1
|
Inyang I, White HE, Timme K, Keating AF. Biological sex differences in hepatic response to in utero dimethylbenz(a)anthracene exposure. Reprod Toxicol 2024; 124:108553. [PMID: 38307155 DOI: 10.1016/j.reprotox.2024.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Fetal hepatic dimethylbenz(a)anthracene (DMBA) biotransformation is not defined, thus, this study investigated whether the fetal liver metabolizes DMBA and differs with biological sex. KK.Cg-a/a (lean; n = 20) or KK.Cg-Ay/J (obese; n = 20) pregnant mice were exposed to corn oil (CT) or DMBA (1 mg/kg bw/day) by intraperitoneal injection (n = 10/treatment) from gestation day 7-14. Postnatal day 2 male or female offspring livers were collected. Total RNA (n = 6) and protein (n = 6) were analyzed via a PCR-based array or LC-MS/MS, respectively. The level of Mgst3 was lower (P < 0.05) in livers of female compared to male offspring. Furthermore, in utero DMBA exposure increased (P < 0.1) Cyp2c29 and Gpx3 levels (P < 0.05) in female offspring. In male offspring, the abundance of Ahr, Comt (P < 0.1), Alox5, and Asna1 (P < 0.05) decreased due to DMBA exposure. Female and male offspring had 34 and 21 hepatic proteins altered (P < 0.05) by in utero DMBA exposure, respectively. Opposing patterns for hepatic CD81 and KRT78 occurred, being decreased in females but increased in males, while YWHAG was decreased by DMBA exposure in both. Functional KEGG pathway analysis identified enrichment of 26 and 13 hepatic metabolic proteins in male and female offspring, respectively, due to in utero DMBA exposure. In silico transcription factor analysis of differentially expressed proteins predicted involvement of female NRF1 but male AHR. Thus, hepatic biological sex differences and capacity to respond to toxicants in utero are supported.
Collapse
Affiliation(s)
| | - Hunter E White
- Department of Animal Science, Iowa State University, USA
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, USA
| | | |
Collapse
|
2
|
Lismer A, Shao X, Dumargne MC, Lafleur C, Lambrot R, Chan D, Toft G, Bonde JP, MacFarlane AJ, Bornman R, Aneck-Hahn N, Patrick S, Bailey JM, de Jager C, Dumeaux V, Trasler JM, Kimmins S. The Association between Long-Term DDT or DDE Exposures and an Altered Sperm Epigenome-a Cross-Sectional Study of Greenlandic Inuit and South African VhaVenda Men. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:17008. [PMID: 38294233 PMCID: PMC10829569 DOI: 10.1289/ehp12013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND The organochlorine dichlorodiphenyltrichloroethane (DDT) is banned worldwide owing to its negative health effects. It is exceptionally used as an insecticide for malaria control. Exposure occurs in regions where DDT is applied, as well as in the Arctic, where its endocrine disrupting metabolite, p , p ' -dichlorodiphenyldichloroethylene (p , p ' -DDE) accumulates in marine mammals and fish. DDT and p , p ' -DDE exposures are linked to birth defects, infertility, cancer, and neurodevelopmental delays. Of particular concern is the potential of DDT use to impact the health of generations to come via the heritable sperm epigenome. OBJECTIVES The objective of this study was to assess the sperm epigenome in relation to p , p ' -DDE serum levels between geographically diverse populations. METHODS In the Limpopo Province of South Africa, we recruited 247 VhaVenda South African men and selected 50 paired blood serum and semen samples, and 47 Greenlandic Inuit blood and semen paired samples were selected from a total of 193 samples from the biobank of the INUENDO cohort, an EU Fifth Framework Programme Research and Development project. Sample selection was based on obtaining a range of p , p ' -DDE serum levels (mean = 870.734 ± 134.030 ng / mL ). We assessed the sperm epigenome in relation to serum p , p ' -DDE levels using MethylC-Capture-sequencing (MCC-seq) and chromatin immunoprecipitation followed by sequencing (ChIP-seq). We identified genomic regions with altered DNA methylation (DNAme) and differential enrichment of histone H3 lysine 4 trimethylation (H3K4me3) in sperm. RESULTS Differences in DNAme and H3K4me3 enrichment were identified at transposable elements and regulatory regions involved in fertility, disease, development, and neurofunction. A subset of regions with sperm DNAme and H3K4me3 that differed between exposure groups was predicted to persist in the preimplantation embryo and to be associated with embryonic gene expression. DISCUSSION These findings suggest that DDT and p , p ' -DDE exposure impacts the sperm epigenome in a dose-response-like manner and may negatively impact the health of future generations through epigenetic mechanisms. Confounding factors, such as other environmental exposures, genetic diversity, and selection bias, cannot be ruled out. https://doi.org/10.1289/EHP12013.
