1
|
Wetselaar-Glas MJM, Voortman NEF, van Mechelen PH, Wetselaar P, Langerak R. Estimating the costs and analysing the precision of several diagnostic and treatment approaches for obstructive sleep apnea patients in the Netherlands, using timed automata modelling. Comput Biol Med 2025; 189:109910. [PMID: 40031107 DOI: 10.1016/j.compbiomed.2025.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/22/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Obstructive Sleep Apnea (OSA) is a (highly) prevalent medical condition, linked to severe negative health consequences. In the Netherlands, diagnosis of OSA presently has long waiting times and both diagnosis and treatment have high costs. This article introduces a so-called timed automata model (UPPAAL tool) for analysing diagnostic and treatment approaches for OSA. This model is used for assessing the Dutch current traditional approach, as well as multiple alternative approaches for OSA diagnosis and treatment. The analysis shows that one alternative approach can lower the costs and waiting lists, while maintaining diagnostic precision. In this manuscript the best alternative approach is a combination of Oxygen Desaturation Index (ODI) measurement obtained by nocturnal pulse oximetry and a questionnaire to diagnose the patient. Of course, it is important that, although timed automata modelling is a reliable tool, these outcomes are meant to start a discussion regarding the above-mentioned problems and are not proven outcomes yet. The healthcare system in the Netherlands is in danger of becoming unaffordable. Therefore, this initial exploration has been carried out to see whether alternatives to the current OSA-care can be devised.
Collapse
Affiliation(s)
- Miranda J M Wetselaar-Glas
- Centre of Special Dental Care and Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Nander E F Voortman
- Formal Methods and Tools Group, Faculty of EEMCS, University of Twente, Enschede, the Netherlands
| | - Piet-Heijn van Mechelen
- Dutch Association of Sleep Apnea Patients (Nederlandse Vereniging Slaap Apneu Patiënten, NVSAP), the Netherlands
| | - Peter Wetselaar
- Department of Restorative and Reconstructive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rom Langerak
- Formal Methods and Tools Group, Faculty of EEMCS, University of Twente, Enschede, the Netherlands
| |
Collapse
|
2
|
Giorgi L, Nardelli D, Moffa A, Iafrati F, Di Giovanni S, Olszewska E, Baptista P, Sabatino L, Casale M. Advancements in Obstructive Sleep Apnea Diagnosis and Screening Through Artificial Intelligence: A Systematic Review. Healthcare (Basel) 2025; 13:181. [PMID: 39857208 PMCID: PMC11764519 DOI: 10.3390/healthcare13020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a prevalent yet underdiagnosed condition associated with a major healthcare burden. Current diagnostic tools, such as full-night polysomnography (PSG), pose a limited accessibility to diagnosis due to their elevated costs. Recent advances in Artificial Intelligence (AI), including Machine Learning (ML) and deep learning (DL) algorithms, offer novel potential tools for an accurate OSA screening and diagnosis. This systematic review evaluates articles employing AI-powered models for OSA screening and diagnosis in the last decade. METHODS A comprehensive electronic search was performed on PubMed/MEDLINE, Google Scholar, and SCOPUS databases. The included studies were original articles written in English, reporting the use of ML algorithms to diagnose and predict OSA in suspected patients. The last search was performed in June 2024. This systematic review is registered in PROSPERO (Registration ID: CRD42024563059). RESULTS Sixty-five articles, involving data from 109,046 patients, met the inclusion criteria. Due to the heterogeneity of the algorithms, outcomes were analyzed into six sections (anthropometric indexes, imaging, electrocardiographic signals, respiratory signals, and oximetry and miscellaneous signals). AI algorithms demonstrated significant improvements in OSA detection, with accuracy, sensitivity, and specificity often exceeding traditional tools. In particular, anthropometric indexes were most widely used, especially in logistic regression-powered algorithms. CONCLUSIONS The application of AI algorithms to OSA diagnosis and screening has great potential to improve patient outcomes, increase early detection, and lessen the load on healthcare systems. However, rigorous validation and standardization efforts must be made to standardize datasets.
Collapse
Affiliation(s)
- Lucrezia Giorgi
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
| | - Domiziana Nardelli
- School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Antonio Moffa
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
- School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Francesco Iafrati
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
- School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Simone Di Giovanni
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
- School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Ewa Olszewska
- Department of Otolaryngology, Sleep Apnea Surgery Center, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Peter Baptista
- ENT Department, Al Zahra Private Hospital Dubai, Dubai 23614, United Arab Emirates;
| | - Lorenzo Sabatino
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
| | - Manuele Casale
- Integrated Therapies in Otolaryngology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.G.); (F.I.); (S.D.G.); (L.S.); (M.C.)
- School of Medicine, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| |
Collapse
|
3
|
Saravanan A, Sree SR, Reddy MS, Pv E, Karthik K, Cheeli AK, Hasan N. Thermal performance prediction of a V-trough solar water heater with a modified twisted tape using ANFIS, G.L.R., R.T. and SVM models of machine learning. Sci Rep 2024; 14:27206. [PMID: 39516194 PMCID: PMC11549489 DOI: 10.1038/s41598-024-75907-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Four distinct neural models were used to evaluate the efficiency of a V-trough solar water heater (VTSWH) equipped with square-cut twisted tape (SCTT) and V-cut twisted tape (VCTT) at two different twist ratios, 3 and 5. The objective of this study was the use of ANFIS (Adaptive Neuro-Fuzzy Inference System), G.L.R. (Generalised linear regression), R.T. (Regression tree), and SVM (Support Vector Machine). A total of 162 data sets were acquired for these models through a variety of trials. Outdoor experiments were done using a twist ratio of Y = 3 and Y = 5, using both SCTT and VCTT. The models included eight distinct variables: ambient temperature, water mass flow rate, water intake temperature, water exit temperature, absorber plate temperature, tube temperature, solar intensity, and twist ratio. The dependent variables in this study are the Nusselt number (Nu), friction factor (FF), and efficiency (η). 130 datasets were chosen for training purposes, while 32 were used for testing. Using the ANFIS, G.L.R., R.T., and SVM techniques, the correlation coefficient (R2) values for Nusselt number were 0.9990, 0.9961, 0.9562, and 0.9280 for friction factor 0.9966, 0.9683, 0.9810, and 0.9560, and for efficiency 0.9997, 0.9976, 0.9845, and 0.9614, respectively. Comparing all models shows that ANFIS is the most effective of the four strategies studied. The ANFIS model outperformed the other models regarding Nu, FF, and η, with RMSE values of 0.0805, 0.0.0004, and 0.4534. According to the above data, the VTSWH thermal performance predicted using the ANFIS approach has the highest accuracy.
