomography 2024; 10:970-982. [PMID: 39058045 PMCID: PMC11280752 DOI: 10.3390/tomography10070073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE Functional magnetic resonance imaging (fMRI) has been applied to assess the microstructure of the kidney. However, it is not clear whether fMRI could be used in the field of kidney injury in patients with Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). METHODS This study included 20 patients with AAV. Diffusion kurtosis imaging (DKI) and blood oxygen level-dependent (BOLD) scanning of the kidneys were performed in AAV patients and healthy controls. The mean kurtosis (MK), mean diffusivity (MD), and fractional anisotropy (FA) parameters of DKI, the R2* parameter of BOLD, and clinical data were further analyzed. RESULTS In AAV patients, the cortex exhibited lower MD but higher R2* values compared to the healthy controls. Medullary MK values were elevated in AAV patients. Renal medullary MK values showed a positive correlation with serum creatinine levels and negative correlations with hemoglobin levels and estimated glomerular filtration rate. To assess renal injury in AAV patients, AUC values for MK, MD, FA, and R2* in the cortex were 0.66, 0.67, 0.57, and 0.55, respectively, and those in the medulla were 0.81, 0.77, 0.61, and 0.53, respectively. CONCLUSIONS Significant differences in DKI and BOLD MRI parameters were observed between AAV patients with kidney injuries and the healthy controls. The medullary MK value in DKI may be a noninvasive marker for assessing the severity of kidney injury in AAV patients.
Collapse
Affiliation(s)
- Wenhui Yu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; (W.Y.); (J.Y.); (L.C.); (P.L.); (P.F.)
| | - Weijie Yan
- Division of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; (W.Y.); (J.S.)
| | - Jing Yi
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; (W.Y.); (J.Y.); (L.C.); (P.L.); (P.F.)
- Division of Nephrology, West China Airport Hospital of Sichuan University, Chengdu 610200, China
| | - Lu Cheng
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; (W.Y.); (J.Y.); (L.C.); (P.L.); (P.F.)
| | - Peiyi Luo
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; (W.Y.); (J.Y.); (L.C.); (P.L.); (P.F.)
| | - Jiayu Sun
- Division of Radiology, West China Hospital of Sichuan University, Chengdu 610041, China; (W.Y.); (J.S.)
| | - Shenju Gou
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; (W.Y.); (J.Y.); (L.C.); (P.L.); (P.F.)
| | - Ping Fu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China; (W.Y.); (J.Y.); (L.C.); (P.L.); (P.F.)
| |
Collapse
|
3
|
Liu S, Zhou W. Research progress in functional magnetic resonance imaging assessment of lupus nephritis kidney injury. Lupus 2023; 32:1143-1154. [PMID: 37556364 DOI: 10.1177/09612033231193790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Lupus nephritis is one of the most common and severe complications of systemic lupus erythematosus and is also a major predictor of poor prognosis and mortality. Lupus nephritis has the characteristics of insidious onset, complex pathological types, rapid progression of organ damage, and easy recurrence. Currently, kidney damage in lupus nephritis is usually assessed based on urine analysis, renal biopsy, and glomerular filtration rates. However, they all have certain limitations, making it difficult to diagnose lupus nephritis early and assess its severity and progression. With the rapid development of functional magnetic resonance, multiple functional imaging techniques are expected to provide more useful information for the pathophysiological development, early diagnosis, progression, prognosis, and renal function evaluation of lupus nephritis. This article reviews the principle of multiple functional magnetic resonance imaging and the research status of evaluating renal function in lupus nephritis.
