1
|
Kumar KP, Madhusoodanan M, Pangath M, Menon D. Innovative landscapes in intraperitoneal therapy of ovarian cancer. Drug Deliv Transl Res 2025; 15:1877-1906. [PMID: 39888579 DOI: 10.1007/s13346-024-01765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Epithelial ovarian cancer is the most prevalent gynecological malignancy, characterized by high mortality rates due to its late-stage diagnosis and frequent recurrence. The current standard of care for ovarian cancer is a combination of debulking surgery followed by the conventional mode of chemotherapy. Despite significant advances in therapeutic modalities, the overall survival rate of EOC continues to be poor, mainly because low concentrations of the chemotherapeutics reach the peritoneum, which is the primary site of ovarian cancer, leading to disease relapse. Here, intraperitoneal chemotherapy gains advantage due to its ability to deliver the drug molecules directly to the peritoneal cavity and provide localized and sustained effects. This is facilitated by the use of diverse kinds of nano or micron sized delivery systems, which help in transporting drugs, vaccines, antibodies and genes appropriately to the peritoneum for its desired function. This review article delves on how intraperitoneal delivery impacts the therapy of epithelial ovarian cancer spanning the conventional therapeutic modes to the recent nanoinnovations in chemotherapy, immunotherapy and gene therapy.
Collapse
Affiliation(s)
- Krishna Pradeep Kumar
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Maneesha Madhusoodanan
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Meghna Pangath
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Deepthy Menon
- Amrita School of Nanosciences & Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
2
|
Wintjens AGWE, Fransen PPKH, Lenaerts K, Liu H, van Almen GC, Gijbels MJ, Janssen BJA, de Hingh IHJT, Dankers PYW, Van Der Speeten K, Bouvy ND, Marchal W. The pharmacokinetic profile of mitomycin C released from an injectable supramolecular hydrogel in a rodent model. J Control Release 2025; 383:113763. [PMID: 40274069 DOI: 10.1016/j.jconrel.2025.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/27/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
OBJECTIVE This study evaluates the pharmacokinetics of an ureido-pyrimidinone poly(ethylene) glycol (UPy-PEG) hydrogel loaded with mitomycin C (MMC) in rats. The hydrogel aims to enhance the intraperitoneal residence time of MMC, potentially improving therapeutic outcomes for peritoneal metastases (PM) patients. METHODS Rats were divided into two groups: h-MMC (n = 8), receiving MMC encapsulated in hydrogel, and pbs-MMC (n = 6), receiving MMC in PBS. Blood samples were collected from 5 min to 48 h post-administration. MMC concentrations were measured using LC-ESI-MS. Systemic and local adverse effects were assessed through blood analysis and post-mortem histopathology. RESULTS The hydrogel prolonged detectable plasma MMC levels: 24 h for h-MMC vs. 4 h for pbs-MMC. h-MMC had a Cmax of 120 ± 21 μg/L and a Tmax of 52.5 ± 8.2 min; pbs-MMC had a Cmax of 358 ± 24 μg/L and a Tmax of 37.5 ± 8.2 min. The area under the curve ratio of h-MMC/pbs-MMC was 87 %. Platelet counts were significantly lower in h-MMC at 24- and 48 h and in pbs-MMC at 48 h. No liver or kidney damage was observed, though vacuolated macrophages were noted in the hydrogel-treated groups. CONCLUSION The hydrogel effectively prolonged MMC presence in plasma, suggesting extended intraperitoneal residence time and supporting previous findings of therapeutic effectiveness in a PM rat model.