Collapse
Affiliation(s)
- A Saravanan
- Department of Mechanical Engineering, Aditya University, Surampalem, 533 437, Andhra Pradesh, India.
| | - S Rama Sree
- Department of Computer Science and Engineering, Aditya University, Surampalem, 533 437, India
| | - M Sreenivasa Reddy
- Department of Mechanical Engineering, Aditya University, Surampalem, 533 437, Andhra Pradesh, India
| | - Elumalai Pv
- Department of Mechanical Engineering, Aditya University, Surampalem, 533 437, Andhra Pradesh, India
| | - Krishnasamy Karthik
- Deparment of Mechanical Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 600 062, India
| | - Ashok Kumar Cheeli
- Department of Electronics and Communication Engineering, MLR Institute of Technology, Hyderbad, India
| | - Nasim Hasan
- Department of Mechanical Engineering, Mettu University, Metu, Ethiopia.
| |
Collapse
|
4
|
Abu K, Khraiche ML, Amatoury J. Obstructive sleep apnea diagnosis and beyond using portable monitors. Sleep Med 2024; 113:260-274. [PMID: 38070375 DOI: 10.1016/j.sleep.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Obstructive sleep apnea (OSA) is a chronic sleep and breathing disorder with significant health complications, including cardiovascular disease and neurocognitive impairments. To ensure timely treatment, there is a need for a portable, accurate and rapid method of diagnosing OSA. This review examines the use of various physiological signals used in the detection of respiratory events and evaluates their effectiveness in portable monitors (PM) relative to gold standard polysomnography. The primary objective is to explore the relationship between these physiological parameters and OSA, their application in calculating the apnea hypopnea index (AHI), the standard metric for OSA diagnosis, and the derivation of non-AHI metrics that offer additional diagnostic value. It is found that increasing the number of parameters in PMs does not necessarily improve OSA detection. Several factors can cause performance variations among different PMs, even if they extract similar signals. The review also highlights the potential of PMs to be used beyond OSA diagnosis. These devices possess parameters that can be utilized to obtain endotypic and other non-AHI metrics, enabling improved characterization of the disorder and personalized treatment strategies. Advancements in PM technology, coupled with thorough evaluation and validation of these devices, have the potential to revolutionize OSA diagnosis, personalized treatment, and ultimately improve health outcomes for patients with OSA. By identifying the key factors influencing performance and exploring the application of PMs beyond OSA diagnosis, this review aims to contribute to the ongoing development and utilization of portable, efficient, and effective diagnostic tools for OSA.
Collapse
Affiliation(s)
- Kareem Abu
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture (MSFEA), American University of Beirut, Beirut, Lebanon; Neural Engineering and Nanobiosensors Group, American University of Beirut, Beirut, Lebanon; Sleep and Upper Airway Research Group (SUARG), American University of Beirut, Beirut, Lebanon
| | - Massoud L Khraiche
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture (MSFEA), American University of Beirut, Beirut, Lebanon; Neural Engineering and Nanobiosensors Group, American University of Beirut, Beirut, Lebanon
| | - Jason Amatoury
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture (MSFEA), American University of Beirut, Beirut, Lebanon; Sleep and Upper Airway Research Group (SUARG), American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
5
|
Bazoukis G, Bollepalli SC, Chung CT, Li X, Tse G, Bartley BL, Batool-Anwar S, Quan SF, Armoundas AA. Application of artificial intelligence in the diagnosis of sleep apnea. J Clin Sleep Med 2023; 19:1337-1363. [PMID: 36856067 PMCID: PMC10315608 DOI: 10.5664/jcsm.10532] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
STUDY OBJECTIVES Machine learning (ML) models have been employed in the setting of sleep disorders. This review aims to summarize the existing data about the role of ML techniques in the diagnosis, classification, and treatment of sleep-related breathing disorders. METHODS A systematic search in Medline, EMBASE, and Cochrane databases through January 2022 was performed. RESULTS Our search strategy revealed 132 studies that were included in the systematic review. Existing data show that ML models have been successfully used for diagnostic purposes. Specifically, ML models showed good performance in diagnosing sleep apnea using easily obtained features from the electrocardiogram, pulse oximetry, and sound signals. Similarly, ML showed good performance for the classification of sleep apnea into obstructive and central categories, as well as predicting apnea severity. Existing data show promising results for the ML-based guided treatment of sleep apnea. Specifically, the prediction of outcomes following surgical treatment and optimization of continuous positive airway pressure therapy can be guided by ML models. CONCLUSIONS The adoption and implementation of ML in the field of sleep-related breathing disorders is promising. Advancements in wearable sensor technology and ML models can help clinicians predict, diagnose, and classify sleep apnea more accurately and efficiently. CITATION Bazoukis G, Bollepalli SC, Chung CT, et al. Application of artificial intelligence in the diagnosis of sleep apnea. J Clin Sleep Med. 2023;19(7):1337-1363.
Collapse
Affiliation(s)
- George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | | | - Cheuk To Chung
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong
| | - Xinmu Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong
- Kent and Medway Medical School, Canterbury, Kent, United Kingdom
| | - Bethany L. Bartley
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Salma Batool-Anwar
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Stuart F. Quan
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Asthma and Airway Disease Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Antonis A. Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
6
|
Varis M, Karhu T, Leppänen T, Nikkonen S. Utilizing Envelope Analysis of a Nasal Pressure Signal for Sleep Apnea Severity Estimation. Diagnostics (Basel) 2023; 13:diagnostics13101776. [PMID: 37238259 DOI: 10.3390/diagnostics13101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Obstructive sleep apnea (OSA) severity assessment is based on manually scored respiratory events and their arbitrary definitions. Thus, we present an alternative method to objectively evaluate OSA severity independently of the manual scorings and scoring rules. A retrospective envelope analysis was conducted on 847 suspected OSA patients. Four parameters were calculated from the difference between the nasal pressure signal's upper and lower envelopes: average (AV), median (MD), standard deviation (SD), and coefficient of variation (CoV). We computed the parameters from the entirety of the recorded signals to perform binary classifications of patients using three different apnea-hypopnea index (AHI) thresholds (5-15-30). Additionally, the calculations were undertaken in 30-second epochs to estimate the ability of the parameters to detect manually scored respiratory events. Classification performances were assessed with areas under the curves (AUCs). As a result, the SD (AUCs ≥ 0.86) and CoV (AUCs ≥ 0.82) were the best classifiers for all AHI thresholds. Furthermore, non-OSA and severe OSA patients were separated well with SD (AUC = 0.97) and CoV (AUC = 0.95). Respiratory events within the epochs were identified moderately with MD (AUC = 0.76) and CoV (AUC = 0.82). In conclusion, envelope analysis is a promising alternative method by which to assess OSA severity without relying on manual scoring or the scoring rules of respiratory events.
Collapse
Affiliation(s)
- Mikke Varis
- Department of Technical Physics, University of Eastern Finland, Canthia, P.O. Box 1627, FI-70211 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Tuomas Karhu
- Department of Technical Physics, University of Eastern Finland, Canthia, P.O. Box 1627, FI-70211 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, FI-70210 Kuopio, Finland
| | - Timo Leppänen
- Department of Technical Physics, University of Eastern Finland, Canthia, P.O. Box 1627, FI-70211 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, FI-70210 Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sami Nikkonen
- Department of Technical Physics, University of Eastern Finland, Canthia, P.O. Box 1627, FI-70211 Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, FI-70210 Kuopio, Finland
| |
Collapse
|
7
|
Zhang G, Luo L, Zhang L, Liu Z. Research Progress of Respiratory Disease and Idiopathic Pulmonary Fibrosis Based on Artificial Intelligence. Diagnostics (Basel) 2023; 13:diagnostics13030357. [PMID: 36766460 PMCID: PMC9914063 DOI: 10.3390/diagnostics13030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Machine Learning (ML) is an algorithm based on big data, which learns patterns from the previously observed data through classifying, predicting, and optimizing to accomplish specific tasks. In recent years, there has been rapid development in the field of ML in medicine, including lung imaging analysis, intensive medical monitoring, mechanical ventilation, and there is need for intubation etiology prediction evaluation, pulmonary function evaluation and prediction, obstructive sleep apnea, such as biological information monitoring and so on. ML can have good performance and is a great potential tool, especially in the imaging diagnosis of interstitial lung disease. Idiopathic pulmonary fibrosis (IPF) is a major problem in the treatment of respiratory diseases, due to the abnormal proliferation of fibroblasts, leading to lung tissue destruction. The diagnosis mainly depends on the early detection of imaging and early treatment, which can effectively prolong the life of patients. If the computer can be used to assist the examination results related to the effects of fibrosis, a timely diagnosis of such diseases will be of great value to both doctors and patients. We also previously proposed a machine learning algorithm model that can play a good clinical guiding role in early imaging prediction of idiopathic pulmonary fibrosis. At present, AI and machine learning have great potential and ability to transform many aspects of respiratory medicine and are the focus and hotspot of research. AI needs to become an invisible, seamless, and impartial auxiliary tool to help patients and doctors make better decisions in an efficient, effective, and acceptable way. The purpose of this paper is to review the current application of machine learning in various aspects of respiratory diseases, with the hope to provide some help and guidance for clinicians when applying algorithm models.