Collapse
Affiliation(s)
- Shuangjiao Liu
- Department of Radiology, YueYang Central Hospital, Yueyang, China
| | - Wenming Zhou
- Department of Radiology, YueYang Central Hospital, Yueyang, China
| |
Collapse
|
4
|
Albayrak E, Akbas MG. Diagnostic Efficacy of Renal 2-D Shear Wave Elastography in Familial Mediterranean Fever Disease. Ultrasound Q 2023; 39:171-178. [PMID: 36943738 DOI: 10.1097/ruq.0000000000000640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
ABSTRACT The aims of this study were to evaluate the kidneys of patients with familial Mediterranean fever (FMF) noninvasively and quantitatively using 2-D shear wave elastography (SWE) and to reveal the diagnostic efficacy of SWE in FMF-induced renal involvement. Healthy controls, FMF patients, and FMF patients with proteinuria were included in the study, and differences in renal stiffness values between the groups were examined. In addition, a relationship between age, sex, height, weight, body mass index, serum erythrocyte sedimentation rate, C-reactive protein, glomerular filtration rate, and renal stiffness values was evaluated. A total of 120 subjects, including 60 controls, 41 FMF patients without proteinuria, and 19 FMF patients with proteinuria, were enrolled in the study. Renal stiffness values were found to be significantly higher in the group with FMF compared with the control group. In addition, the values in the proteinuria group were higher than both the control group and FMF patients without proteinuria ( P < 0.001). A significant positive correlation was found between the renal stiffness value and C-reactive protein. According to receiver operating characteristic analysis, the mean renal stiffness value was 7.905 kPa or greater to determine FMF-induced proteinuria. The current study shows that renal stiffness values were higher in FMF patients compared with the normal population and the values showed further increase in the presence of proteinuria, which indicates a more advanced stage of renal involvement of the disease. These findings reveal that SWE can be used as a noninvasive diagnostic tool in the diagnosis, follow-up, and evaluating the severity of FMF.
Collapse
Affiliation(s)
- Eda Albayrak
- Department of Radiology, Tokat Gaziosmanpasa University, Medical Faculty, Tokat, Turkey
| | | |
Collapse
|
5
|
Gilani N, Mikheev A, Brinkmann IM, Basukala D, Benkert T, Kumbella M, Babb JS, Chandarana H, Sigmund EE. Characterization of motion dependent magnetic field inhomogeneity for DWI in the kidneys. Magn Reson Imaging 2023; 100:93-101. [PMID: 36924807 PMCID: PMC10108090 DOI: 10.1016/j.mri.2023.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Diffusion-weighted imaging (DWI) of the abdomen has increased dramatically for both research and clinical purposes. Motion and static field inhomogeneity related challenges limit image quality of abdominopelvic imaging with the most conventional echo-planar imaging (EPI) pulse sequence. While reversed phase encoded imaging is increasingly used to facilitate distortion correction, it typically assumes one motion independent magnetic field distribution. In this study, we describe a more generalized workflow for the case of kidney DWI in which the field inhomogeneity at multiple respiratory phases is mapped and used to correct all images in a multi-contrast DWI series. METHODS In this HIPAA-compliant and IRB-approved prospective study, 8 volunteers (6 M, ages 28-51) had abdominal imaging performed in a 3 T MRI system (MAGNETOM Prisma; Siemens Healthcare, Erlangen, Germany) with ECG gating. Coronal oblique T2-weighted HASTE images were collected for anatomical reference. Sagittal phase-contrast (PC) MRI images through the left renal artery were collected to determine systolic and diastolic phases. Cardiac triggered oblique coronal DWI were collected at 10 b-values between 0 and 800 s/mm2 and 12 directions. DWI series were distortion corrected using field maps generated by forward and reversed phase encoded b = 0 images collected over the full respiratory cycle and matched by respiratory phase. Morphologic accuracy, intraseries spatial variability, and diffusion tensor imaging (DTI) metrics mean diffusivity (MD) and fractional anisotropy (FA) were compared for results generated with no distortion correction, correction with only one respiratory bin, and correction with multiple respiratory bins across the breathing cycle. RESULTS Computed field maps showed significant variation in static field with kidney laterality, region, and respiratory phase. Distortion corrected images showed significantly better registration to morphologic images than uncorrected images; for the left kidney, the multiple bin correction outperformed one bin correction. Line profile analysis showed significantly reduced spatial variation with multiple bins than one bin correction. DTI metrics were mostly similar between correction methods, with some differences observed in MD between uncorrected and corrected datasets. CONCLUSIONS Our results indicate improved morphology of kidney DWI and derived parametric maps as well as reduced variability over the full image series using the motion-resolved distortion correction. This work highlights some morphologic and quantitative metric improvements can be obtained for kidney DWI when distortion correction is performed in a respiratory-resolved manner.