Collapse
Affiliation(s)
- Anne G W E Wintjens
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands; NUTRIM - Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Peter-Paul K H Fransen
- UPyTher BV, Eindhoven, the Netherlands; Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands; NUTRIM - Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Hong Liu
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands; NUTRIM - Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | | | - Marion J Gijbels
- NUTRIM - Institute of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands; Department of Pathology, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ben J A Janssen
- Department of Pharmacology & Toxicology, Maastricht University, Maastricht, the Netherlands
| | - Ignace H J T de Hingh
- GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands; Department of Surgery, Catharina Hospital, Eindhoven, the Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Kurt Van Der Speeten
- Faculty of Medicine and Life Sciences, Discipline Group Physiology, Biochemistry and Immunology, Biomedical Research Institute and Transnational University Limburg, Hasselt University, Hasselt, Belgium; Department of Surgical Oncology, Hospital Oost-Limburg, Genk, Belgium
| | - Nicole D Bouvy
- Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands; GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
| | - Wouter Marchal
- Faculty of Medicine and Life Sciences, Discipline Group Physiology, Biochemistry and Immunology, Biomedical Research Institute and Transnational University Limburg, Hasselt University, Hasselt, Belgium
| |
Collapse
|
3
|
Simonsen M, Mendoza López RV, Maistro S, Ikeoka LT, Pereira GFDL, Lugão AB, Sadalla JC, Katayama MLH, Folgueira MAAK. Peritoneal chemotherapy delivery systems for ovarian cancer treatment: systematic review of animal models. Front Oncol 2025; 14:1487376. [PMID: 39845320 PMCID: PMC11750819 DOI: 10.3389/fonc.2024.1487376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Intraperitoneal chemotherapy for ovarian cancer treatment has controversial benefits as most methodologies are associated with significant morbidity. We carried out a systematic review to compare tumor response, measured by tumor weight and volume, between intraperitoneal chemotherapy delivered via drug delivery systems (DDSs) and free intraperitoneal chemotherapy in animal models of ovarian cancer. The secondary aim was to assess the toxicity of DDS-delivered chemotherapy, based on changes in animal body weight. Methods Based on PRISMA and SYRCLE guidelines, we identified 38 studies for review, of which 20, were used in the meta-analysis. We evaluated outcome, through tumor volume and tumor weight and, toxicity, through animal weight. Analysis was based on drugs employed and treatment duration. Results Most studies were performed on mice. Ovarian cancer cell lines most commonly used to induce xenografts were SKOV3 (19 studies) and A2780 (6 studies). Intraperitoneal device, also known as drug delivery systems (DDS), consisted in nanoparticles, hydrogels, lipid polymer and others. The most commonly used drugs were paclitaxel and cisplatin. Most studies used as the control treatment the same chemotherapy applied free intraperitoneally and tumor response/animal weight were evaluated weekly. There was a small benefit in overall tumor reduction in animals treated with intraperitoneal chemotherapy applied through the slow release device compared with animals treated with intraperitoneal free chemotherapy, as evaluated through tumor weight - results in standardized mean difference. (-1.06; 95% CI: -1.34, -0.78) and tumor volume (-3.72; 95% CI: -4.47, -2.97), a benefit that was seen in most weekly evaluations and for most chemotherapy drugs, such as carboplatin (tumor weight: -5.60; 95% CI: -7.83, -3.37), paclitaxel (tumor weight: -1.18; 95% CI: -1.52, -0.83), and cisplatin (tumor volume: -2.85; 95% CI: -3.66, -2.04) carboplatin (tumor volume: -12.71; 95% CI: -17.35, -8.07); cisplatin (tumor volume: -7.76; 95% CI: -9.88, -5.65); paclitaxel (tumor volume: -2.85; 95% CI: -3.66, -2.04). Regarding animal weight, there was no weight reduction in animals treated with intraperitoneal chemotherapy applied through the slow-release device compared with animals treated with intraperitoneal free chemotherapy. However, significant heterogeneity was observed in some comparisons. Conclusion slow-release devices are overall safe and effective in animal models of ovarian cancer. It was not possible to evaluate which one is the most promising device to treat ovarian cancer, because many different types were used to apply chemotherapy intraperitoneally. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021224573.
