1
|
AlKhazal A, Chohan S, Ross DJ, Kim J, Brown EG. Emerging clinical and research approaches in targeted therapies for high-risk neuroblastoma. Front Oncol 2025; 15:1553511. [PMID: 40104501 PMCID: PMC11913827 DOI: 10.3389/fonc.2025.1553511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/06/2025] [Indexed: 03/20/2025] Open
Abstract
Neuroblastoma is a pediatric cancer that originates from neural crest cells and is the most common extracranial solid tumor in children under five years of age. While low-risk neuroblastoma often regresses spontaneously, high-risk neuroblastoma poses a significant clinical challenge. Recent advances in understanding neuroblastoma's molecular mechanisms have led to the development of targeted therapies that aim to selectively inhibit specific pathways involved in tumor growth and progression, improving patient outcomes while minimizing side effects. This review provides a comprehensive review of neuroblastoma biology and emerging therapeutic strategies. Key topics include (a) immunotherapies and immunotargets, (b) non-coding RNAs (long non-coding RNA, microRNA, and circular RNA), (c) molecular biomarkers and pathways, and (d) limitations and future directions.
Collapse
Affiliation(s)
- Albatool AlKhazal
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Samiha Chohan
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
- Department of Biological Sciences, California State University, Sacramento, Sacramento, CA, United States
| | - Destani J Ross
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Jinhwan Kim
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Erin G Brown
- Department of Surgery, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Nazam N, Bownes LV, Julson JR, Quinn CH, Erwin MH, Marayati R, Markert HR, Shirley S, Stewart JE, Yoon KJ, Aye J, Ohlmeyer M, Beierle EA. Novel PP2A-Activating Compounds in Neuroblastoma. Cancers (Basel) 2024; 16:3836. [PMID: 39594793 PMCID: PMC11592631 DOI: 10.3390/cancers16223836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) remains one of the deadliest pediatric solid tumors. Recent advancements aimed at improving outcomes have been insufficient, and patients with high-risk NB continue to have a poor prognosis. Protein phosphatase 2A (PP2A) is a tumor suppressor protein downregulated in many cancers, including NB. PP2A activation has been shown to affect the malignant phenotype in other solid tumors. The present studies aim to investigate the effects of two novel PP2A activators as a NB therapeutic. METHODS Four established NB cell lines and a patient-derived xenoline were utilized to study the effect on cell viability, proliferation, motility, and in vivo tumor growth using two novel tricyclic sulfonamide PP2A activators, ATUX-3364 and ATUX-8385. RESULTS ATUX-3364 and ATUX-8385 increased PP2A activity. These PP2A activators led to decreased viability, proliferation, and motility of NB cells. Treatment of animals bearing NB tumors with ATUX-3364 or ATUX-8385 resulted in decreased tumor growth in MYCN-amplified SK-N-BE(2) tumors. At the molecular level, PP2A-based reactivation led to dephosphorylation of MYCN-S62 and decreased MYCN protein expression. CONCLUSIONS PP2A activators decreased NB cell viability, proliferation, and motility. In vivo experiments show that PP2A activators have more significant effects on tumorigenesis in MYCN-amplified tumors. Finally, phosphorylation of MYCN protein was decreased following treatment with novel sulfonamide PP2A activators. These data and mechanistic insights may be useful for developing new PP2A-based therapies that target MYCN for the treatment of NB.
Collapse
Affiliation(s)
- Nazia Nazam
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (N.N.); (L.V.B.); (J.R.J.); (C.H.Q.); (M.H.E.); (R.M.); (H.R.M.); (S.S.); (J.E.S.)
| | - Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (N.N.); (L.V.B.); (J.R.J.); (C.H.Q.); (M.H.E.); (R.M.); (H.R.M.); (S.S.); (J.E.S.)
| | - Janet R. Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (N.N.); (L.V.B.); (J.R.J.); (C.H.Q.); (M.H.E.); (R.M.); (H.R.M.); (S.S.); (J.E.S.)