Collapse
Affiliation(s)
- Gerui Zhang
- Department of Critical Care Unit, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian 116011, China
| | - Lin Luo
- Department of Critical Care Unit, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian 116023, China
| | - Limin Zhang
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian 116011, China
| | - Zhuo Liu
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Dalian 116011, China
- Correspondence:
| |
Collapse
|
8
|
Karhu T, Leppänen T, Korkalainen H, Myllymaa S, Duce B, Töyräs J, Nikkonen S. Desaturation event scoring criteria affect the perceived severity of nocturnal hypoxic load. Sleep Med 2022; 100:479-486. [PMID: 36257201 DOI: 10.1016/j.sleep.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/02/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/BACKGROUND Interest in using blood oxygen desaturations in the diagnostics of sleep apnea has risen in recent years. However, no standardized criteria for desaturation scoring exist which complicates the drawing of solid conclusions from literature. PATIENTS/METHODS We investigated how different desaturation scoring criteria affect the severity of nocturnal hypoxic load and the prediction of impaired daytime vigilance in 845 patients. Desaturations were scored based on three features: 1) minimum oxygen saturation drop during the event (2-20%, 1% interval), 2) minimum duration of the event (2-20s, 1s interval), and 3) maximum plateau duration within the event (5-60s, 5s interval), resulting in 4332 different scoring criteria. The hypoxic load was described with oxygen desaturation index (ODI), desaturation severity (DesSev), and desaturation duration (DesDur) parameters. Association between hypoxic load and impaired vigilance was investigated with covariate-adjusted area under curve (AUC) analyses by dividing patients into normal (≤5 lapses) and impaired (≥36 lapses) vigilance groups based on psychomotor vigilance task performance. RESULTS The severity of hypoxic load varied greatly between different scoring criteria. For example, median ODI ranged between 0.4 and 12.9 events/h, DesSev 0.01-0.23 %-point, and DesDur 0.3-9.6 %-point when the minimum transient drop criterion of 3% was used and other two features were altered. Overall, the minimum transient drop criterion had the largest effect on parameter values. All models with differently determined parameters predicted impaired vigilance moderately (AUC = 0.722-0.734). CONCLUSIONS Desaturation scoring criteria greatly affected the severity of hypoxic load. However, the difference in the prediction of impaired vigilance between different criteria was rather small.
Collapse
Affiliation(s)
- Tuomas Karhu
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Timo Leppänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Henri Korkalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Sami Myllymaa
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Brett Duce
- Department of Respiratory and Sleep Medicine, Princess Alexandra Hospital, Brisbane, Australia; Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Sami Nikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
9
|
Jiménez-García J, García M, Gutiérrez-Tobal GC, Kheirandish-Gozal L, Vaquerizo-Villar F, Álvarez D, del Campo F, Gozal D, Hornero R. A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry. Comput Biol Med 2022; 147:105784. [DOI: 10.1016/j.compbiomed.2022.105784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/19/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
|
10
|
Zhang D, Ma Y, Xu J, Yi F. Association between obstructive sleep apnea (OSA) and atrial fibrillation (AF): A dose-response meta-analysis. Medicine (Baltimore) 2022; 101:e29443. [PMID: 35905270 PMCID: PMC9333485 DOI: 10.1097/md.0000000000029443] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Refractory hypoxemia episodes are characteristic of obstructive sleep apnea (OSA). Patients with OSA suffer from oxidative stress in all systems. Atrial fibrillation (AF) is a type of arrhythmia that may be induced by OSA. In this study, we explored the dose-response relationship between OSA and AF. Our research provides the basis for a novel approach to AF prevention. METHODS We screened four databases (PubMed, Embase, the Cochrane Library, and Web of Science) for observational studies on OSA and AF. Studies were collected from database establishment to November 2020. We performed a traditional subgroup meta-analysis. Linear and spline dose-response models were applied to assess the association between the apnea-hypopnea index, an indicator of OSA severity, and the risk of AF. Review Manager version 5.3 software and Stata 16.0 were used for the analysis. RESULTS Sixteen observational studies were included in the study. We excluded a study from the conventional meta-analysis. In the subgroup analysis, the odds ratios for new onset AF for no obvious reason, new onset AF after surgical operations, such as coronary artery bypass grafting, and AF after ablation treatment were 1.71 (95% CI 1.37-2.13, P < .05), 2.65 (95% CI 2.32-3.01, P < .05), and 2.93 (95% CI 2.47-3.49, P < .05), respectively. Linear dose-response meta-analysis results revealed that the risk of AF increased with increasing apnea-hypopnea index value. CONCLUSION Through dose-response meta-analysis, we found a potential dose-response relationship between OSA severity and the risk of AF. This relationship should be considered in interventions aimed at AF prevention in the future.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi’an Shaanxi, China.Supplemental Digital Content is available for this article
| | - Yibo Ma
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi’an Shaanxi, China.Supplemental Digital Content is available for this article
| | - Jian Xu
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi’an Shaanxi, China.Supplemental Digital Content is available for this article
| | - Fu Yi
- Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi’an Shaanxi, China.Supplemental Digital Content is available for this article
- *Correspondence: Fu Yi, Department of Cardiology, Xijing Hospital, The Air Force Military Medical University, Xi’an Shaanxi 710032, China (e-mail: )
| |
Collapse
|
11
|
Arnardottir ES, Islind AS, Óskarsdóttir M, Ólafsdóttir KA, August E, Jónasdóttir L, Hrubos-Strøm H, Saavedra JM, Grote L, Hedner J, Höskuldsson S, Ágústsson JS, Jóhannsdóttir KR, McNicholas WT, Pevernagie D, Sund R, Töyräs J, Leppänen T. The Sleep Revolution project: the concept and objectives. J Sleep Res 2022; 31:e13630. [PMID: 35770626 DOI: 10.1111/jsr.13630] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
Abstract
Obstructive sleep apnea is linked to severe health consequences such as hypertension, daytime sleepiness, and cardiovascular disease. Nearly a billion people are estimated to have obstructive sleep apnea with a substantial economic burden. However, the current diagnostic parameter of obstructive sleep apnea, the apnea-hypopnea index, correlates poorly with related comorbidities and symptoms. Obstructive sleep apnea severity is measured by counting respiratory events, while other physiologically relevant consequences are ignored. Furthermore, as the clinical methods for analysing polysomnographic signals are outdated, laborious, and expensive, most patients with obstructive sleep apnea remain undiagnosed. Therefore, more personalised diagnostic approaches are urgently needed. The Sleep Revolution, funded by the European Union's Horizon 2020 Research and Innovation Programme, aims to tackle these shortcomings by developing machine learning tools to better estimate obstructive sleep apnea severity and phenotypes. This allows for improved personalised treatment options, including increased patient participation. Also, implementing these tools will alleviate the costs and increase the availability of sleep studies by decreasing manual scoring labour. Finally, the project aims to design a digital platform that functions as a bridge between researchers, patients, and clinicians, with an electronic sleep diary, objective cognitive tests, and questionnaires in a mobile application. These ambitious goals will be achieved through extensive collaboration between 39 centres, including expertise from sleep medicine, computer science, and industry and by utilising tens of thousands of retrospectively and prospectively collected sleep recordings. With the commitment of the European Sleep Research Society and Assembly of National Sleep Societies, the Sleep Revolution has the unique possibility to create new standardised guidelines for sleep medicine.