Collapse
Affiliation(s)
- Nima Gilani
- Center for Advanced Imaging and Innovation (CAI(2)R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, USA.
| | - Artem Mikheev
- Center for Advanced Imaging and Innovation (CAI(2)R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, USA
| | | | - Dibash Basukala
- Center for Advanced Imaging and Innovation (CAI(2)R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, USA
| | | | - Malika Kumbella
- Center for Advanced Imaging and Innovation (CAI(2)R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, USA
| | - James S Babb
- Center for Advanced Imaging and Innovation (CAI(2)R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging and Innovation (CAI(2)R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, USA
| | - Eric E Sigmund
- Center for Advanced Imaging and Innovation (CAI(2)R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, USA.
| |
Collapse
|
6
|
Sigmund EE, Mikheev A, Brinkmann IM, Gilani N, Babb JS, Basukala D, Benkert T, Veraart J, Chandarana H. Cardiac Phase and Flow Compensation Effects on REnal Flow and Microstructure AnisotroPy MRI in Healthy Human Kidney. J Magn Reson Imaging 2023; 58:210-220. [PMID: 36399101 PMCID: PMC10192459 DOI: 10.1002/jmri.28517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal diffusion-weighted imaging (DWI) involves microstructure and microcirculation, quantified with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM), and hybrid models. A better understanding of their contrast may increase specificity. PURPOSE To measure modulation of DWI with cardiac phase and flow-compensated (FC) diffusion gradient waveforms. STUDY TYPE Prospective. POPULATION Six healthy volunteers (ages: 22-48 years, five females), water phantom. FIELD STRENGTH/SEQUENCE 3-T, prototype DWI sequence with 2D echo-planar imaging, and bipolar (BP) or FC gradients. 2D Half-Fourier Single-shot Turbo-spin-Echo (HASTE). Multiple-phase 2D spoiled gradient-echo phase contrast (PC) MRI. ASSESSMENT BP and FC water signal decays were qualitatively compared. Renal arteries and velocities were visualized on PC-MRI. Systolic (peak velocity), diastolic (end stable velocity), and pre-systolic (before peak velocity) phases were identified. Following mutual information-based retrospective self-registration of DWI within each kidney, and Marchenko-Pastur Principal Component Analysis (MPPCA) denoising, combined IVIM-DTI analysis estimated mean diffusivity (MD), fractional anisotropy (FA), and eigenvalues (λi) from tissue diffusivity (Dt ), perfusion fraction (fp ), and pseudodiffusivity (Dp , Dp,axial , Dp,radial ), for each tissue (cortex/medulla, segmented on b0/FA respectively), phase, and waveform (BP, FC). Monte Carlo water diffusion simulations aided data interpretation. STATISTICAL TESTS Mixed model regression probed differences between tissue types and pulse sequences. Univariate general linear model analysis probed variations among cardiac phases. Spearman correlations were measured between diffusion metrics and renal artery velocities. Statistical significance level was set at P < 0.05. RESULTS Water BP and FC signal decays showed no differences. Significant pulse sequence dependence occurred for λ1 , λ3 , FA, Dp , fp , Dp,axial , Dp,radial in cortex and medulla, and medullary λ2 . Significant cortex/medulla differences occurred with BP for all metrics except MD (systole [P = 0.224]; diastole [P = 0.556]). Significant phase dependence occurred for Dp , Dp,axial , Dp,radial for BP and medullary λ1 , λ2 , λ3 , MD for FC. FA correlated significantly with velocity. Monte Carlo simulations indicated medullary measurements were consistent with a 34 μm tubule diameter. DATA CONCLUSION Cardiac gating and flow compensation modulate of measurements of renal diffusion. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Eric E Sigmund
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Artem Mikheev
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | | | - Nima Gilani
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - James S Babb
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Dibash Basukala
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Thomas Benkert
- Siemens Medical Solutions USA Inc., Malvern, Pennsylvania, USA
| | - Jelle Veraart