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (N.N.); (L.V.B.); (J.R.J.); (C.H.Q.); (M.H.E.); (R.M.); (H.R.M.); (S.S.); (J.E.S.)
| | - Michael H. Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (N.N.); (L.V.B.); (J.R.J.); (C.H.Q.); (M.H.E.); (R.M.); (H.R.M.); (S.S.); (J.E.S.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (N.N.); (L.V.B.); (J.R.J.); (C.H.Q.); (M.H.E.); (R.M.); (H.R.M.); (S.S.); (J.E.S.)
| | - Hooper R. Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (N.N.); (L.V.B.); (J.R.J.); (C.H.Q.); (M.H.E.); (R.M.); (H.R.M.); (S.S.); (J.E.S.)
| | - Sorina Shirley
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (N.N.); (L.V.B.); (J.R.J.); (C.H.Q.); (M.H.E.); (R.M.); (H.R.M.); (S.S.); (J.E.S.)
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (N.N.); (L.V.B.); (J.R.J.); (C.H.Q.); (M.H.E.); (R.M.); (H.R.M.); (S.S.); (J.E.S.)
| | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Jamie Aye
- Division of Hematology/Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (N.N.); (L.V.B.); (J.R.J.); (C.H.Q.); (M.H.E.); (R.M.); (H.R.M.); (S.S.); (J.E.S.)
| |
Collapse
|
3
|
Quinn CH, Beierle AM, Williams AP, Marayati R, Bownes LV, Market HR, Erwin ME, Aye JM, Stewart JE, Mroczek-Musulman E, Yoon KJ, Beierle EA. Preclinical evidence for employing MEK inhibition in NRAS mutated pediatric gastroenteropancreatic neuroendocrine-like tumors. Transl Oncol 2024; 47:102045. [PMID: 38959709 PMCID: PMC11269785 DOI: 10.1016/j.tranon.2024.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Pediatric gastroenteropancreatic neuroendocrine tumors are exceedingly rare, resulting in most pediatric treatment recommendations being based on data derived from adults. Trametinib is a kinase inhibitor that targets MEK1/2 and has been employed in the treatment of cancers harboring mutations in the Ras pathway. METHODS We utilized an established human pediatric gastroenteropancreatic neuroendocrine-like tumor patient-derived xenograft (PDX) with a known NRAS mutation to study the effects of MEK inhibition. We evaluated the effects of trametinib on proliferation, motility, and tumor growth in vivo. We created an intraperitoneal metastatic model of this PDX, characterized both the phenotype and the genotype of the metastatic PDX and again, investigated the effects of MEK inhibition. RESULTS We found target engagement with decreased ERK1/2 phosphorylation with trametinib treatment. Trametinib led to decreased in vitro cell growth and motility, and decreased tumor growth and increased animal survival in a murine flank tumor model. Finally, we demonstrated that trametinib was able to significantly decrease gastroenteropancreatic neuroendocrine intraperitoneal tumor metastasis. CONCLUSIONS The results of these studies support the further investigation of MEK inhibition in pediatric NRAS mutated solid tumors.
Collapse
Affiliation(s)
- Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Andee M Beierle
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35222, USA
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Hooper R Market
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Michael E Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA
| | | | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama, Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL 35205, USA.