Collapse
Affiliation(s)
- Erna S Arnardottir
- Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland.,Landspitali University Hospital, Reykjavik, Iceland
| | - Anna Sigridur Islind
- Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland.,Department of Computer Science, Reykjavik University, Reykjavik, Iceland
| | - María Óskarsdóttir
- Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland.,Department of Computer Science, Reykjavik University, Reykjavik, Iceland
| | | | - Elias August
- Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland.,Department of Engineering, Reykjavik University, Reykjavik, Iceland
| | - Lára Jónasdóttir
- Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland
| | - Harald Hrubos-Strøm
- Department of Otorhinolaryngology, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jose M Saavedra
- Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland.,Physical Activity, Physical Education, Sport and Health (PAPESH) Research Group, Department of Sports Science, Reykjavik University, Reykjavik, Iceland
| | - Ludger Grote
- Internal Medicine, Center for Sleep and Wake Disorders, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
| | - Jan Hedner
- Internal Medicine, Center for Sleep and Wake Disorders, University of Gothenburg Sahlgrenska Academy, Gothenburg, Sweden
| | | | | | - Kamilla Rún Jóhannsdóttir
- Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland.,Department of Psychology, Reykjavik University, Reykjavik, Iceland
| | - Walter T McNicholas
- Department of Respiratory and Sleep Medicine, St. Vincent's Hospital Group, School of Medicine, University College Dublin, Dublin, Ireland
| | - Dirk Pevernagie
- Respiratory Diseases, University Hospital Ghent, Ghent, Belgium.,Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Reijo Sund
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia.,Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Timo Leppänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | |
Collapse
|
12
|
Performance estimation of tubular solar still with a wicked rotating drum using DT, LR, and KNN techniques of machine learning. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Brennan HL, Kirby SD. Barriers of artificial intelligence implementation in the diagnosis of obstructive sleep apnea. J Otolaryngol Head Neck Surg 2022; 51:16. [PMID: 35468865 PMCID: PMC9036782 DOI: 10.1186/s40463-022-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/28/2022] [Indexed: 12/03/2022] Open
Abstract
Background Obstructive sleep apnea is a common clinical condition and has a significant impact on the health of patients if untreated. The current diagnostic gold standard for obstructive sleep apnea is polysomnography, which is labor intensive, requires specialists to utilize, expensive, and has accessibility challenges. There are also challenges with awareness and identification of obstructive sleep apnea in the primary care setting. Artificial intelligence systems offer the opportunity for a new diagnostic approach that addresses the limitations of polysomnography and ultimately benefits patients by streamlining the diagnostic expedition. Main body The purpose of this project is to elucidate the barriers that exist in the implementation of artificial intelligence systems into the diagnostic context of obstructive sleep apnea. It is essential to understand these challenges in order to proactively create solutions and establish an efficient adoption of this new technology. The literature regarding the evolution of the diagnosis of obstructive sleep apnea, the role of artificial intelligence in the diagnosis, and the barriers in artificial intelligence implementation was reviewed and analyzed. Conclusion The barriers identified were categorized into different themes including technology, data, regulation, human resources, education, and culture. Many of these challenges are ubiquitous across artificial intelligence implementation in any medical diagnostic setting. Future research directions include developing solutions to the barriers presented in this project. Graphical abstract ![]()
Collapse
Affiliation(s)
- Hannah L Brennan
- Faculty of Medicine, Memorial University of Newfoundland and Labrador, 98 Pearltown Rd, St. John's, NL, A1G 1P3, Canada.
| | - Simon D Kirby
- Faculty of Medicine, Memorial University of Newfoundland and Labrador, 98 Pearltown Rd, St. John's, NL, A1G 1P3, Canada
| |
Collapse
|
14
|
Leppänen T, Kainulainen S, Korkalainen H, Sillanmäki S, Kulkas A, Töyräs J, Nikkonen S. Pulse Oximetry: The Working Principle, Signal Formation, and Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:205-218. [PMID: 36217086 DOI: 10.1007/978-3-031-06413-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulse oximeters are routinely used in various medical-grade and consumer-grade applications. They can be used to estimate, for example, blood oxygen saturation, autonomic nervous system activity and cardiac function, blood pressure, sleep quality, and recovery through the recording of photoplethysmography signal. Medical-grade devices often record red and infra-red light-based photoplethysmography signals while smartwatches and other consumer-grade devices usually rely on a green light. At its simplest, a pulse oximeter can consist of one or two photodiodes and a photodetector attached, for example, a fingertip or earlobe. These sensors are used to record light absorption in a medium as a function of time. This time-varying absorption information is used to form a photoplethysmography signal. In this chapter, we discuss the working principles of pulse oximeters and the formation of the photoplethysmography signal. We will further discuss the advantages and disadvantages of pulse oximeters, which kind of applications exist in the medical field, and how pulse oximeters are utilized in daily health monitoring.
Collapse
Affiliation(s)
- Timo Leppänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Samu Kainulainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Henri Korkalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Saara Sillanmäki
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Kulkas
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Neurophysiology, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Sami Nikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
15
|
AIM in Respiratory Disorders. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Álvarez D, Gutiérrez-Tobal GC, Vaquerizo-Villar F, Moreno F, Del Campo F, Hornero R. Oximetry Indices in the Management of Sleep Apnea: From Overnight Minimum Saturation to the Novel Hypoxemia Measures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:219-239. [PMID: 36217087 DOI: 10.1007/978-3-031-06413-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obstructive sleep apnea (OSA) is a multidimensional disease often underdiagnosed due to the complexity and unavailability of its standard diagnostic method: the polysomnography. Among the alternative abbreviated tests searching for a compromise between simplicity and accurateness, oximetry is probably the most popular. The blood oxygen saturation (SpO2) signal is characterized by a near-constant profile in healthy subjects breathing normally, while marked drops (desaturations) are linked to respiratory events. Parameterization of the desaturations has led to a great number of indices of severity assessment commonly used to assist in OSA diagnosis. In this chapter, the main methodologies used to characterize the overnight oximetry profile are reviewed, from visual inspection and simple statistics to complex measures involving signal processing and pattern recognition techniques. We focus on the individual performance of each approach, but also on the complementarity among the great amount of indices existing in the state of the art, looking for the most relevant oximetric feature subset. Finally, a quick overview of SpO2-based deep learning applications for OSA management is carried out, where the raw oximetry signal is analyzed without previous parameterization. Our research allows us to conclude that all the methodologies (conventional, time, frequency, nonlinear, and hypoxemia-based) demonstrate high ability to provide relevant oximetric indices, but only a reduced set provide non-redundant complementary information leading to a significant performance increase. Finally, although oximetry is a robust tool, greater standardization and prospective validation of the measures derived from complex signal processing techniques are still needed to homogenize interpretation and increase generalizability.