Collapse
Affiliation(s)
- Marcelo Simonsen
- Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
- Gynecology and Obstetrics Department, Instituto de Assistência Médica ao Servidor Público Estadual (IAMSPE), São Paulo, SP, Brazil
| | - Rossana Verónica Mendoza López
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| | - Simone Maistro
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| | - Lucas Takeshi Ikeoka
- Faculdade de Medicina, Undergraduate program, Universidade de Sao Paulo (FMUSP), Sao Paulo, SP, Brazil
| | - Glaucia Fernanda de Lima Pereira
- Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| | - Ademar Benévolo Lugão
- Nuclear and Energy Research Institute, IPEN-Comissão Nacional de Energia Nuclear (CNEN)/SP—University of São Paulo, São Paulo, SP, Brazil
| | - José Carlos Sadalla
- Departamento de Ginecologia e Obstetrícia, Instituto do Câncer do Estado de Sao Paulo do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Maria Lúcia Hirata Katayama
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| | - Maria Aparecida Azevedo Koike Folgueira
- Departamento de Radiologia e Oncologia, Comprehensive Center for Precision Oncology (C2PO), Centro de Investigação Translacional em Oncologia (CTO), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo (HCFMUSP), Sao Paulo, SP, Brazil
| |
Collapse
|
4
|
Cai Z, Liu B, Cai Q, Gou J, Tang X. Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects. Expert Opin Drug Deliv 2025; 22:31-46. [PMID: 39641971 DOI: 10.1080/17425247.2024.2439462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Clinical outcomes for the treatment of peritoneal carcinomatosis (PC) have remained suboptimal. Microsphere-based intraperitoneal chemotherapy has shown considerable potential in preclinical studies. However, due to the complications associated with peritoneal adhesions, there has been a lack of comprehensive reviews focusing on the progress of microsphere applications in the treatment of PC. AREAS COVERED We provide an overview of the current clinical treatment strategies for PC and analyze the potential advantages of microspheres in this context. Regarding the issue of peritoneal adhesions induced by microspheres, we investigate the underlying mechanisms and propose possible solutions. Furthermore, we outline the future directions for the development of microsphere-based therapies in the treatment of PC. EXPERT OPINION Microspheres formulated with highly biocompatible materials to the peritoneum, such as sodium alginate, gelatin, or genipin, or with an optimal particle size (4 ~ 30 μm) and lower molecular weights (10 ~ 57 kDa), can prevent peritoneal adhesions and improve drug distribution. To further enhance the antitumor efficacy, enhancing the tumor penetration capability and specificity of microspheres, optimizing intraperitoneal distribution, and addressing tumor resistance have demonstrated significant potential in preclinical studies, offering new therapeutic prospects for the treatment of PC.
Collapse
Affiliation(s)
- Zhitao Cai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Boyuan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Cai
- Department of Formulation, Zhuhai Livzon Microsphere Technology Co. Ltd, Zhuhai, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
5
|
Perelló-Trias MT, Serrano-Muñoz AJ, Rodríguez-Fernández A, Segura-Sampedro JJ, Ramis JM, Monjo M. Intraperitoneal drug delivery systems for peritoneal carcinomatosis: Bridging the gap between research and clinical implementation. J Control Release 2024; 373:70-92. [PMID: 38986910 DOI: 10.1016/j.jconrel.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Several abdominal-located cancers develop metastasis within the peritoneum, what is called peritoneal carcinomatosis (PC), constituting a clinical challenge in their therapeutical management, often leading to poor prognoses. Current multidisciplinary strategies, including cytoreductive surgery (CRS), hyperthermic intraperitoneal chemotherapy (HIPEC), and pressurized intraperitoneal aerosol chemotherapy (PIPAC), demonstrate efficacy but have limitations. In response, alternative strategies are explored in the drug delivery field for intraperitoneal chemotherapy. Controlled drug delivery offers a promising avenue, maintaining localized drug concentrations for optimal PC management. Drug delivery systems (DDS), including hydrogels, implants, nanoparticles, and hybrid systems, show potential for sustained and region-specific drug release. The present review aims to offer an overview of the advances and current designs of DDS for PC chemotherapy administration, focusing on their composition, main characteristics, and principal experimental outcomes, highlighting the importance of biomaterial rationale design and in vitro/vivo models for their testing. Moreover, since clinical data for human subjects are scarce, we offer a critical discussion of the gap between bench and bedside in DDS translation, emphasizing the need for further research.