| |
Collapse
|
4
|
Julson JR, Quinn CH, Bownes LV, Hutchins SC, Stewart JE, Aye J, Yoon KJ, Beierle EA. Inhibition of PIM Kinases Promotes Neuroblastoma Cell Differentiation to a Neuronal Phenotype. J Pediatr Surg 2023; 58:1155-1163. [PMID: 36907773 PMCID: PMC10198809 DOI: 10.1016/j.jpedsurg.2023.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Neuroblastoma arises from aberrancies in neural stem cell differentiation. PIM kinases contribute to cancer formation, but their precise role in neuroblastoma tumorigenesis is poorly understood. In the current study, we evaluated the effects of PIM kinase inhibition on neuroblastoma differentiation. METHODS Versteeg database query assessed the correlation between PIM gene expression and the expression of neuronal stemness markers and relapse free survival. PIM kinases were inhibited with AZD1208. Viability, proliferation, motility were measured in established neuroblastoma cells lines and high-risk neuroblastoma patient-derived xenografts (PDXs). qPCR and flow cytometry detected changes in neuronal stemness marker expression after AZD1208 treatment. RESULTS Database query showed increased levels of PIM1, PIM2, or PIM3 gene expression were associated with higher risk of recurrent or progressive neuroblastoma. Increased levels of PIM1 were associated with lower relapse free survival rates. Higher levels of PIM1 correlated with lower levels of neuronal stemness markers OCT4, NANOG, and SOX2. Treatment with AZD1208 resulted in increased expression of neuronal stemness markers. CONCLUSIONS Inhibition of PIM kinases differentiated neuroblastoma cancer cells toward a neuronal phenotype. Differentiation is a key component of preventing neuroblastoma relapse or recurrence and PIM kinase inhibition provides a potential new therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sara C Hutchins
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jamie Aye
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
5
|
Quinn CH, Beierle AM, Julson JR, Erwin ME, Alrefai H, Markert HR, Stewart JE, Hutchins SC, Bownes LV, Aye JM, Mroczek-Musulman E, Hicks PH, Yoon KJ, Willey CD, Beierle1 EA. Using 3D-bioprinted models to study pediatric neural crest-derived tumors. Int J Bioprint 2023; 9:723. [PMID: 37323483 PMCID: PMC10261178 DOI: 10.18063/ijb.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/21/2023] [Indexed: 06/17/2023] Open
Abstract
The use of three-dimensional (3D) bioprinting has remained at the forefront of tissue engineering and has recently been employed for generating bioprinted solid tumors to be used as cancer models to test therapeutics. In pediatrics, neural crest-derived tumors are the most common type of extracranial solid tumors. There are only a few tumor-specific therapies that directly target these tumors, and the lack of new therapies remains detrimental to improving the outcomes for these patients. The absence of more efficacious therapies for pediatric solid tumors, in general, may be due to the inability of the currently employed preclinical models to recapitulate the solid tumor phenotype. In this study, we utilized 3D bioprinting to generate neural crest-derived solid tumors. The bioprinted tumors consisted of cells from established cell lines and patient-derived xenograft tumors mixed with a 6% gelatin/1% sodium alginate bioink. The viability and morphology of the bioprints were analyzed via bioluminescence and immunohisto chemistry, respectively. We compared the bioprints to traditional twodimensional (2D) cell culture under conditions such as hypoxia and therapeutics. We successfully produced viable neural crest-derived tumors that retained the histology and immunostaining characteristics of the original parent tumors. The bioprinted tumors propagated in culture and grew in orthotopic murine models. Furthermore, compared to cells grown in traditional 2D culture, the bioprinted tumors were resistant to hypoxia and chemotherapeutics, suggesting that the bioprints exhibited a phenotype that is consistent with that seen clinically in solid tumors, thus potentially making this model superior to traditional 2D culture for preclinical investigations. Future applications of this technology entail the potential to rapidly print pediatric solid tumors for use in high-throughput drug studies, expediting the identification of novel, individualized therapies.
Collapse
Affiliation(s)
- Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Andee M Beierle
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Janet R Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Michael E Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Hasan Alrefai
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Sara Claire Hutchins
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, 35205, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | | | - Patricia H Hicks
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, 35205, USA
| | | |
Collapse
|
6
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
7
|
Horwacik I. The Extracellular Matrix and Neuroblastoma Cell Communication-A Complex Interplay and Its Therapeutic Implications. Cells 2022; 11:cells11193172. [PMID: 36231134 PMCID: PMC9564247 DOI: 10.3390/cells11193172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric neuroendocrine neoplasm. It arises from the sympatho-adrenal lineage of neural-crest-derived multipotent progenitor cells that fail to differentiate. NB is the most common extracranial tumor in children, and it manifests undisputed heterogeneity. Unsatisfactory outcomes of high-risk (HR) NB patients call for more research to further inter-relate treatment and molecular features of the disease. In this regard, it is well established that in the tumor microenvironment (TME), malignant cells are engaged in complex and dynamic interactions with the extracellular matrix (ECM) and stromal cells. The ECM can be a source of both pro- and anti-tumorigenic factors to regulate tumor cell fate, such as survival, proliferation, and resistance to therapy. Moreover, the ECM composition, organization, and resulting signaling networks are vastly remodeled during tumor progression and metastasis. This review mainly focuses on the molecular mechanisms and effects of interactions of selected ECM components with their receptors on neuroblastoma cells. Additionally, it describes roles of enzymes modifying and degrading ECM in NB. Finally, the article gives examples on how the knowledge is exploited for prognosis and to yield new treatment options for NB patients.