Collapse
Affiliation(s)
- Daniel Álvarez
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain.
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain.
| | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Fernando Vaquerizo-Villar
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Fernando Moreno
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - Félix Del Campo
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| |
Collapse
|
17
|
Abstract
The authors discuss the challenges of machine- and deep learning-based automatic analysis of obstructive sleep apnea with respect to known issues with the signal interpretation, patient physiology, and the apnea-hypopnea index. Their goal is to provide guidance for sleep and machine learning professionals working in this area of sleep medicine. They suggest that machine learning approaches may well be better targeted at examining and attempting to improve the diagnostic criteria, in order to build a more nuanced understanding of the detailed circumstances surrounding OSA, rather than merely attempting to reproduce human scoring.
Collapse
Affiliation(s)
- Jacky Mallett
- Department of Computer Science, Reykjavik University, Menntavegur 1, Reykjavik 102, Iceland.
| | - Erna Sif Arnardottir
- Reykjavik University Sleep Institute, Reykjavik University, Reykjavik, Iceland; Internal Medicine Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| |
Collapse
|
18
|
Korkalainen H, Nikkonen S, Kainulainen S, Dwivedi AK, Myllymaa S, Leppänen T, Töyräs J. Self-Applied Home Sleep Recordings: The Future of Sleep Medicine. Sleep Med Clin 2021; 16:545-556. [PMID: 34711380 DOI: 10.1016/j.jsmc.2021.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleep disorders form a massive global health burden and there is an increasing need for simple and cost-efficient sleep recording devices. Recent machine learning-based approaches have already achieved scoring accuracy of sleep recordings on par with manual scoring, even with reduced recording montages. Simple and inexpensive monitoring over multiple consecutive nights with automatic analysis could be the answer to overcome the substantial economic burden caused by poor sleep and enable more efficient initial diagnosis, treatment planning, and follow-up monitoring for individuals suffering from sleep disorders.
Collapse
Affiliation(s)
- Henri Korkalainen
- Department of Applied Physics, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Sami Nikkonen
- Department of Applied Physics, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Samu Kainulainen
- Department of Applied Physics, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Amit Krishna Dwivedi
- Department of Applied Physics, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Sami Myllymaa
- Department of Applied Physics, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Timo Leppänen
- Department of Applied Physics, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, PO Box 1627, Kuopio 70211, Finland; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; Science Service Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
19
|
Leppänen T, Myllymaa S, Kulkas A, Töyräs J. Beyond the apnea-hypopnea index: alternative diagnostic parameters and machine learning solutions for estimation of sleep apnea severity. Sleep 2021; 44:zsab134. [PMID: 34515318 PMCID: PMC8436139 DOI: 10.1093/sleep/zsab134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Timo Leppänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Sami Myllymaa
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Antti Kulkas
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Neurophysiology, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
20
|
Korompili G, Amfilochiou A, Kokkalas L, Mitilineos SA, Tatlas NA, Kouvaras M, Kastanakis E, Maniou C, Potirakis SM. PSG-Audio, a scored polysomnography dataset with simultaneous audio recordings for sleep apnea studies. Sci Data 2021; 8:197. [PMID: 34344893 PMCID: PMC8333307 DOI: 10.1038/s41597-021-00977-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/17/2021] [Indexed: 11/22/2022] Open
Abstract
The sleep apnea syndrome is a chronic condition that affects the quality of life and increases the risk of severe health conditions such as cardiovascular diseases. However, the prevalence of the syndrome in the general population is considered to be heavily underestimated due to the restricted number of people seeking diagnosis, with the leading cause for this being the inconvenience of the current reference standard for apnea diagnosis: Polysomnography. To enhance patients' awareness of the syndrome, a great endeavour is conducted in the literature. Various home-based apnea detection systems are being developed, profiting from information in a restricted set of polysomnography signals. In particular, breathing sound has been proven highly effective in detecting apneic events during sleep. The development of accurate systems requires multitudinous datasets of audio recordings and polysomnograms. In this work, we provide the first open access dataset, comprising 212 polysomnograms along with synchronized high-quality tracheal and ambient microphone recordings. We envision this dataset to be widely used for the development of home-based apnea detection techniques and frameworks.
Collapse
Affiliation(s)
- Georgia Korompili
- Department of Electrical and Electronic Engineering, University of West Attica, Attica, Greece
| | - Anastasia Amfilochiou
- Sleep Study Unit, Sismanoglio - Amalia Fleming General Hospital of Athens, Athens, Greece
| | - Lampros Kokkalas
- Department of Electrical and Electronic Engineering, University of West Attica, Attica, Greece
| | - Stelios A Mitilineos
- Department of Electrical and Electronic Engineering, University of West Attica, Attica, Greece
| | | | - Marios Kouvaras
- Department of Electrical and Electronic Engineering, University of West Attica, Attica, Greece
| | - Emmanouil Kastanakis
- Sleep Study Unit, Sismanoglio - Amalia Fleming General Hospital of Athens, Athens, Greece
| | - Chrysoula Maniou
- Sleep Study Unit, Sismanoglio - Amalia Fleming General Hospital of Athens, Athens, Greece
| | - Stelios M Potirakis
- Department of Electrical and Electronic Engineering, University of West Attica, Attica, Greece.
| |
Collapse
|
21
|
Nikkonen S, Korkalainen H, Leino A, Myllymaa S, Duce B, Leppanen T, Toyras J. Automatic Respiratory Event Scoring in Obstructive Sleep Apnea Using a Long Short-Term Memory Neural Network. IEEE J Biomed Health Inform 2021; 25:2917-2927. [PMID: 33687851 DOI: 10.1109/jbhi.2021.3064694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The diagnosis of obstructive sleep apnea is based on daytime symptoms and the frequency of respiratory events during the night. The respiratory events are scored manually from polysomnographic recordings, which is time-consuming and expensive. Therefore, automatic scoring methods could considerably improve the efficiency of sleep apnea diagnostics and release the resources currently needed for manual scoring to other areas of sleep medicine. In this study, we trained a long short-term memory neural network for automatic scoring of respiratory events using input signals from peripheral blood oxygen saturation, thermistor-airflow, nasal pressure -airflow, and thorax respiratory effort. The signals were extracted from 887 in-lab polysomnography recordings. 787 patients with suspected sleep apnea were used to train the neural network and 100 patients were used as an independent test set. The epoch-wise agreement between manual and automatic neural network scoring was high (88.9%, κ = 0.728). In addition, the apnea-hypopnea index (AHI) calculated from the automated scoring was close to the manually determined AHI with a mean absolute error of 3.0 events/hour and an intraclass correlation coefficient of 0.985. The neural network approach for automatic scoring of respiratory events achieved high accuracy and good agreement with manual scoring. The presented neural network could be used for analysis of large research datasets that are unfeasible to score manually, and has potential for clinical use in the future In addition, since the neural network scores individual respiratory events, the automatic scoring can be easily reviewed manually if desired.