Collapse
Affiliation(s)
- Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Xiaojian Shao
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Charlotte Dumargne
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - Christine Lafleur
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
| | - Romain Lambrot
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
| | - Donovan Chan
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Amanda J. MacFarlane
- Agriculture Food and Nutrition Evidence Center, Texas A&M University, Fort Worth, Texas, USA
| | - Riana Bornman
- Environmental Chemical Pollution and Health Research Unit, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Natalie Aneck-Hahn
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Sean Patrick
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Janice M. Bailey
- Research Centre on Reproduction and Intergenerational Health, Department of Animal Sciences, Université Laval, Quebec, Quebec, Canada
| | - Christiaan de Jager
- Environmental Chemical Pollution and Health Research Unit, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- University of Pretoria Institute for Sustainable Malaria Control, School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Vanessa Dumeaux
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Jacquetta M. Trasler
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
3
|
Lismer A, Kimmins S. Emerging evidence that the mammalian sperm epigenome serves as a template for embryo development. Nat Commun 2023; 14:2142. [PMID: 37059740 PMCID: PMC10104880 DOI: 10.1038/s41467-023-37820-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Although more studies are demonstrating that a father's environment can influence child health and disease, the molecular mechanisms underlying non-genetic inheritance remain unclear. It was previously thought that sperm exclusively contributed its genome to the egg. More recently, association studies have shown that various environmental exposures including poor diet, toxicants, and stress, perturbed epigenetic marks in sperm at important reproductive and developmental loci that were associated with offspring phenotypes. The molecular and cellular routes that underlie how epigenetic marks are transmitted at fertilization, to resist epigenetic reprogramming in the embryo, and drive phenotypic changes are only now beginning to be unraveled. Here, we provide an overview of the state of the field of intergenerational paternal epigenetic inheritance in mammals and present new insights into the relationship between embryo development and the three pillars of epigenetic inheritance: chromatin, DNA methylation, and non-coding RNAs. We evaluate compelling evidence of sperm-mediated transmission and retention of paternal epigenetic marks in the embryo. Using landmark examples, we discuss how sperm-inherited regions may escape reprogramming to impact development via mechanisms that implicate transcription factors, chromatin organization, and transposable elements. Finally, we link paternally transmitted epigenetic marks to functional changes in the pre- and post-implantation embryo. Understanding how sperm-inherited epigenetic factors influence embryo development will permit a greater understanding related to the developmental origins of health and disease.
Collapse
Affiliation(s)
- Ariane Lismer
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
4
|
Bolognesi G, Bacalini MG, Pirazzini C, Garagnani P, Giuliani C. Evolutionary Implications of Environmental Toxicant Exposure. Biomedicines 2022; 10:3090. [PMID: 36551846 PMCID: PMC9775150 DOI: 10.3390/biomedicines10123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Homo sapiens have been exposed to various toxins and harmful compounds that change according to various phases of human evolution. Population genetics studies showed that such exposures lead to adaptive genetic changes; while observing present exposures to different toxicants, the first molecular mechanism that confers plasticity is epigenetic remodeling and, in particular, DNA methylation variation, a molecular mechanism proposed for medium-term adaptation. A large amount of scientific literature from clinical and medical studies revealed the high impact of such exposure on human biology; thus, in this review, we examine and infer the impact that different environmental toxicants may have in shaping human evolution. We first describe how environmental toxicants shape natural human variation in terms of genetic and epigenetic diversity, and then we describe how DNA methylation may influence mutation rate and, thus, genetic variability. We describe the impact of these substances on biological fitness in terms of reproduction and survival, and in conclusion, we focus on their effect on brain evolution and physiology.