Collapse
Affiliation(s)
- Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
8
|
Bownes LV, Marayati R, Quinn CH, Beierle AM, Hutchins SC, Julson JR, Erwin MH, Stewart JE, Mroczek-Musulman E, Ohlmeyer M, Aye JM, Yoon KJ, Beierle EA. Pre-Clinical Study Evaluating Novel Protein Phosphatase 2A Activators as Therapeutics for Neuroblastoma. Cancers (Basel) 2022; 14:1952. [PMID: 35454859 PMCID: PMC9026148 DOI: 10.3390/cancers14081952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Protein phosphatase 2A (PP2A) functions as an inhibitor of cancer cell proliferation, and its tumor suppressor function is attenuated in many cancers. Previous studies utilized FTY720, an immunomodulating compound known to activate PP2A, and demonstrated a decrease in the malignant phenotype in neuroblastoma. We wished to investigate the effects of two novel PP2A activators, ATUX-792 (792) and DBK-1154 (1154). METHODS Long-term passage neuroblastoma cell lines and human neuroblastoma patient-derived xenograft (PDX) cells were used. Cells were treated with 792 or 1154, and viability, proliferation, and motility were examined. The effect on tumor growth was investigated using a murine flank tumor model. RESULTS Treatment with 792 or 1154 resulted in PP2A activation, decreased cell survival, proliferation, and motility in neuroblastoma cells. Immunoblotting revealed a decrease in MYCN protein expression with increasing concentrations of 792 and 1154. Treatment with 792 led to tumor necrosis and decreased tumor growth in vivo. CONCLUSIONS PP2A activation with 792 or 1154 decreased survival, proliferation, and motility of neuroblastoma in vitro and tumor growth in vivo. Both compounds resulted in decreased expression of the oncogenic protein MYCN. These findings indicate a potential therapeutic role for these novel PP2A activators in neuroblastoma.
Collapse
Affiliation(s)
- Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Andee M. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Sara C. Hutchins
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.)
| | - Janet R. Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Michael H. Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| | | | | | - Jamie M. Aye
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.)
| | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (L.V.B.); (R.M.); (C.H.Q.); (A.M.B.); (J.R.J.); (M.H.E.); (J.E.S.)
| |
Collapse
|
9
|
Pomella S, Cassandri M, Braghini MR, Marampon F, Alisi A, Rota R. New Insights on the Nuclear Functions and Targeting of FAK in Cancer. Int J Mol Sci 2022; 23:ijms23041998. [PMID: 35216114 PMCID: PMC8874710 DOI: 10.3390/ijms23041998] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed and activated in both adult and pediatric cancers, where it plays important roles in the regulation of pathogenesis and progression of the malignant phenotype. FAK exerts its functions in cancer by two different ways: a kinase activity in the cytoplasm, mainly dependent on the integrin signaling, and a scaffolding activity into the nucleus by networking with different gene expression regulators. For this reason, FAK has to be considered a target with high therapeutic values. Indeed, evidence suggests that FAK targeting could be effective, either alone or in combination, with other already available treatments. Here, we propose an overview of the novel insights about FAK’s structure and nuclear functions, with a special focus on the recent findings concerning the roles of this protein in cancer. Additionally, we provide a recent update on FAK inhibitors that are currently in clinical trials for patients with cancer, and discuss the challenge and future directions of drug-based anti-FAK targeted therapies.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy;
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
- Correspondence: (A.A.); (R.R.); Tel.: +39-06-68592186 (A.A.); +39-06-68592648 (R.R.)