Collapse
|
22
|
Bricout A, Fontecave-Jallon J, Pépin JL, Guméry PY. Accelerometry-derived respiratory index estimating apnea-hypopnea index for sleep apnea screening. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 207:106209. [PMID: 34118579 DOI: 10.1016/j.cmpb.2021.106209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Sleep Apnea Syndrome (SAS) is a multimorbid chronic disease with individual and societal deleterious consequences. Polysomnography (PSG) is the multi-parametric reference diagnostic tool that allows a manual quantification of the apnea-hypopnea index (AHI) to assess SAS severity. The burden of SAS is affecting nearly one billion people worldwide explaining that SAS remains largely under-diagnosed and undertreated. The development of an easy to use and automatic solution for early detection and screening of SAS is highly desirable. METHODS We proposed an Accelerometry-Derived Respiratory index (ADR) solution based on a dual accelerometry system for airflow estimation included in a machine learning process. It calculated the AHI thanks to a RUSBoosted Tree model and used physiological and explanatory specifically developed features. The performances of this method were evaluated against a configuration using gold-standard PSG signals on a database of 28 subjects. RESULTS The AHI estimation accuracy, specificity and sensitivity of the ADR index were 89%, 100% and 80% respectively. The added value of the specifically developed features was also demonstrated. CONCLUSION Overnight physiological monitoring with the proposed ADR solution using a machine learning approach provided a clinically relevant estimate of AHI for SAS screening. The physiological component of the solution has a real interest for improving performance and facilitating physician's adhesion to an automatic AHI estimation.
Collapse
Affiliation(s)
- Aurélien Bricout
- Grenoble Alpes University, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC, Grenoble, France.
| | - Julie Fontecave-Jallon
- Grenoble Alpes University, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC, Grenoble, France
| | - Jean-Louis Pépin
- HP2 Laboratory, INSERM U1042, Grenoble Alpes University, Grenoble, France
| | - Pierre-Yves Guméry
- Grenoble Alpes University, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC, Grenoble, France.
| |
Collapse
|
23
|
Vaquerizo-Villar F, Alvarez D, Kheirandish-Gozal L, Gutierrez-Tobal GC, Barroso-Garcia V, Santamaria-Vazquez E, Campo FD, Gozal D, Hornero R. A Convolutional Neural Network Architecture to Enhance Oximetry Ability to Diagnose Pediatric Obstructive Sleep Apnea. IEEE J Biomed Health Inform 2021; 25:2906-2916. [PMID: 33406046 PMCID: PMC8460136 DOI: 10.1109/jbhi.2020.3048901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study aims at assessing the usefulness of deep learning to enhance the diagnostic ability of oximetry in the context of automated detection of pediatric obstructive sleep apnea (OSA). A total of 3196 blood oxygen saturation (SpO2) signals from children were used for this purpose. A convolutional neural network (CNN) architecture was trained using 20-min SpO2 segments from the training set (859 subjects) to estimate the number of apneic events. CNN hyperparameters were tuned using Bayesian optimization in the validation set (1402 subjects). This model was applied to three test sets composed of 312, 392, and 231 subjects from three independent databases, in which the apnea-hypopnea index (AHI) estimated for each subject (AHICNN) was obtained by aggregating the output of the CNN for each 20-min SpO2 segment. AHICNN outperformed the 3% oxygen desaturation index (ODI3), a clinical approach, as well as the AHI estimated by a conventional feature-engineering approach based on multi-layer perceptron (AHIMLP). Specifically, AHICNN reached higher four-class Cohen's kappa in the three test databases than ODI3 (0.515 vs 0.417, 0.422 vs 0.372, and 0.423 vs 0.369) and AHIMLP (0.515 vs 0.377, 0.422 vs 0.381, and 0.423 vs 0.306). In addition, our proposal outperformed state-of-the-art studies, particularly for the AHI severity cutoffs of 5 e/h and 10 e/h. This suggests that the information automatically learned from the SpO2 signal by deep-learning techniques helps to enhance the diagnostic ability of oximetry in the context of pediatric OSA.
Collapse
|
24
|
Hanif U, Leary E, Schneider L, Paulsen R, Morse AM, Blackman A, Schweitzer P, Kushida CA, Liu S, Jennum P, Sorensen H, Mignot E. Estimation of Apnea-Hypopnea Index using Deep Learning on 3D Craniofacial Scans. IEEE J Biomed Health Inform 2021; 25:4185-4194. [PMID: 33961569 DOI: 10.1109/jbhi.2021.3078127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Obstructive sleep apnea (OSA) is characterized by decreased breathing events that occur through the night, with severity reported as the apnea-hypopnea index (AHI), which is associated with certain craniofacial features. In this study, we used data from 1366 patients collected as part of Stanford Technology Analytics and Genomics in Sleep (STAGES) across 11 US and Canadian sleep clinics and analyzed 3D craniofacial scans with the goal of predicting AHI, as measured using gold standard nocturnal polysomnography (PSG). First, the algorithm detects pre-specified landmarks on mesh objects and aligns scans in 3D space. Subsequently, 2D images and depth maps are generated by rendering and rotating scans by 45-degree increments. Resulting images were stacked as channels and used as input to multi-view convolutional neural networks, which were trained and validated in a supervised manner to predict AHI values derived from PSGs. The proposed model achieved a mean absolute error of 11.38 events/hour, a Pearson correlation coefficient of 0.4, and accuracy for predicting OSA of 67% using 10-fold cross-validation. The model improved further by adding patient demographics and variables from questionnaires. We also show that the model performed at the level of three sleep medicine specialists, who used clinical experience to predict AHI based on 3D scan displays. Finally, we created topographic displays of the most important facial features used by the model to predict AHI, showing importance of the neck and chin area. The proposed algorithm has potential to serve as an inexpensive and efficient screening tool for individuals with suspected OSA.
Collapse
|
25
|
Karhu T, Myllymaa S, Nikkonen S, Mazzotti DR, Töyräs J, Leppänen T. Longer and Deeper Desaturations Are Associated With the Worsening of Mild Sleep Apnea: The Sleep Heart Health Study. Front Neurosci 2021; 15:657126. [PMID: 33994931 PMCID: PMC8113677 DOI: 10.3389/fnins.2021.657126] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
Study Objectives Obesity, older age, and male sex are recognized risk factors for sleep apnea. However, it is unclear whether the severity of hypoxic burden, an essential feature of sleep apnea, is associated with the risk of sleep apnea worsening. Thus, we investigated our hypothesis that the worsening of sleep apnea is expedited in individuals with more severe desaturations. Methods The blood oxygen saturation (SpO2) signals of 805 Sleep Heart Health Study participants with mild sleep apnea [5 ≤ oxygen desaturation index (ODI) < 15] were analyzed at baseline and after a mean follow-up time of 5.2 years. Linear regression analysis, adjusted for relevant covariates, was utilized to study the association between baseline SpO2-derived parameters and change in sleep apnea severity, determined by a change in ODI. SpO2-derived parameters, consisting of ODI, desaturation severity (DesSev), desaturation duration (DesDur), average desaturation area (avg. DesArea), and average desaturation duration (avg. DesDur), were standardized to enable comparisons between the parameters. Results In the group consisting of both men and women, avg. DesDur (β = 1.594, p = 0.001), avg. DesArea (β = 1.316, p = 0.004), DesDur (β = 0.998, p = 0.028), and DesSev (β = 0.928, p = 0.040) were significantly associated with sleep apnea worsening, whereas ODI was not (β = -0.029, p = 0.950). In sex-stratified analysis, avg. DesDur (β = 1.987, p = 0.003), avg. DesArea (β = 1.502, p = 0.024), and DesDur (β = 1.374, p = 0.033) were significantly associated with sleep apnea worsening in men. Conclusion Longer and deeper desaturations are more likely to expose a patient to the worsening of sleep apnea. This information could be useful in the planning of follow-up monitoring or lifestyle counseling in the early stage of the disease.