Collapse
Affiliation(s)
- M Teresa Perelló-Trias
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain
| | - Antonio Jose Serrano-Muñoz
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain
| | - Ana Rodríguez-Fernández
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain
| | - Juan José Segura-Sampedro
- Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; General & Digestive Surgery Service, Hospital Universitario La Paz, Paseo de la Castellana, 261, Fuencarral-El Pardo, 28046 Madrid, Spain; School of Medicine, University of the Balearic Islands (UIB), Carretera de Valldemossa, km 7,5, 07122 Palma, Balearic Islands, Spain
| | - Joana Maria Ramis
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain.
| | - Marta Monjo
- Cell Therapy and Tissue Engineering Group (TERCIT), Research Institute of Health Sciences (IUNICS), University of the Balearic Islands (UIB), Carretera de Valldemossa, Km 7,5, 07122 Palma, Balearic Islands, Spain; Health Research Institute of the Balearic Islands (IdISBa) - Carretera de Valldemossa, 79. Hospital Universitari Son Espases. Edifici S. 07120 Palma, Balearic Islands, Spain; Department of Fundamental Biology and Health Sciences, University of the Balearic Islands (UIB), Palma, Balearic Islands, Spain.
| |
Collapse
|
6
|
Wang Y, Sun Y, Li X, Yu X, Zhang K, Liu J, Tian Q, Zhang H, Du X, Wang S. Progress in the treatment of malignant ascites. Crit Rev Oncol Hematol 2024; 194:104237. [PMID: 38128628 DOI: 10.1016/j.critrevonc.2023.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Malignant ascites occurs as a symptom of the terminal stage of cancer, affecting the quality of life through abdominal distension, pain, nausea, anorexia, dyspnea and other symptoms. We describe the current main drug treatments in addition to surgery according to the traditional and new strategies. Traditional treatments were based on anti-tumor chemotherapy and traditional Chinese medicine treatments, as well as diuretics to relieve the patient's symptoms. New treatments mainly involve photothermal therapy, intestinal therapy and targeted immunity. This study emphasizes that both traditional and new therapies have certain advantages and disadvantages, and medication should be adjusted according to different periods of use and different patients. In conclusion, this article reviews the literature to systematically describe the primary treatment modalities for malignant ascites.
Collapse
Affiliation(s)
- Yiqiu Wang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunting Sun
- Hangzhou TCM Hospital Afflitiated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311121, China.