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
- Correspondence: (A.A.); (R.R.); Tel.: +39-06-68592186 (A.A.); +39-06-68592648 (R.R.)
| |
Collapse
|
10
|
Quinn CH, Beierle AM, Hutchins SC, Marayati R, Bownes LV, Stewart JE, Markert HR, Erwin MH, Aye JM, Yoon KJ, Friedman GK, Willey CD, Markert JM, Beierle EA. Targeting High-Risk Neuroblastoma Patient-Derived Xenografts with Oncolytic Virotherapy. Cancers (Basel) 2022; 14:cancers14030762. [PMID: 35159029 PMCID: PMC8834037 DOI: 10.3390/cancers14030762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is the leading cause of death by disease in children, and over 15% of pediatric cancer-related mortalities are due to neuroblastoma. Current treatment options for neuroblastoma remain suboptimal as they often have significant toxicities, are associated with long-term side effects, and result in disease relapse in over half of children with high-risk disease. There is a dire need for new therapies, and oncolytic viruses may represent an effective solution. Oncolytic viruses attack tumor cells in two ways: direct infection of tumor cells leading to cytolysis, and production of a debris field that stimulates an anti-tumor immune response. Our group has previously shown that M002, an oncolytic herpes simplex virus (oHSV), genetically engineered to express murine interleukin-12 (mIL-12), was effective at targeting and killing long term passage tumor cell lines. In the current study, we investigated M002 in three neuroblastoma patient-derived xenografts (PDXs). PDXs better recapitulate the human condition, and these studies were designed to gather robust data for translation to a clinical trial. We found that all three PDXs expressed viral entry receptors, and that the virus actively replicated in the cells. M002 caused significant tumor cell death in 2D culture and 3D bioprinted tumor models. Finally, the PDXs displayed variable susceptibility to M002, with a more profound effect on high-risk neuroblastoma PDXs compared to low-risk PDX. These findings validate the importance of incorporating PDXs for preclinical testing of oncolytic viral therapeutics and showcase a novel technique, 3D bioprinting, to test therapies in PDXs. Collectively, our data indicate that oHSVs effectively target high-risk neuroblastoma, and support the advancement of this therapy to the clinical setting.
Collapse
Affiliation(s)
- Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Andee M. Beierle
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.M.B.); (C.D.W.)
| | - Sara Claire Hutchins
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.); (G.K.F.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Hooper R. Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Michael H. Erwin
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
| | - Jamie M. Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.); (G.K.F.)
| | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Gregory K. Friedman
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.C.H.); (J.M.A.); (G.K.F.)
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.M.B.); (C.D.W.)
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.H.Q.); (R.M.); (L.V.B.); (J.E.S.); (H.R.M.); (M.H.E.)
- Correspondence: ; Tel.: +1-205-638-9688
| |
Collapse
|
11
|
Synthetic Heterocyclic Derivatives as Kinase Inhibitors Tested for the Treatment of Neuroblastoma. Molecules 2021; 26:molecules26237069. [PMID: 34885651 PMCID: PMC8658969 DOI: 10.3390/molecules26237069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, small molecules endowed with different heterocyclic scaffolds have been developed as kinase inhibitors. Some of them are being tested at preclinical or clinical levels for the potential treatment of neuroblastoma (NB). This disease is the most common extracranial solid tumor in childhood and is responsible for 10% to 15% of pediatric cancer deaths. Despite the availability of some treatments, including the use of very toxic cytotoxic chemotherapeutic agents, high-risk (HR)-NB patients still have a poor prognosis and a survival rate below 50%. For these reasons, new pharmacological options are urgently needed. This review focuses on synthetic heterocyclic compounds published in the last five years, which showed at least some activity on this severe disease and act as kinase inhibitors. The specific mechanism of action, selectivity, and biological activity of these drug candidates are described, when established. Moreover, the most remarkable clinical trials are reported. Importantly, kinase inhibitors approved for other diseases have shown to be active and endowed with lower toxicity compared to conventional cytotoxic agents. The data collected in this article can be particularly useful for the researchers working in this area.