Collapse
Affiliation(s)
- Giorgia Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 12, 40126 Bologna, Italy
- Laboratory of Molecular Anthropology, Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Chiara Pirazzini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, via Altura 3, 40139 Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 12, 40126 Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology, Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Francesco Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
5
|
Paternal Nicotine/Ethanol/Caffeine Mixed Exposure Induces Offspring Rat Dysplasia and Its Potential "GC-IGF1" Programming Mechanism. Int J Mol Sci 2022; 23:ijms232315081. [PMID: 36499404 PMCID: PMC9737622 DOI: 10.3390/ijms232315081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Clinical and animal studies suggest that paternal exposure to adverse environments (bad living habits and chronic stress, etc.) has profound impacts on offspring development; however, the mechanism of paternal disease has not been clarified. In this study, a meta-analysis was first performed to suggest that paternal exposure to nicotine, ethanol, or caffeine is a high-risk factor for adverse pregnancy outcomes. Next, we created a rat model of paternal nicotine/ethanol/caffeine mixed exposure (PME), whereby male Wistar rats were exposed to nicotine (0.1 mg/kg/d), ethanol (0.5 g/kg/d), and caffeine (7.5 mg/kg/d) for 8 weeks continuously, then mated with normal female rats to obtain a fetus (n = 12 for control group, n = 10 for PME group). Then, we analyzed the changes in paternal hypothalamic-pituitary-adrenal (HPA) axis activity, testicular function, pregnancy outcomes, fetal serum metabolic indicators, and multiple organ functions to explore the mechanism from the perspective of chronic stress. Our results demonstrated that PME led to enhanced paternal HPA axis activity, decreased sperm quality, and adverse pregnancy outcomes (stillbirth and absorption, decreased fetal weight and body length, and intrauterine growth retardation), abnormal fetal serum metabolic indicators (corticosterone, glucolipid metabolism, and sex hormones), and fetal multi-organ dysfunction (including hippocampus, adrenal, liver, ossification, and gonads). Furthermore, correlation analysis showed that the increased paternal corticosterone level was closely related to decreased sperm quality, adverse pregnancy outcomes, and abnormal offspring multi-organ function development. Among them, the decreased activity of the glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis may be the main mechanism of offspring development and multi-organ dysfunction caused by PME. This study explored the impact of common paternal lifestyle in daily life on offspring development, and proposed the GC-IGF1 programming mechanisms of paternal chronic stress-induced offspring dysplasia, which provides a novel insight for exploring the important role of paternal chronic stress in offspring development and guiding a healthy lifestyle for men.
Collapse
|
6
|
L. Charest P, Tessougue E, Lessard M, Herst PM, Navarro P, Kimmins S, Trasler JM, MacFarlane AJ, Benoit-Biancamano MO, Bailey JL, Dalvai M. Exposure to environmental contaminants and folic acid supplementation intergenerationally impact fetal skeleton development through the paternal lineage in a rat model. FRONTIERS IN TOXICOLOGY 2022; 4:881622. [PMID: 36238601 PMCID: PMC9552329 DOI: 10.3389/ftox.2022.881622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent organic pollutants (POPs) are ubiquitous in the environment, which is of concern since they are broadly toxic for wildlife and human health. It is generally accepted that maternal prenatal folic acid supplementation (FA) may beneficially impact offspring development, but it has been recently shown that the father's exposures also influence the health of his offspring. Bone is an endocrine organ essential for whole-body homeostasis and is susceptible to toxicants. Herein, we tested the hypotheses that prenatal paternal exposure to POPs induces developmental bone disorders in fetuses across multiple generations and that FA supplementation attenuates these disorders. We used a four-generation rat model, in which F0 founder females were divided into four treatment groups. F0 females were gavaged with corn oil or an environmentally-relevant POPs mixture and fed either a control diet (2 mg FA/kg), or FA supplemented diet (6 mg FA/kg) before mating and until parturition (four treatments in total). After the birth of the F1 litters, all F0 females and subsequent generations received the FA control diet. Staining with alcian blue and alizarin red S of male and female fetal skeletons was performed at Gestational Day 19.5. Paternal direct and ancestral exposure to POPs delayed bone ossification and decreased the length of long limb bones in fetuses. Maternal FA supplementation did not counteract the POPs-associated delayed fetal ossification and reduced long bone length. In conclusion, prenatal paternal POPs exposure causes developmental bone abnormalities over multiple generations, which were not corrected by maternal FA supplementation.