Collapse
Affiliation(s)
- Tuomas Karhu
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Sami Myllymaa
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Sami Nikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Diego R Mazzotti
- Division of Medical Informatics, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, OLD, Australia
| | - Timo Leppänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
26
|
Das N, Topalovic M, Janssens W. AIM in Respiratory Disorders. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Yue H, Lin Y, Wu Y, Wang Y, Li Y, Guo X, Huang Y, Wen W, Zhao G, Pang X, Lei W. Deep Learning for Diagnosis and Classification of Obstructive Sleep Apnea: A Nasal Airflow-Based Multi-Resolution Residual Network. Nat Sci Sleep 2021; 13:361-373. [PMID: 33737850 PMCID: PMC7966385 DOI: 10.2147/nss.s297856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE This study evaluated a novel approach for diagnosis and classification of obstructive sleep apnea (OSA), called Obstructive Sleep Apnea Smart System (OSASS), using residual networks and single-channel nasal pressure airflow signals. METHODS Data were collected from the sleep center of the First Affiliated Hospital, Sun Yat-sen University, and the Integrative Department of Guangdong Province Traditional Chinese Medical Hospital. We developed a new model called the multi-resolution residual network (Mr-ResNet) based on a residual network to detect nasal pressure airflow signals recorded by polysomnography (PSG) automatically. The performance of the model was assessed by its sensitivity, specificity, accuracy, and F1-score. We built OSASS based on Mr-ResNet to estimate the apnea‒hypopnea index (AHI) and to classify the severity of OSA, and compared the agreement between OSASS output and the registered polysomnographic technologist (RPSGT) score, assessed by two technologists. RESULTS In the primary test set, the sensitivity, specificity, accuracy, and F1-score of Mr-ResNet were 90.8%, 90.5%, 91.2%, and 90.5%, respectively. In the independent test set, the Spearman correlation for AHI between OSASS and the RPSGT score determined by two technologists was 0.94 (p < 0.001) and 0.96 (p < 0.001), respectively. Cohen's Kappa scores for classification between OSASS and the two technologists' scores were 0.81 and 0.84, respectively. CONCLUSION Our results indicated that OSASS can automatically diagnose and classify OSA using signals from a single-channel nasal pressure airflow, which is consistent with polysomnographic technologists' findings. Thus, OSASS holds promise for clinical application.
Collapse
Affiliation(s)
- Huijun Yue
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yu Lin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yitao Wu
- School of Computer Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yongquan Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yun Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xueqin Guo
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Ying Huang
- Guangdong Province Traditional Chinese Medical Hospital, Guangzhou, 510000, People's Republic of China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Gansen Zhao
- School of Computer Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Xiongwen Pang
- School of Computer Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| |
Collapse
|
28
|
Leino A, Nikkonen S, Kainulainen S, Korkalainen H, Töyräs J, Myllymaa S, Leppänen T, Ylä-Herttuala S, Westeren-Punnonen S, Muraja-Murro A, Jäkälä P, Mervaala E, Myllymaa K. Neural network analysis of nocturnal SpO 2 signal enables easy screening of sleep apnea in patients with acute cerebrovascular disease. Sleep Med 2020; 79:71-78. [PMID: 33482455 DOI: 10.1016/j.sleep.2020.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Current diagnostics of sleep apnea relies on the time-consuming manual analysis of complex sleep registrations, which is impractical for routine screening in hospitalized patients with a high probability for sleep apnea, e.g. those experiencing acute stroke or transient ischemic attacks (TIA). To overcome this shortcoming, we aimed to develop a convolutional neural network (CNN) capable of estimating the severity of sleep apnea in acute stroke and TIA patients based solely on the nocturnal oxygen saturation (SpO2) signal. The CNN was trained with SpO2 signals derived from 1379 home sleep apnea tests (HSAT) of suspected sleep apnea patients and tested with SpO2 signals of 77 acute ischemic stroke or TIA patients. The CNN's performance was tested by comparing the estimated respiratory event index (REI) and oxygen desaturation index (ODI) with manually obtained values. Median estimation errors for REI and ODI in patients with stroke or TIA were 1.45 events/hour and 0.61 events/hour, respectively. Furthermore, based on estimated REI and ODI, 77.9% and 88.3% of these patients were classified into the correct sleep apnea severity categories. The sensitivity and specificity to identify sleep apnea (REI > 5 events/hour) were 91.8% and 78.6%, respectively. Moderate-to-severe sleep apnea was detected (REI > 15 events/hour) with sensitivity of 92.3% and specificity of 96.1%. The CNN analysis of the SpO2 signal has great potential as a simple screening tool for sleep apnea. This novel automatic method accurately detects sleep apnea in acute cerebrovascular disease patients and facilitates their referral for a differential diagnostic HSAT or polysomnography evaluation.
Collapse
Affiliation(s)
- Akseli Leino
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
| | - Sami Nikkonen
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Samu Kainulainen
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Henri Korkalainen
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Juha Töyräs
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Sami Myllymaa
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Timo Leppänen
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Salla Ylä-Herttuala
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Susanna Westeren-Punnonen
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Anu Muraja-Murro
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Pekka Jäkälä
- Department of Neurology, NeuroCenter, Kuopio University Hospital, Kuopio, Finland; Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Esa Mervaala
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
| | - Katja Myllymaa
- Department of Clinical Neurophysiology, Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
29
|
Nikkonen S, Korkalainen H, Kainulainen S, Myllymaa S, Leino A, Kalevo L, Oksenberg A, Leppänen T, Töyräs J. Estimating daytime sleepiness with previous night electroencephalography, electrooculography, and electromyography spectrograms in patients with suspected sleep apnea using a convolutional neural network. Sleep 2020; 43:zsaa106. [PMID: 32459856 PMCID: PMC7734478 DOI: 10.1093/sleep/zsaa106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/14/2020] [Indexed: 01/12/2023] Open
Abstract
A common symptom of obstructive sleep apnea (OSA) is excessive daytime sleepiness (EDS). The gold standard test for EDS is the multiple sleep latency test (MSLT). However, due to its high cost, MSLT is not routinely conducted for OSA patients and EDS is instead evaluated using sleep questionnaires. This is problematic however, since sleep questionnaires are subjective and correlate poorly with the MSLT. Therefore, new objective tools are needed for reliable evaluation of EDS. The aim of this study was to test our hypothesis that EDS can be estimated with neural network analysis of previous night polysomnographic signals. We trained a convolutional neural network (CNN) classifier using electroencephalography, electrooculography, and chin electromyography signals from 2,014 patients with suspected OSA. The CNN was trained to classify the patients into four sleepiness categories based on their mean sleep latency (MSL); severe (MSL < 5min), moderate (5 ≤ MSL < 10), mild (10 ≤ MSL < 15), and normal (MSL ≥ 15). The CNN classified patients to the four sleepiness categories with an overall accuracy of 60.6% and Cohen's kappa value of 0.464. In two-group classification scheme with sleepy (MSL < 10 min) and non-sleepy (MSL ≥ 10) patients, the CNN achieved an accuracy of 77.2%, with sensitivity of 76.5%, and specificity of 77.9%. Our results show that previous night's polysomnographic signals can be used for objective estimation of EDS with at least moderate accuracy. Since the diagnosis of OSA is currently confirmed by polysomnography, the classifier could be used simultaneously to get an objective estimate of the daytime sleepiness with minimal extra workload.