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| |
Collapse
|
7
|
Liu Q, Xu Z, Zhao K, Hoge WS, Zhang X, Mei Y, Lu Q, Niendorf T, Feng Y. Diffusion-weighted magnetic resonance imaging in rat kidney using two-dimensional navigated, interleaved echo-planar imaging at 7.0 T. NMR IN BIOMEDICINE 2022; 35:e4652. [PMID: 34820933 DOI: 10.1002/nbm.4652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to investigate the feasibility of two-dimensional (2D) navigated, interleaved multishot echo-planar imaging (EPI) to enhance kidney diffusion-weighted imaging (DWI) in rats at 7.0 T. Fully sampled interleaved four-shot EPI with 2D navigators was tailored for kidney DWI (Sprague-Dawley rats, n = 7) on a 7.0-T small bore preclinical scanner. The image quality of four-shot EPI was compared with T2 -weighted rapid acquisition with relaxation enhancement (RARE) (reference) and single-shot EPI (ss-EPI) without and with parallel imaging (PI). The contrast-to-noise ratio (CNR) was examined to assess the image quality for the EPI approaches. The Dice similarity coefficient and the Hausdorff distance were used for evaluation of image distortion. Mean diffusivity (MD) and fractional anisotropy (FA) were calculated for renal cortex and medulla for all DWI approaches. The corticomedullary difference of MD and FA were assessed by Wilcoxon signed-rank test. Four-shot EPI showed the highest CNR among the three EPI variants and lowest geometric distortion versus T2 -weighted RARE (mean Dice: 0.77 for ss-EPI without PI, 0.88 for ss-EPI with twofold undersampling, and 0.92 for four-shot EPI). The FA map derived from four-shot EPI clearly identified a highly anisotropic region corresponding to the inner stripe of the outer medulla. Four-shot EPI successfully discerned differences in both MD and FA between renal cortex and medulla. In conclusion, 2D navigated, interleaved multishot EPI facilitates high-quality rat kidney DWI with clearly depicted intralayer and interlayer structure and substantially reduced image distortion. This approach enables the anatomic integrity of DWI-MRI in small rodents and has the potential to benefit the characterization of renal microstructure in preclinical studies.
Collapse
Affiliation(s)
- Qiang Liu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Zhongbiao Xu
- Department of Radiation Oncology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kaixuan Zhao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xinyuan Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Yingjie Mei
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Qiqi Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Borrelli P, Zacchia M, Cavaliere C, Basso L, Salvatore M, Capasso G, Aiello M. Diffusion tensor imaging for the study of early renal dysfunction in patients affected by bardet-biedl syndrome. Sci Rep 2021; 11:20855. [PMID: 34675323 PMCID: PMC8531379 DOI: 10.1038/s41598-021-00394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Kidney structural abnormalities are common features of Bardet-Biedl syndrome (BBS) patients that lead to a progressive decline in renal function. Magnetic resonance diffusion tensor imaging (DTI) provides useful information on renal microstructures but it has not been applied to these patients. This study investigated using DTI to detect renal abnormalities in BBS patients with no overt renal dysfunction. Ten BBS subjects with estimated glomerular filtration rates over 60 ml/min/1.73m2 and 14 individuals matched for age, gender, body mass index and renal function were subjected to high-field DTI. Fractional anisotropy (FA), and mean, radial and axial diffusivity were evaluated from renal cortex and medulla. Moreover, the corticomedullary differentiation of each DTI parameter was compared between groups. Only cortical FA statistically differed between BBS patients and controls (p = 0.033), but all the medullary DTI parameters discriminated between the two groups with lower FA (p < 0.001) and axial diffusivity (p = 0.021) and higher mean diffusivity (p = 0.043) and radial diffusivity (p < 0.001) in BBS patients compared with controls. Corticomedullary differentiation values were significantly reduced in BBS patients. Thus, DTI is a valuable tool for investigating microstructural alterations in renal disorders when kidney functionality is preserved.