Collapse
Affiliation(s)
- Phanie L. Charest
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City, QC, Canada
- Centre de Recherche en Reproduction Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Quebec City, QC, Canada
| | - Emmanuel Tessougue
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City, QC, Canada
- Centre de Recherche en Reproduction Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Quebec City, QC, Canada
| | - Maryse Lessard
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City, QC, Canada
- Centre de Recherche en Reproduction Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Quebec City, QC, Canada
| | - Pauline M. Herst
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City, QC, Canada
- Centre de Recherche en Reproduction Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Quebec City, QC, Canada
| | - Pauline Navarro
- Department of Nutrition, Faculty of Agricultural and Food Sciences, Institute of Nutrition and Functional Foods, Université Laval, Quebec City, QC, Canada
| | - Sarah Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Jacquetta M. Trasler
- Departments of Pediatrics, Human Genetics and Pharmacology and Therapeutics, Research Institute-McGill University Health Center, McGill University, Montreal, QC, Canada
| | | | - Marie-Odile Benoit-Biancamano
- Centre de Recherche en Reproduction Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Quebec City, QC, Canada
- Groupe de Recherche En Pharmacologie Animale du Québec (GREPAQ), Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Sainte Hyacinthe, QC, Canada
| | - Janice L. Bailey
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City, QC, Canada
- Centre de Recherche en Reproduction Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Quebec City, QC, Canada
- *Correspondence: Janice L. Bailey, ; Mathieu Dalvai,
| | - Mathieu Dalvai
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Université Laval, Quebec City, QC, Canada
- Centre de Recherche en Reproduction Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Quebec City, QC, Canada
- *Correspondence: Janice L. Bailey, ; Mathieu Dalvai,
| |
Collapse
|
7
|
Montano L, Pironti C, Pinto G, Ricciardi M, Buono A, Brogna C, Venier M, Piscopo M, Amoresano A, Motta O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. TOXICS 2022; 10:365. [PMID: 35878270 PMCID: PMC9323099 DOI: 10.3390/toxics10070365] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023]
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, Oliveto Citra, 84020 Salerno, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Concetta Pironti
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Maria Ricciardi
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| | - Amalia Buono
- Research Laboratory Gentile, S.a.s., 80054 Gragnano, Italy;
| | - Carlo Brogna
- Craniomed Laboratory Group Srl, Viale degli Astronauti 45, 83038 Montemiletto, Italy;
| | - Marta Venier
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (A.A.)
- INBB—Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.P.); (M.R.)
| |
Collapse
|
8
|
Mechanism of Action of an Environmentally Relevant Organochlorine Mixture in Repressing Steroid Hormone Biosynthesis in Leydig Cells. Int J Mol Sci 2022; 23:ijms23073997. [PMID: 35409357 PMCID: PMC8999779 DOI: 10.3390/ijms23073997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Within Leydig cells, steroidogenesis is induced by the pituitary luteinizing hormone (LH). The binding of LH to its receptor increases cAMP production, which then activates the expression of genes involved in testosterone biosynthesis. One of these genes codes for the steroidogenic acute regulatory (STAR) protein. STAR is part of a complex that shuttles cholesterol, the precursor of all steroid hormones, through the mitochondrial membrane where steroidogenesis is initiated. Organochlorine chemicals (OCs) are environmental persistent organic pollutants that are found at high concentrations in Arctic areas. OCs are known to affect male reproductive health by decreasing semen quality in different species, including humans. We previously showed that an environmentally relevant mixture of OCs found in Northern Quebec disrupts steroidogenesis by decreasing STAR protein levels without affecting the transcription of the gene. We hypothesized that OCs might affect STAR protein stability. To test this, MA-10 Leydig cell lines were incubated for 6 h with vehicle or the OCs mixture in the presence or absence of 8Br-cAMP with or without MG132, an inhibitor of protein degradation. We found that MG132 prevented the OC-mediated decrease in STAR protein levels following 8Br-cAMP stimulation. However, progesterone production was still decreased by the OC mixture, even in the presence of MG132. This suggested that proteins involved in steroid hormone production in addition to STAR are also affected by the OC mixture. To identify these proteins, a whole cell approach was used and total proteins from MA-10 Leydig cells exposed to the OC mixture with or without stimulation with 8Br-cAMP were analyzed by 2D SDS-PAGE and LC-MS/MS. Bioinformatics analyses revealed that several proteins involved in numerous biological processes are affected by the OC mixture, including proteins involved in mitochondrial transport, lipid metabolism, and steroidogenesis.
Collapse
|
9
|
Olooto WE, Fajobi AO, Adewole OO, Murtala AA, Aderinola AA. Ameliorative effect of aqueous Cissus populnea suspension on cotton seed-induced testicular damage in male Wistar rats. AFRICAN JOURNAL OF UROLOGY 2022. [DOI: 10.1186/s12301-022-00282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Testicular damage is an important etiological factor in male infertility. Despite reported decline in global incidence of infertility over the past years, pockets of cases are still ironically noticed to occur in developing countries due to limitation of accessibility to advanced management methods, hence their resort to alternative herbal therapy.