| | - Xinyue Li
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaoli Yu
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Keying Zhang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinglei Liu
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao Du
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shuling Wang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
7
|
Kim HI, Lee SH, Shin SJ, Park JH, Yu JE, Lee SW, Yang SH, Pires L, Wilson BC. Phonozen-mediated photodynamic therapy comparing two wavelengths in a mouse model of peritoneal carcinomatosis. Photochem Photobiol Sci 2023; 22:2563-2572. [PMID: 37632684 DOI: 10.1007/s43630-023-00470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND This study assessed the therapeutic efficacy of intraperitoneal photodynamic therapy (PDT) using photosensitizer activation at two different wavelengths, 405 and 664 nm, in a mouse model of peritoneal carcinomatosis. METHODS The dark and light cytotoxicity of chlorin e6-polyvinylpyrrolidone (Phonozen) were measured in vitro under 402 ± 14 and 670 ± 18 nm LED activation in bioluminescent human gastric cancer cells, MKN45-luc. Cell viability was measured at 6 h after irradiation using the PrestoBlue assay. Corresponding in vivo studies were performed in athymic nude mice by intraperitoneal injection of 1 × 106 MKN45-luc cells. PDT was performed 10 d after tumor induction and comprised intraperitoneal injection of Phonozen followed by light irradiation at 3 h, delivered by a diffusing-tip optical fiber placed in the peritoneal cavity and coupled to a 405 or 664 nm diode laser to deliver a total energy of 50 J (20 mice per cohort). Whole-body bioluminescence imaging was used to track the tumor burden after PDT out to 130 days, and 5 mice in each cohort were sacrificed at 4 h post treatment to measure the acute tumor necrosis. RESULTS Photosensitizer dose-dependent photocytotoxicity was higher in vitro at 405 than 664 nm. In vivo, PDT reduced the tumor growth rate at both wavelengths, with no statistically significant difference. There was substantial necrosis, and median survival was significantly prolonged at both wavelengths compared with controls (46 and 46 vs. 34 days). CONCLUSIONS Phonozen-mediated PDT results in significant cytotoxicity in vitro as well as tumor necrosis and prolonged survival in vivo following intraperitoneal light irradiation. Blue light was more photocytotoxic than red in vitro and had marginally higher efficacy in vivo.
Collapse
Affiliation(s)
- Hyoung-Il Kim
- Princess Margaret Cancer Research Tower, University Health Network, 15-314, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Surgery, Yonsei University College of Medicine, Seoul, South Korea
- Division of Upper Gastrointestinal Surgery, Gastric Cancer Center, Yonsei Cancer Center, Seoul, South Korea
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Ho Lee
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Su-Jin Shin
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Hyun Park
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
- Department of Nano-Science and Technology, Graduate School of Convergence Science and Technology of Seoul National University, Seoul, South Korea
| | - Jae Eun Yu
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Won Lee
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Hee Yang
- Yonsei-Dongsung Photodynamic Therapy Research Center, Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Layla Pires
- Princess Margaret Cancer Research Tower, University Health Network, 15-314, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Research Tower, University Health Network, 15-314, 101 College Street, Toronto, ON, M5G 1L7, Canada.
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Braet H, Fransen PP, Mariën R, Lollo G, Ceelen W, Vervaet C, Balcaen L, Vanhaecke F, Vanhove C, van der Vegte S, Gasthuys E, Vermeulen A, Dankers PYW, De Smedt SC, Remaut K. CO 2-Driven Nebulization of pH-Sensitive Supramolecular Polymers for Intraperitoneal Hydrogel Formation and the Treatment of Peritoneal Metastasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49022-49034. [PMID: 37819736 DOI: 10.1021/acsami.3c11274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Because peritoneal metastasis (PM) from ovarian cancer is characterized by non-specific symptoms, it is often diagnosed at advanced stages. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) can be considered a promising drug delivery method for unresectable PM. Currently, the efficacy of intraperitoneal (IP) drug delivery is limited by the off-label use of IV chemotherapeutic solutions, which are rapidly cleared from the IP cavity. Hence, this research aimed to improve PM treatment by evaluating a nanoparticle-loaded, pH-switchable supramolecular polymer hydrogel as a controlled release drug delivery system that can be IP nebulized. Moreover, a multidirectional nozzle was developed to allow nebulization of viscous materials such as hydrogels and to reach an even IP gel deposition. We demonstrated that acidification of the nebulized hydrogelator solution by carbon dioxide, used to inflate the IP cavity during laparoscopic surgery, stimulated the in situ gelation, which prolonged the IP hydrogel retention. In vitro experiments indicated that paclitaxel nanocrystals were gradually released from the hydrogel depot formed, which sustained the cytotoxicity of the formulation for 10 days. Finally, after aerosolization of this material in a xenograft model of PM, tumor progression could successfully be delayed, while the overall survival time was significantly increased compared to non-treated animals.