Collapse
|
12
|
Wu Y, Li N, Ye C, Jiang X, Luo H, Zhang B, Zhang Y, Zhang Q. Focal adhesion kinase inhibitors, a heavy punch to cancer. Discov Oncol 2021; 12:52. [PMID: 35201485 PMCID: PMC8777493 DOI: 10.1007/s12672-021-00449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Kinases are the ideal druggable targets for diseases and especially were highlighted on cancer therapy. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and its aberrant signaling extensively implicates in the progression of most cancer types, involving in cancer cell growth, adhesion, migration, and tumor microenvironment (TME) remodeling. FAK is commonly overexpressed and activated in a variety of cancers and plays as a targetable kinase in cancer therapy. FAK inhibitors already exhibited promising performance in preclinical and early-stage clinical trials. Moreover, substantial evidence has implied that targeting FAK is more effective in combination strategy, thereby reversing the failure of chemotherapies or targeted therapies in solid tumors. In the current review, we summarized the drug development progress, chemotherapy strategy, and perspective view for FAK inhibitors.
Collapse
Affiliation(s)
- Yueling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Ning Li
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Chengfeng Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Xingmei Jiang
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qingyu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
13
|
Quinn CH, Beierle AM, Williams AP, Marayati R, Bownes LV, Markert HR, Aye JM, Stewart JE, Mroczek-Musulman E, Crossman DK, Yoon KJ, Beierle EA. Downregulation of PDGFRß Signaling Overcomes Crizotinib Resistance in a TYRO3 and ALK Mutated Neuroendocrine-Like Tumor. Transl Oncol 2021; 14:101099. [PMID: 33887553 PMCID: PMC8086143 DOI: 10.1016/j.tranon.2021.101099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/03/2021] [Indexed: 01/04/2023] Open
Abstract
Patient-derived xenografts provide significant advantages over long-term passage cell lines when investigating efficacy of treatments for solid tumors. Our laboratory encountered a high-grade, metastatic, neuroendocrine-like tumor from a pediatric patient that presented with a unique genetic profile. In particular, mutations in TYRO3 and ALK were identified. We established a human patient-derived xenoline (PDX) of this tumor for use in the current study. We investigated the effect of crizotinib, a chemotherapeutic known to effectively target both TYRO3 and ALK mutations. Crizotinib effectively decreased viability, proliferation, growth, and the metastatic properties of the PDX tumor through downregulation of STAT3 signaling, but expression of PDGFRß was increased. Sunitinib is a small molecule inhibitor of PDGFRß and was studied in this PDX independently and in combination with crizotinib. Sunitinib alone decreased viability, proliferation, and growth in vitro and decreased tumor growth in vivo. In combination, sunitinib was able to overcome potential crizotinib-induced resistance through downregulation of ERK 1/2 activity and PDGFRß receptor expression; consequently, tumor growth was significantly decreased both in vitro and in vivo. Through the use of the PDX, it was possible to identify crizotinib as a less effective therapeutic for this tumor and suggest that targeting PDGFRß would be more effective. These findings may translate to other solid tumors that present with the same genetic mutations.
Collapse
Affiliation(s)
- Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Andee M Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Hooper R Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States
| | | | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, 1600 7th Ave. South, Lowder, Room 300, Birmingham, AL 35233, United States.
| |
Collapse
|
14
|
A reporter system for enriching CRISPR/Cas9 knockout cells in technically challenging settings like patient models. Sci Rep 2021; 11:12649. [PMID: 34135367 PMCID: PMC8209181 DOI: 10.1038/s41598-021-91760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
CRISPR/Cas9 represents a valuable tool to determine protein function, but technical hurdles limit its use in challenging settings such as cells unable to grow in vitro like primary leukemia cells and xenografts derived thereof (PDX). To enrich CRISPR/Cas9-edited cells, we improved a dual-reporter system and cloned the genomic target sequences of the gene of interest (GOI) upstream of an out-of-frame fluorochrome which was expressed only upon successful gene editing. To reduce rounds of in vivo passaging required for PDX leukemia growth, targets of 17 GOI were cloned in a row, flanked by an improved linker, and PDX cells were lentivirally transduced for stable expression. The reporter enriched scarce, successfully gene-edited PDX cells as high as 80%. Using the reporter, we show that KO of the SRC-family kinase LYN increased the response of PDX cells of B precursor cell ALL towards Vincristine, even upon heterozygous KO, indicating haploinsufficiency. In summary, our reporter system enables enriching KO cells in technically challenging settings and extends the use of gene editing to highly patient-related model systems.