Methods
Testicular damage was induced using cotton seed. Cissus populnea was cut into chunks, air-dried, pulverized, powdered and suspended in water. Thirty-two (32) matured male Wistar rats were randomly divided into 4 groups (Group 1–4) designated as control, 100 mg/kg C. populnea (CP), cotton seed meal (CSM) and CSM + CP groups, each consisting of 8 rats. Group 1 was fed with normal rat chow, Group 2 was fed with 100 mg/kg CP, and Group 3 was fed with CSM for 8 weeks. Rats in Group 4 were fed with CSM for 8 weeks and dosed with 100 mg/kg aqueous C. populnea suspension for another 8 weeks. At the expiration of test period, the rats were sacrificed, blood sample collected, and plasma obtained for luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone, estrogen, catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione (GSH) measurements. Semen was collected for analysis and testes harvested for histological studies.
Result
There is a significant decrease (p < 0.05) in plasma FSH, LH, testosterone, estrogen, GSH, catalase, SOD, and GPx in rats fed on CSM when compared with values obtained in the control and aqueous C. populnea suspension-fed rats. Seminal fluid analysis showed a significant reduction (p < 0.05) in the sperm count, motility, morphology, vitality, and non-vitality among rats fed with CSM when compared to control rats. The histologic features of the testes showed abnormal interstitial appearances and absent Leydig cells in many areas among cotton seed-fed rats. Improvements in reproductive hormones, sperm qualities, and histological features were observed to occur in CSM group following administration of aqueous C. populnea suspension.
Conclusion
Based on the findings from this study, it can be concluded that aqueous C. populnea suspension ameliorates cotton seed-induced hypothalamo-pituitary–testicular axis functional disruption and testicular damage.
Collapse
|
10
|
Chen H, Alves MBR, Belleannée C. Contribution of epididymal epithelial cell functions to sperm epigenetic changes and the health of progeny. Hum Reprod Update 2021; 28:51-66. [PMID: 34618012 DOI: 10.1093/humupd/dmab029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spermatozoa acquire their motility and fertilizing abilities during their maturation through the epididymis. This process is controlled by epididymal epithelial cells that possess features adapted to sense and respond to their surrounding environment and to communicate with spermatozoa. During the past decade, new intercellular communication processes have been discovered, including the secretion and transport of molecules from the epithelium to spermatozoa via extracellular vesicles (EVs), as well as sensing of the intraluminal milieu by cellular extensions. OBJECTIVE AND RATIONALE This review addresses recent findings regarding epididymal epithelial cell features and interactions between spermatozoa and the epididymal epithelium as well as epigenetic modifications undergone by spermatozoa during transit through the epididymal microenvironment. SEARCH METHODS A systematic search was conducted in Pubmed with the keyword 'epididymis'. Results were filtered on original research articles published from 2009 to 2021 and written in the English language. One hundred fifteen original articles presenting recent advancements on the epididymis contribution to sperm maturation were selected. Some additional papers cited in the primary reference were also included. A special focus was given to higher mammalian species, particularly rodents, bovines and humans, that are the most studied in this field. OUTCOMES This review provides novel insights into the contribution of epididymal epithelium and EVs to post-testicular sperm maturation. First, new immune cell populations have been described in the epididymis, where they are proposed to play a role in protecting the environment surrounding sperm against infections or autoimmune responses. Second, novel epididymal cell extensions, including dendrites, axopodia and primary cilia, have been identified as sensors of the environment surrounding sperm. Third, new functions have been outlined for epididymal EVs, which modify the sperm epigenetic profile and participate in transgenerational epigenetic inheritance of paternal traits. WIDER IMPLICATIONS Although the majority of these findings result from studies in rodents, this fundamental research will ultimately improve our knowledge of human reproductive physiopathologies. Recent discoveries linking sperm epigenetic modifications with paternal environmental exposure and progeny outcome further stress the importance of advancing fundamental research on the epididymis. From this, new therapeutic options for infertile couples and better counseling strategies may arise to increase positive health outcomes in children conceived either naturally or with ART.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| | | | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| |
Collapse
|
11
|
Yoshizaki K, Kimura R, Kobayashi H, Oki S, Kikkawa T, Mai L, Koike K, Mochizuki K, Inada H, Matsui Y, Kono T, Osumi N. Paternal age affects offspring via an epigenetic mechanism involving REST/NRSF. EMBO Rep 2021; 22:e51524. [PMID: 33399271 PMCID: PMC7857438 DOI: 10.15252/embr.202051524] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Advanced paternal age can have deleterious effects on various traits in the next generation. Here, we establish a paternal‐aging model in mice to understand the molecular mechanisms of transgenerational epigenetics. Whole‐genome target DNA methylome analyses of sperm from aged mice reveal more hypo‐methylated genomic regions enriched in REST/NRSF binding motifs. Gene set enrichment analyses also reveal the upregulation of REST/NRSF target genes in the forebrain of embryos from aged fathers. Offspring derived from young mice administrated with a DNA de‐methylation drug phenocopy the abnormal vocal communication of pups derived from aged fathers. In conclusion, hypo‐methylation of sperm DNA can be a key molecular feature modulating neurodevelopmental programs in offspring by causing fluctuations in the expression of REST/NRSF target genes.