Collapse
Affiliation(s)
| | - Miriam Zacchia
- Department of Medical and Translational Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | | | - Luca Basso
- IRCCS SDN, Via Emanuele Gianturco 113, 80131, Naples, Italy
| | | | - Giovambattista Capasso
- Department of Medical and Translational Sciences, University of Campania L. Vanvitelli, Naples, Italy.,Biogem, Research Institute for Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Marco Aiello
- IRCCS SDN, Via Emanuele Gianturco 113, 80131, Naples, Italy
| |
Collapse
|
9
|
Hernando D, Zhang Y, Pirasteh A. Quantitative diffusion MRI of the abdomen and pelvis. Med Phys 2021; 49:2774-2793. [PMID: 34554579 DOI: 10.1002/mp.15246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Diffusion MRI has enormous potential and utility in the evaluation of various abdominal and pelvic disease processes including cancer and noncancer imaging of the liver, prostate, and other organs. Quantitative diffusion MRI is based on acquisitions with multiple diffusion encodings followed by quantitative mapping of diffusion parameters that are sensitive to tissue microstructure. Compared to qualitative diffusion-weighted MRI, quantitative diffusion MRI can improve standardization of tissue characterization as needed for disease detection, staging, and treatment monitoring. However, similar to many other quantitative MRI methods, diffusion MRI faces multiple challenges including acquisition artifacts, signal modeling limitations, and biological variability. In abdominal and pelvic diffusion MRI, technical acquisition challenges include physiologic motion (respiratory, peristaltic, and pulsatile), image distortions, and low signal-to-noise ratio. If unaddressed, these challenges lead to poor technical performance (bias and precision) and clinical outcomes of quantitative diffusion MRI. Emerging and novel technical developments seek to address these challenges and may enable reliable quantitative diffusion MRI of the abdomen and pelvis. Through systematic validation in phantoms, volunteers, and patients, including multicenter studies to assess reproducibility, these emerging techniques may finally demonstrate the potential of quantitative diffusion MRI for abdominal and pelvic imaging applications.
Collapse
Affiliation(s)
- Diego Hernando
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuxin Zhang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ali Pirasteh
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Lim WTH, Ooi EH, Foo JJ, Ng KH, Wong JHD, Leong SS. Shear Wave Elastography: A Review on the Confounding Factors and Their Potential Mitigation in Detecting Chronic Kidney Disease. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2033-2047. [PMID: 33958257 DOI: 10.1016/j.ultrasmedbio.2021.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Early detection of chronic kidney disease is important to prevent progression of irreversible kidney damage, reducing the need for renal transplantation. Shear wave elastography is ideal as a quantitative imaging modality to detect chronic kidney disease because of its non-invasive nature, low cost and portability, making it highly accessible. However, the complexity of the kidney architecture and its tissue properties give rise to various confounding factors that affect the reliability of shear wave elastography in detecting chronic kidney disease, thus limiting its application to clinical trials. The objective of this review is to highlight the confounding factors presented by the complex properties of the kidney, in addition to outlining potential mitigation strategies, along with the prospect of increasing the versatility and reliability of shear wave elastography in detecting chronic kidney disease.
Collapse
Affiliation(s)
- William T H Lim
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Ean H Ooi
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia.
| | - Ji J Foo
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Kwan H Ng
- Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Jeannie H D Wong
- Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia; University of Malaya Research Imaging Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Sook S Leong
- Department of Biomedical Imaging, University of Malaya, Kuala Lumpur, Malaysia; Department of Biomedical Imaging, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Nassar MK, Khedr D, Abu-Elfadl HG, E Abdulgalil A, Abdalbary M, Moustafa FEH, Sayed Ahmed N, Shemies RS. Diffusion Tensor Imaging in early prediction of renal fibrosis in patients with renal disease: Functional and histopathological correlations. Int J Clin Pract 2021; 75:e13918. [PMID: 33295069 DOI: 10.1111/ijcp.13918] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
AIM Renal fibrosis (RF) is a well-known marker of chronic kidney disease (CKD) progression. However, renal biopsy is an available tool for evaluation of RF, non-invasive tools are needed not only to detect but also to monitor the progression of fibrosis. The aim of this study is to evaluate the role of diffusion tensor imaging (DTI) in the assessment of renal dysfunction and RF in patients with renal disease. METHODS Fifty-six patients with renal disorders and 22 healthy controls were recruited. All participants underwent DTI. Renal biopsy was performed for all patients. Mean renal medullary and cortical fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were compared between patients and healthy controls and correlated to serum creatinine (SCr), estimated glomerular filtration rate (eGFR), 24-h urinary protein (24h-UPRO) and renal histopathological scores. RESULTS Cortical FA values were significantly higher (P = .001), while cortical ADC values were significantly lower in the patients' group (P = .002). Cortical FA values positively correlated to SCr (P = .006) and negatively correlated to eGFR (P = .03), while cortical ADC negatively correlated to percentage of sclerotic glomeruli, atrophic tubules and interstitial fibrosis (P = .001 for all variables). Medullary ADC negatively correlated to tubular atrophy (P = .02). The diagnostic performance of DTI for detecting RF was supported by ROC curve. Multiple linear regression analysis revealed that the mean cortex ADC was significantly decreased by 0.199 mg/dL for patients with >50% glomerulosclerosis in renal biopsy. CONCLUSION DTI appears to represent a valuable tool for the non-invasive assessment of renal dysfunction and renal fibrosis.