Collapse
Affiliation(s)
- Sami Nikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Henri Korkalainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Samu Kainulainen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Sami Myllymaa
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Akseli Leino
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Laura Kalevo
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Arie Oksenberg
- Sleep Disorders Unit, Loewenstein Hospital—Rehabilitation Center, Raanana, Israel
| | - Timo Leppänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juha Töyräs
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| |
Collapse
|
30
|
Kainulainen S, Duce B, Korkalainen H, Leino A, Huttunen R, Kalevo L, Arnardottir ES, Kulkas A, Myllymaa S, Töyräs J, Leppänen T. Increased nocturnal arterial pulsation frequencies of obstructive sleep apnoea patients is associated with an increased number of lapses in a psychomotor vigilance task. ERJ Open Res 2020; 6:00277-2020. [PMID: 33263035 PMCID: PMC7682668 DOI: 10.1183/23120541.00277-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/28/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives Besides hypoxaemia severity, heart rate variability has been linked to cognitive decline in obstructive sleep apnoea (OSA) patients. Thus, our aim was to examine whether the frequency domain features of a nocturnal photoplethysmogram (PPG) can be linked to poor performance in the psychomotor vigilance task (PVT). Methods PPG signals from 567 suspected OSA patients, extracted from Type 1 diagnostic polysomnography, and corresponding results of PVT were retrospectively examined. The frequency content of complete PPGs was determined, and analyses were conducted separately for men (n=327) and women (n=240). Patients were grouped into PVT performance quartiles based on the number of lapses (reaction times ≥500 ms) and within-test variation in reaction times. The best-performing (Q1) and worst-performing (Q4) quartiles were compared due the lack of clinical thresholds in PVT. Results We found that the increase in arterial pulsation frequency (APF) in both men and women was associated with a higher number of lapses. Higher APF was also associated with higher within-test variation in men, but not in women. Median APF (β=0.27, p=0.01), time spent under 90% saturation (β=0.05, p<0.01), female sex (β=1.29, p<0.01), older age (β=0.03, p<0.01) and subjective sleepiness (β=0.07, p<0.01) were significant predictors of belonging to Q4 based on lapses. Only female sex (β=0.75, p<0.01) and depression (β=0.91, p<0.02) were significant predictors of belonging to Q4 based on the within-test variation. Conclusions In conclusion, increased APF in PPG provides a possible polysomnography indicator for deteriorated vigilance especially in male OSA patients. This finding highlights the connection between cardiorespiratory regulation, vigilance and OSA. However, our results indicate substantial sex-dependent differences that warrant further prospective studies.
Collapse
Affiliation(s)
- Samu Kainulainen
- Dept of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Brett Duce
- Sleep Disorders Centre, Dept of Respiratory and Sleep Medicine, Princess Alexandra Hospital, Brisbane, Australia.,Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Henri Korkalainen
- Dept of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Akseli Leino
- Dept of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Riku Huttunen
- Dept of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Laura Kalevo
- Dept of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Erna S Arnardottir
- Dept of Computer Science, Reykjavik University, Reykjavik, Iceland.,Internal Medicine Services, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Antti Kulkas
- Dept of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Dept of Clinical Neurophysiology, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Sami Myllymaa
- Dept of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Juha Töyräs
- Dept of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Timo Leppänen
- Dept of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
31
|
Vaquerizo-Villar F, Alvarez D, Kheirandish-Gozal L, Gutierrez-Tobal GC, Gomez-Pilar J, Crespo A, Del Campo F, Gozal D, Hornero R. Automatic Assessment of Pediatric Sleep Apnea Severity Using Overnight Oximetry and Convolutional Neural Networks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:633-636. [PMID: 33018067 DOI: 10.1109/embc44109.2020.9176342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we use the overnight blood oxygen saturation (SpO2) signal along with convolutional neural networks (CNN) for the automatic estimation of pediatric sleep apnea-hypopnea syndrome (SAHS) severity. The few preceding studies have focused on the application of conventional feature extraction methods to obtain information from the SpO2 signal, which may omit relevant data related to the illness. In contrast, deep learning techniques are able to automatically learn features from raw input signal. Thus, we propose to assess whether CNN, a deep learning algorithm, could automatically estimate the apnea-hypopnea index (AHÍ) from nocturnal oximetry to help establish pediatric SAHS presence and severity. A database of 746 SpO2 recordings is involved in the study. CNN was trained using 20-min segments from the SpO2 signal in the training set (400 subjects). Hyperparameters of the CNN architecture were tuned using a validation set (100 subjects). This model was applied to a test set (246 subjects), in which the final AHI of each patient was obtained as the average of the output of the CNN for all the segments of the corresponding SpO2 signal. The AHI estimated by the CNN showed a promising diagnostic performance, with 74.8%, 90.7%, and 95.1% accuracies for the common AHI severity thresholds of 1, 5, and 10 events per hour (e/h), respectively. Furthermore, this model reached 28.6, 32.9, and 120.0 positive likelihood ratios for the above-mentioned AHI thresholds. This suggests that the information extracted from the oximetry signal by deep learning techniques may be useful to both establish pediatric SAHS and its severity.
Collapse
|
32
|
Gonem S, Janssens W, Das N, Topalovic M. Applications of artificial intelligence and machine learning in respiratory medicine. Thorax 2020; 75:695-701. [PMID: 32409611 DOI: 10.1136/thoraxjnl-2020-214556] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
The past 5 years have seen an explosion of interest in the use of artificial intelligence (AI) and machine learning techniques in medicine. This has been driven by the development of deep neural networks (DNNs)-complex networks residing in silico but loosely modelled on the human brain-that can process complex input data such as a chest radiograph image and output a classification such as 'normal' or 'abnormal'. DNNs are 'trained' using large banks of images or other input data that have been assigned the correct labels. DNNs have shown the potential to equal or even surpass the accuracy of human experts in pattern recognition tasks such as interpreting medical images or biosignals. Within respiratory medicine, the main applications of AI and machine learning thus far have been the interpretation of thoracic imaging, lung pathology slides and physiological data such as pulmonary function tests. This article surveys progress in this area over the past 5 years, as well as highlighting the current limitations of AI and machine learning and the potential for future developments.
Collapse
Affiliation(s)
- Sherif Gonem
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK .,Division of Respiratory Medicine, University of Nottingham, Nottingham, UK
| | - Wim Janssens
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Nilakash Das
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Marko Topalovic
- Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.,ArtiQ NV, Leuven, Belgium
| |
Collapse
|