Collapse
Affiliation(s)
- Kaichi Yoshizaki
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Disease Model, Aichi Developmental Disability Center, Aichi, Japan
| | - Ryuichi Kimura
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan.,Department of Embryology, Nara Medical University, Nara, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Lingling Mai
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kohei Koike
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Physiology, Center for Integrative Physiology and Molecular Medicine, Saarland University School of Medicine, Homburg, Germany
| | - Kentaro Mochizuki
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,Laboratory of Health and Sports Science, Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Yasuhisa Matsui
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tomohiro Kono
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.,Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
12
|
Abstract
Sperm are unique cells, produced through the complex and precisely orchestrated process of spermatogenesis, in which there are a number of checkpoints in place to guarantee delivery of a high-quality and high-fidelity DNA product. On the other hand, reproductive pressure in males means that to produce more is, in very general terms, to perform better. Balancing quantity and quality in sperm production is thus a delicate process, subject to specific cellular and molecular control mechanisms, and sensitive to environmental conditions, that can impact fertility and offspring health. This Collection is focused on these aspects of sperm biology, as well as their impact on reproductive performance and male infertility.
Collapse
Affiliation(s)
- Ricardo P Bertolla
- Division of Urology, Department of Surgery, Universidade Federal de São Paulo, Rua Napoleão de Barros, 715, 2º andar, São Paulo, SP, 04024-002, Brazil.
| |
Collapse
|
13
|
Morgan CP, Shetty AC, Chan JC, Berger DS, Ament SA, Epperson CN, Bale TL. Repeated sampling facilitates within- and between-subject modeling of the human sperm transcriptome to identify dynamic and stress-responsive sncRNAs. Sci Rep 2020; 10:17498. [PMID: 33060642 PMCID: PMC7562703 DOI: 10.1038/s41598-020-73867-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies from the last century have drawn strong associations between paternal life experiences and offspring health and disease outcomes. Recent studies have demonstrated sperm small non-coding RNA (sncRNA) populations vary in response to diverse paternal insults. However, for studies in retrospective or prospective human cohorts to identify changes in paternal germ cell epigenetics in association with offspring disease risk, a framework must first be built with insight into the expected biological variation inherent in human populations. In other words, how will we know what to look for if we don't first know what is stable and what is dynamic, and what is consistent within and between men over time? From sperm samples from a 'normative' cohort of healthy human subjects collected repeatedly from each subject over 6 months, 17 healthy male participants met inclusion criteria and completed donations and psychological evaluations of perceived stress monthly. sncRNAs (including miRNA, piRNA, and tRNA) isolated from mature sperm from these samples were subjected to Illumina small RNA sequencing, aligned to subtype-specific reference transcriptomes, and quantified. The repeated measures design allowed us to define both within- and between-subject variation in the expression of 254 miRNA, 194 tRNA, and 937 piRNA in sperm over time. We developed screening criteria to identify a subset of potential environmentally responsive 'dynamic' sperm sncRNA. Implementing complex modeling of the relationships between individual dynamic sncRNA and perceived stress states in these data, we identified 5 miRNA (including let-7f-5p and miR-181a-5p) and 4 tRNA that are responsive to the dynamics of prior stress experience and fit our established mouse model. In the current study, we aligned repeated sampling of human sperm sncRNA expression data with concurrent measures of perceived stress as a novel framework that can now be applied across a range of studies focused on diverse environmental factors able to influence germ cell programming and potentially impact offspring development.