Collapse
Affiliation(s)
- Mohammed K Nassar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Doaa Khedr
- Department of diagnostic radiology, Mansoura University, Mansoura, Egypt
| | - Hend G Abu-Elfadl
- Department of diagnostic radiology, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdulgalil
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | | | - Nagy Sayed Ahmed
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Rasha S Shemies
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Morozov D, Parvin N, Charlton JR, Bennett KM. Mapping kidney tubule diameter ex vivo by diffusion MRI. Am J Physiol Renal Physiol 2021; 320:F934-F946. [PMID: 33719573 DOI: 10.1152/ajprenal.00369.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tubular pathologies are a common feature of kidney disease. Current metrics to assess kidney health, in vivo or in transplant, are generally based on urinary or serum biomarkers and pathological findings from kidney biopsies. Biopsies, usually taken from the kidney cortex, are invasive and prone to sampling error. Tools to directly and noninvasively measure tubular pathology could provide a new approach to assess kidney health. This study used diffusion magnetic resonance imaging (dMRI) as a noninvasive tool to measure the size of the tubular lumen in ex vivo, perfused kidneys. We first used Monte Carlo simulations to demonstrate that dMRI is sensitive to restricted tissue water diffusion at the scale of the kidney tubule. We applied dMRI and biophysical modeling to examine the distribution of tubular diameters in ex vivo, fixed kidneys from mice, rats, and a human donor. The biophysical model to fit the dMRI signal was based on a superposition of freely diffusing water and water diffusing inside infinitely long cylinders of different diameters. Tubular diameters measured by dMRI were within 10% of those measured by histology within the same tissue. Finally, we applied dMRI to investigate kidney pathology in a mouse model of folic-acid-induced acute kidney injury. dMRI detected heterogeneity in the distribution of tubules within the kidney cortex of mice with acute kidney injury compared with control mice. We conclude that dMRI can be used to measure the distribution of tubule diameters in the kidney cortex ex vivo and that dMRI may provide a new noninvasive biomarker of tubular pathology.NEW & NOTEWORTHY Tubular pathologies are a common feature of kidney disease. Current metrics to assess kidney health, in vivo or in transplant, are generally based on urinary or serum biomarkers and pathological findings from kidney biopsies. Diffusion MRI can be used to measure the distribution of tubule diameters in the kidney cortex ex vivo and may provide a new noninvasive biomarker of tubular pathology.
Collapse
Affiliation(s)
- Darya Morozov
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Neda Parvin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Kevin M Bennett
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
13
|
Lim RP, Lim JC, Teruel JR, Botterill E, Seah JM, Farquharson S, Ekinci EI, Sigmund EE. Geometric Distortion Correction of Renal Diffusion Tensor Imaging Using the Reversed Gradient Method. J Comput Assist Tomogr 2021; 45:218-223. [PMID: 33661149 PMCID: PMC8194095 DOI: 10.1097/rct.0000000000001124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT Renal echo planar diffusion tensor imaging (DTI) has clinical potential but suffers from geometric distortion. We evaluated feasibility of reversed gradient distortion correction in 10 diabetic patients and 6 volunteers. Renal area, apparent diffusion coefficient, fractional anisotropy, and tensor eigenvalues were measured on uncorrected and distortion-corrected DTI. Corrected DTI correlated better than uncorrected DTI (r = 0.904 vs 0.840, P = 0.002) with reference anatomic T2-weighted imaging, with no significant difference in DTI metrics.