Collapse
Affiliation(s)
- Helena Braet
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
| | | | - Remco Mariën
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Giovanna Lollo
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1, Lyon 69622, France
| | - Wim Ceelen
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent 9000, Belgium
| | - Chris Vervaet
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
| | - Lieve Balcaen
- Department of Chemistry, Ghent University, Ghent 9000, Belgium
| | - Frank Vanhaecke
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
- Department of Chemistry, Ghent University, Ghent 9000, Belgium
| | - Christian Vanhove
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
- Department of Electronics and Information Systems, Ghent University, Ghent 9000, Belgium
| | | | - Elke Gasthuys
- Department of Bioanalysis, Ghent University, Ghent 9000, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Ghent University, Ghent 9000, Belgium
| | - Patricia Y W Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Stefaan C De Smedt
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
| | - Katrien Remaut
- Department of Pharmaceutics, Ghent University, Ghent 9000, Belgium
- CRIG - Cancer Research Institute Ghent, Ghent 9000, Belgium
| |
Collapse
|
9
|
Ara MG, Motalleb G, Velasco B, Rahdar A, Taboada P. Antineoplastic effect of paclitaxel-loaded polymeric nanocapsules on malignant human ovarian carcinoma cells (SKOV-3). J Mol Liq 2023; 384:122190. [DOI: 10.1016/j.molliq.2023.122190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
|
10
|
Breusa S, Zilio S, Catania G, Bakrin N, Kryza D, Lollo G. Localized chemotherapy approaches and advanced drug delivery strategies: a step forward in the treatment of peritoneal carcinomatosis from ovarian cancer. Front Oncol 2023; 13:1125868. [PMID: 37287910 PMCID: PMC10242058 DOI: 10.3389/fonc.2023.1125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Peritoneal carcinomatosis (PC) is a common outcome of epithelial ovarian carcinoma and is the leading cause of death for these patients. Tumor location, extent, peculiarities of the microenvironment, and the development of drug resistance are the main challenges that need to be addressed to improve therapeutic outcome. The development of new procedures such as HIPEC (Hyperthermic Intraperitoneal Chemotherapy) and PIPAC (Pressurized Intraperitoneal Aerosol Chemotherapy) have enabled locoregional delivery of chemotherapeutics, while the increasingly efficient design and development of advanced drug delivery micro and nanosystems are helping to promote tumor targeting and penetration and to reduce the side effects associated with systemic chemotherapy administration. The possibility of combining drug-loaded carriers with delivery via HIPEC and PIPAC represents a powerful tool to improve treatment efficacy, and this possibility has recently begun to be explored. This review will discuss the latest advances in the treatment of PC derived from ovarian cancer, with a focus on the potential of PIPAC and nanoparticles in terms of their application to develop new therapeutic strategies and future prospects.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon, Institut national de santé et de la recherche médicale (INSERM) U1052-Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Sociétés d'Accélération du Transfert de Technologies (SATT) Ouest Valorisation, Rennes, France
| | - Giuseppina Catania
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| | - Naoual Bakrin
- Department of Surgical Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
- Centre pour l'Innovation en Cancérologie de Lyon (CICLY), Claude Bernard University Lyon 1, Lyon, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Imthernat Plateform, Hospices Civils de Lyon, Lyon, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| |
Collapse
|
11
|
Milano F, Masi A, Madaghiele M, Sannino A, Salvatore L, Gallo N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051499. [PMID: 37242741 DOI: 10.3390/pharmaceutics15051499] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.