Collapse
Affiliation(s)
- Christopher P Morgan
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jennifer C Chan
- Department of Biomedical Sciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dara S Berger
- Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, CU-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tracy L Bale
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Departments of Pharmacology and Psychiatry, Center for Epigenetic Research in Child Health and Brain Development, HSF3, Room 9-171, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Herst PM, Aars J, Joly Beauparlant C, Bodein A, Dalvai M, Gagné D, Droit A, Bailey JL, Routti H. Adipose Tissue Transcriptome Is Related to Pollutant Exposure in Polar Bear Mother-Cub Pairs from Svalbard, Norway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11365-11375. [PMID: 32808525 DOI: 10.1021/acs.est.0c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Being at the food chain apex, polar bears (Ursus maritimus) are highly contaminated with persistent organic pollutants (POPs). Females transfer POPs to their offspring through gestation and lactation; therefore, young cubs present higher POPs concentrations than their mothers. Recent studies suggest that POPs affect the lipid metabolism in female polar bears; however, the mechanisms and impact on their offspring remain unknown. Here, we hypothesized that exposure to POPs differentially alters genome-wide gene transcription in the adipose tissue from mother polar bears and their cubs, highlighting molecular differences in response between adults and young. Adipose tissue biopsies were collected from 13 adult female polar bears and their twin cubs in Svalbard, Norway, in April 2011, 2012, and 2013. Total RNA extracted from biopsies was subjected to next-generation RNA sequencing. Plasma concentrations of summed polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers in mothers ranged from 897 to 13620 ng/g wet weight and were associated with altered adipose tissue gene expression in both mothers and cubs. In mothers, 2502 and 2586 genes in total were positively and negatively, respectively, correlated to POP exposure, whereas in cubs, 2585 positively and 1690 negatively genes. Between mothers and cubs, 743 positively and negatively genes overlapped between mothers and cubs suggesting partially shared molecular responses to ΣPOPs. ΣPOP-associated genes were involved in numerous metabolic pathways in mothers and cubs, indicating that POP exposure alters the energy metabolism, which, in turn, may be linked to metabolic dysfunction.
Collapse
Affiliation(s)
- Pauline M Herst
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Charles Joly Beauparlant
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City G1V 0A6, Canada
| | - Antoine Bodein
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City G1V 0A6, Canada
| | - Mathieu Dalvai
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Dominic Gagné
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Arnaud Droit
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City G1V 0A6, Canada
| | - Janice L Bailey
- Department of Animal Sciences, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Laval University, Quebec City G1V 0A6, Canada
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
15
|
Barbosa MG, Jorge BC, Stein J, Santos Ferreira DA, Barreto ACDS, Reis ACC, Moreira SDS, Inocencio LCDL, Macorini LFB, Arena AC. Pre-pubertal exposure to ibuprofen impairs sperm parameters in male adult rats and compromises the next generation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:559-572. [PMID: 32615883 DOI: 10.1080/15287394.2020.1786483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ibuprofen is one of the most commonly prescribed anti-inflammatory drugs in pediatric practice. This drug inhibits the cyclooxygenase enzyme, reducing the production of prostaglandin, an important mediator on male reproductive function. We examined if pre-pubertal treatment with ibuprofen in male rats can affect the reproductive parameters of these animals in adult life and on their descendants. Male rats (23 days old) received ibuprofen (0; 2.4; 7.2 or 14.3 mg/kg/day), per gavage, from postnatal day (PND) 23 to 53. At sexual maturity, treated males were placed with untreated females for obtaining the next generation (F1). The highest dose of ibuprofen interfered in sexual behavior and reduced the fertility potential of these animals in adulthood. Additionally, the ibuprofen treatment altered the sperm quantity and quality, as evidenced by a decrease in sperm motility and in the daily sperm production in the testis. Testosterone levels were also reduced by pre-pubertal treatment. The paternal treatment with this drug also influenced the reproductive outcomes of progeny. The male offspring from males treated exhibited acceleration in sperm transit time in the epididymis and the number and volume of Leydig cell nuclei were decreased, while the estrous cyclicity was displayed and the fertility potential reduced in the female offspring. The pre-pubertal ibuprofen-treatment caused negative reproductive impacts in adulthood, compromising sperm quality and quantity, as well as interfered in the reproductive outcomes of the next generation.