Collapse
Affiliation(s)
- Ruth P. Lim
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
- Department of Medicine, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Jeremy C. Lim
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Jose R. Teruel
- Department of Radiation Oncology, NYU Langone Health, New York, NY
| | - Elissa Botterill
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Jas-mine Seah
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Shawna Farquharson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Elif I. Ekinci
- Austin Health, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
- Department of Medicine, Radiology and Surgery, The University of Melbourne, Melbourne, Australia
| | - Eric E. Sigmund
- Department of Radiology, NYU Langone Medical Center, New York, NY
| |
Collapse
|
14
|
Coll-Font J, Afacan O, Hoge S, Garg H, Shashi K, Marami B, Gholipour A, Chow J, Warfield S, Kurugol S. Retrospective Distortion and Motion Correction for Free-Breathing DW-MRI of the Kidneys Using Dual-Echo EPI and Slice-to-Volume Registration. J Magn Reson Imaging 2021; 53:1432-1443. [PMID: 33382173 DOI: 10.1002/jmri.27473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diffusion-weighted MRI (DW-MRI) of the kidneys is a technique that provides information about the microstructure of renal tissue without requiring exogenous contrasts such as gadolinium, and it can be used for diagnosis in cases of renal disease and assessing response-to-therapy. However, physiological motion and large geometric distortions due to main B0 field inhomogeneities degrade the image quality, reduce the accuracy of quantitative imaging markers, and impede their subsequent clinical applicability. PURPOSE To retrospectively correct for geometric distortion for free-breathing DW-MRI of the kidneys at 3T, in the presence of a nonstatic distortion field due to breathing and bulk motion. STUDY TYPE Prospective. SUBJECTS Ten healthy volunteers (ages 29-38, four females). FIELD STRENGTH/SEQUENCE 3T; DW-MR dual-echo echo-planar imaging (EPI) sequence (10 b-values and 17 directions) and a T2 volume. ASSESSMENT The distortion correction was evaluated subjectively (Likert scale 0-5) and numerically with cross-correlation between the DW images at b = 0 s/mm2 and a T2 volume. The intravoxel incoherent motion (IVIM) and diffusion tensor (DTI) model-fitting performance was evaluated using the root-mean-squared error (nRMSE) and the coefficient of variation (CV%) of their parameters. STATISTICAL TESTS Statistical comparisons were done using Wilcoxon tests. RESULTS The proposed method improved the Likert scores by 1.1 ± 0.8 (P < 0.05), the cross-correlation with the T2 reference image by 0.13 ± 0.05 (P < 0.05), and reduced the nRMSE by 0.13 ± 0.03 (P < 0.05) and 0.23 ± 0.06 (P < 0.05) for IVIM and DTI, respectively. The CV% of the IVIM parameters (slow and fast diffusion, and diffusion fraction for IVIM and mean diffusivity, and fractional anisotropy for DTI) was reduced by 2.26 ± 3.98% (P = 6.971 × 10-2 ), 11.24 ± 26.26% (P = 6.971 × 10-2 ), 4.12 ± 12.91% (P = 0.101), 3.22 ± 0.55% (P < 0.05), and 2.42 ± 1.15% (P < 0.05). DATA CONCLUSION The results indicate that the proposed Di + MoCo method can effectively correct for time-varying geometric distortions and for misalignments due to breathing motion. Consequently, the image quality and precision of the DW-MRI model parameters improved. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jaume Coll-Font
- Cardiovascular Research Center, Cardiology, Massachusetts General Hospital, 149 13th St, Charlestown, United States, 02129, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Onur Afacan
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Scott Hoge
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Harsha Garg
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kumar Shashi
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bahram Marami
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ali Gholipour
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jeanne Chow
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Simon Warfield
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sila Kurugol
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|