Collapse
|
15
|
Bownes LV, Williams AP, Marayati R, Stafman LL, Markert H, Quinn CH, Wadhwani N, Aye JM, Stewart JE, Yoon KJ, Mroczek-Musulman E, Beierle EA. EZH2 inhibition decreases neuroblastoma proliferation and in vivo tumor growth. PLoS One 2021; 16:e0246244. [PMID: 33690617 PMCID: PMC7942994 DOI: 10.1371/journal.pone.0246244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Investigation of the mechanisms responsible for aggressive neuroblastoma and its poor prognosis is critical to identify novel therapeutic targets and improve survival. Enhancer of Zeste Homolog 2 (EZH2) is known to play a key role in supporting the malignant phenotype in several cancer types and knockdown of EZH2 has been shown to decrease tumorigenesis in neuroblastoma cells. We hypothesized that the EZH2 inhibitor, GSK343, would affect cell proliferation and viability in human neuroblastoma. We utilized four long-term passage neuroblastoma cell lines and two patient-derived xenolines (PDX) to investigate the effects of the EZH2 inhibitor, GSK343, on viability, motility, stemness and in vivo tumor growth. Immunoblotting confirmed target knockdown. Treatment with GSK343 led to significantly decreased neuroblastoma cell viability, migration and invasion, and stemness. GSK343 treatment of mice bearing SK-N-BE(2) neuroblastoma tumors resulted in a significant decrease in tumor growth compared to vehicle-treated animals. GSK343 decreased viability, and motility in long-term passage neuroblastoma cell lines and decreased stemness in neuroblastoma PDX cells. These data demonstrate that further investigation into the mechanisms responsible for the anti-tumor effects seen with EZH2 inhibitors in neuroblastoma cells is warranted.
Collapse
Affiliation(s)
- Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laura L. Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hooper Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nikita Wadhwani
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jamie M. Aye
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karina J. Yoon
- Division of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
16
|
Marayati R, Bownes LV, Quinn CH, Wadhwani N, Williams AP, Markert HR, Atigadda V, Aye JM, Stewart JE, Yoon KJ, Beierle EA. Novel second-generation rexinoid induces growth arrest and reduces cancer cell stemness in human neuroblastoma patient-derived xenografts. J Pediatr Surg 2021; 56:1165-1173. [PMID: 33762121 PMCID: PMC8131234 DOI: 10.1016/j.jpedsurg.2021.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The poor therapeutic efficacy seen with current treatments for neuroblastoma may be attributed to stem cell-like cancer cells (SCLCCs), a subpopulation of cancer cells associated with poor prognosis and disease recurrence. Retinoic acid (RA) is a differentiating agent used as maintenance therapy for high-risk neuroblastoma but nearly half of children treated with RA relapse. We hypothesized that 6-Methyl-UAB30 (6-Me), a second-generation rexinoid recently developed with a favorable toxicity profile compared to RA, would reduce cancer cell stemness in human neuroblastoma patient-derived xenografts (PDXs). METHODS Cells from three neuroblastoma PDXs were treated with 6-Me and proliferation, viability, motility, and cell-cycle progression were assessed. CD133 expression, sphere formation, and mRNA abundance of stemness and differentiation markers were evaluated using flow cytometry, in vitro extreme limiting dilution analysis, and real-time PCR, respectively. RESULTS Treatment with 6-Me decreased proliferation, viability, and motility, and induced cell-cycle arrest and differentiation in all three neuroblastoma PDXs. In addition, 6-Me treatment led to decreased CD133 expression, decreased sphere-forming ability, and decreased mRNA abundance of Oct4, Nanog, and Sox2, indicating decreased cancer cell stemness. CONCLUSIONS 6-Me decreased oncogenicity and reduced cancer cell stemness of neuroblastoma PDXs, warranting further exploration of 6-Me as potential novel therapy for neuroblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Nikita Wadhwani