Collapse
Affiliation(s)
- Mariana Gazoli Barbosa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP) , São Paulo, Brazil
| | - Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP) , São Paulo, Brazil
| | - Julia Stein
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP) , São Paulo, Brazil
| | - Dayana Agnes Santos Ferreira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP) , São Paulo, Brazil
| | - Ana Carolina da Silva Barreto
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP) , São Paulo, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP) , São Paulo, Brazil
| | - Suyane Da Silva Moreira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP) , São Paulo, Brazil
| | - Leonardo Cesar De Lima Inocencio
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP) , São Paulo, Brazil
| | | | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Univ. Estadual Paulista - Botucatu (UNESP) , São Paulo, Brazil
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP) , Botucatu, Brazil
| |
Collapse
|
16
|
Beyond fertilisation: How the paternal environment influences future generations. Anim Reprod Sci 2020; 220:106503. [PMID: 32536524 DOI: 10.1016/j.anireprosci.2020.106503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
In light of the relatively ignored role of paternal influences on offspring development and increasing societal concerns regarding possible health consequences of chemical exposures, our team has addressed the overall hypothesis that environmentally-relevant levels of contaminants have long-lasting effects that are transmitted through the paternal lineage. This review focuses on our research examining the impact of developmental exposure to toxicants and nutrients on the phenotype and epigenome of the male and of his subsequent generations. This report is intended to encourage animal andrologists as well as the domestic animal production industry to increase their consideration of the sire's environment in the context of agricultural productivity.
Collapse
|
17
|
Herst PM, Dalvai M, Lessard M, Charest PL, Navarro P, Joly-Beauparlant C, Droit A, Trasler JM, Kimmins S, MacFarlane AJ, Benoit-Biancamano MO, Bailey JL. Folic acid supplementation reduces multigenerational sperm miRNA perturbation induced by in utero environmental contaminant exposure. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz024. [PMID: 31853372 PMCID: PMC6911352 DOI: 10.1093/eep/dvz024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 05/08/2023]
Abstract
Persistent organic pollutants (POPs) can induce epigenetic changes in the paternal germline. Here, we report that folic acid (FA) supplementation mitigates sperm miRNA profiles transgenerationally following in utero paternal exposure to POPs in a rat model. Pregnant founder dams were exposed to an environmentally relevant POPs mixture (or corn oil) ± FA supplementation and subsequent F1-F4 male descendants were not exposed to POPs and were fed the FA control diet. Sperm miRNA profiles of intergenerational (F1, F2) and transgenerational (F3, F4) lineages were investigated using miRNA deep sequencing. Across the F1-F4 generations, sperm miRNA profiles were less perturbed with POPs+FA compared to sperm from descendants of dams treated with POPs alone. POPs exposure consistently led to alteration of three sperm miRNAs across two generations, and similarly one sperm miRNA due to POPs+FA; which was in common with one POPs intergenerationally altered sperm miRNA. The sperm miRNAs that were affected by POPs alone are known to target genes involved in mammary gland and embryonic organ development in F1, sex differentiation and reproductive system development in F2 and cognition and brain development in F3. When the POPs treatment was combined with FA supplementation, however, these same miRNA-targeted gene pathways were perturbed to a lesser extend and only in F1 sperm. These findings suggest that FA partially mitigates the effect of POPs on paternally derived miRNA in a intergenerational manner.
Collapse
Affiliation(s)
- P M Herst
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Centre de recherche en reproduction, développement et santé intergénérationnelle, Laval University, Quebec City, Canada
| | - M Dalvai
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Centre de recherche en reproduction, développement et santé intergénérationnelle, Laval University, Quebec City, Canada
| | - M Lessard
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Centre de recherche en reproduction, développement et santé intergénérationnelle, Laval University, Quebec City, Canada
| | - P L Charest
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Centre de recherche en reproduction, développement et santé intergénérationnelle, Laval University, Quebec City, Canada
| | - P Navarro
- Department of Nutrition, Faculty of Agricultural and Food Sciences, Institute of Nutrition and Functional Foods, Centre de recherche en reproduction, développement et santé intergénérationnelle, Laval University, Quebec City, Canada
| | - C Joly-Beauparlant
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City, Canada
| | - A Droit
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Laval University, Quebec City, Canada
| | - J M Trasler
- Departments of Pediatrics, Human Genetics and Pharmacology & Therapeutics, and The Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - S Kimmins
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada
| | - A J MacFarlane
- Nutrition Research Division, Health Canada, Ottawa, Canada
| | - M-O Benoit-Biancamano
- Faculty of Veterinary Medicine, University of Montreal University, Saint-Hyacinthe, Quebec, Canada
| | - J L Bailey
- Department of Animal Sciences, Faculty of Agricultural and Food Sciences, Centre de recherche en reproduction, développement et santé intergénérationnelle, Laval University, Quebec City, Canada
- Correspondence address. Faculty of Agricultural and Food Sciences, Laval University, Pavillon Paul-Comtois, 2425, rue de l'Agriculture. Tel: +1-418-571-7034; Fax: +1-418- 656-3766; E-mail:
| |
Collapse
|