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hooper R. Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jamie M. Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
17
|
Marayati R, Bownes LV, Stafman LL, Williams AP, Quinn CH, Atigadda V, Aye JM, Stewart JE, Yoon KJ, Beierle EA. 9-cis-UAB30, a novel rexinoid agonist, decreases tumorigenicity and cancer cell stemness of human neuroblastoma patient-derived xenografts. Transl Oncol 2020; 14:100893. [PMID: 33010553 PMCID: PMC7530346 DOI: 10.1016/j.tranon.2020.100893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022] Open
Abstract
Retinoic acid (RA) therapy has been utilized as maintenance therapy for high-risk neuroblastoma, but over half of patients treated with RA relapse. Neuroblastoma stem cell-like cancer cells (SCLCCs) are a subpopulation of cells characterized by the expression of the cell surface marker CD133 and are hypothesized to contribute to drug resistance and disease relapse. A novel rexinoid compound, 9-cis-UAB30 (UAB30), was developed having the same anti-tumor effects as RA but a more favorable toxicity profile. In the current study, we investigated the efficacy of UAB30 in neuroblastoma patient-derived xenografts (PDX). Two PDXs, COA3 and COA6, were utilized and alterations in the malignant phenotype were assessed following treatment with RA or UAB30. UAB30 significantly decreased proliferation, viability, and motility of both PDXs. UAB30 induced cell-cycle arrest as demonstrated by the significant increase in percentage of cells in G1 (COA6: 33.7 ± 0.7 vs. 43.3 ± 0.7%, control vs. UAB30) and decrease in percentage of cells in S phase (COA6: 44.7 ± 1.2 vs. 38.6 ± 1%, control vs. UAB30). UAB30 led to differentiation of PDX cells, as evidenced by the increase in neurite outgrowth and mRNA abundance of differentiation markers. CD133 expression was decreased by 40% in COA6 cells after UAB30. The ability to form tumorspheres and mRNA abundance of known stemness markers were also significantly decreased following treatment with UAB30, further indicating decreased cancer cell stemness. These results provide evidence that UAB30 decreased tumorigenicity and cancer cell stemness in neuroblastoma PDXs, warranting further exploration as therapy for high-risk neuroblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura V Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
18
|
RNA N 6-methyladenosine modification is required for miR-98/MYCN axis-mediated inhibition of neuroblastoma progression. Sci Rep 2020; 10:13624. [PMID: 32788584 PMCID: PMC7424512 DOI: 10.1038/s41598-020-64682-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common malignant tumors of the sympathetic nervous system in childhood. NB severely threatens patient’s health and life. However, more effective diagnosis and treatment methods are badly needed in clinics all over the world. MYCN is well recognized as a genetic biomarker of high risk and poor outcome in NB. miRNAs are small RNAs and miR-98 involved in the pathogenesis of various cancers. The role and mechanism of miR-98 in NB remains to be investigated. Here we found that miR-98 was decreased in human MYCN-high-expression NB tissues, and its down-regulation was associated with poor prognosis of NB. Over-expression of miR-98 inhibited cell proliferation, migration and invasion of NB cells. The analysis by employing the software of miRanda predicted the possible binding sites of miR-98 in the 3′-UTR of MYCN, and experimental data illustrated that miR-98 directly bound to MYCN 3′-UTR and decreased MYCN expression. Over-expression of MYCN rescued the decreased malignant phenotype caused by over-expression of miR-98 in NB. N6-methyladenosine modification in 3′-UTR of MYCN promoted its interaction with miR-98. The data collectively demonstrated that RNA m6A modification was required for miR-98/MYCN axis-mediated inhibition of neuroblastoma progression, and miR-98 might be novel targets for NB detection and treatment.
Collapse
|