Collapse
Affiliation(s)
- Francesca Milano
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 113, 73021 Calimera, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
12
|
Ruan L, Su M, Qin X, Ruan Q, Lang W, Wu M, Chen Y, Lv Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio 2022; 16:100394. [PMID: 36042853 PMCID: PMC9420381 DOI: 10.1016/j.mtbio.2022.100394] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2023] Open
Abstract
Sustained-release drug-loaded microspheres provide a long-acting sustained release, with targeted and other effects. There are many types of sustained-release drug microspheres and various preparation methods, and they are easy to operate. For these reasons, they have attracted widespread interest and are widely used in tissue engineering and other fields. In this paper, we provide a systematic review of the application of sustained-release drug microspheres in tissue engineering. First, we introduce this new type of drug delivery system (sustained-release drug carriers), describe the types of sustained-release drug microspheres, and summarize the characteristics of different microspheres. Second, we summarize the preparation methods of sustained-release drug microspheres and summarize the materials required for preparing microspheres. Third, various applications of sustained-release drug microspheres in tissue engineering are summarized. Finally, we summarize the shortcomings and discuss future prospects in the development of sustained-release drug microspheres. The purpose of this paper was to provide a further systematic understanding of the application of sustained-release drug microspheres in tissue engineering for the personnel engaged in related fields and to provide inspiration and new ideas for studies in related fields.
Collapse
Affiliation(s)
- Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Xinyun Qin
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qingting Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, 537000, China
| |
Collapse
|
13
|
Sabatelle RC, Liu R, Hung YP, Bressler E, Neal EJ, Martin A, Ekladious I, Grinstaff MW, Colson YL. Ultra-high drug loading improves nanoparticle efficacy against peritoneal mesothelioma. Biomaterials 2022; 285:121534. [PMID: 35487067 PMCID: PMC9881475 DOI: 10.1016/j.biomaterials.2022.121534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/31/2023]
Abstract
Peritoneal mesothelioma is an aggressive disease with a median survival of under three years, due to a lack of effective treatment options. Mesothelioma is traditionally considered a "chemoresistant" tumor; however, low intratumoral drug levels coupled with the inability to administer high systemic doses suggests that therapeutic resistance may be due to poor drug delivery rather than inherent biology. While patient survival may improve with repetitive local intraperitoneal infusions of chemotherapy throughout the perioperative period, these regimens carry associated toxicities and significant peri-operative morbidity. To circumvent these issues, we describe ultra-high drug loaded nanoparticles (NPs) composed of a unique poly(1,2-glycerol carbonate)-graft-succinate-paclitaxel (PGC-PTX + PTX) conjugate. PGC-PTX + PTX NPs are cytotoxic, localize to tumor in vivo, and improve survival in a murine model of human peritoneal mesothelioma after a single intraperitoneal (IP) injection compared to multiple weekly doses of the clinically utilized formulation PTX-C/E. Given their unique pharmacokinetics, a second intraperitoneal dose of PGC-PTX + PTX NPs one month later more than doubles the overall survival compared to the clinical control (122 versus 58 days). These results validate the clinical potential of prolonged local paclitaxel to treat intracavitary malignancies such as mesothelioma using a tailored polymer-mediated nanoparticle formulation.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA
| | - Rong Liu
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Yin P. Hung
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Eric Bressler
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA
| | - Eliza J. Neal
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Andrew Martin
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA
| | - Iriny Ekladious
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA,Corresponding Authors: Mark W. Grinstaff, , Yolonda L. Colson,
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA,Corresponding Authors: Mark W. Grinstaff, , Yolonda L. Colson,
| |
Collapse
|
14
|
Genipin, an Inhibitor of UCP2 as a Promising New Anticancer Agent: A Review of the Literature. Int J Mol Sci 2022; 23:ijms23105637. [PMID: 35628447 PMCID: PMC9147402 DOI: 10.3390/ijms23105637] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/29/2022] Open
Abstract
Genipin is a protein cross-linking agent extracted from Gardenia (Gardenia jasminoides Ellis) fruits. This fruit has conventionally been used as a Chinese herbal medicine for the treatment of inflammation and jaundice and as an edible colorant in oriental countries. Uncoupling protein (UCP)-2 is a member of the family of uncoupling proteins, which are anion transporters positioned in the mitochondrial inner membrane. Genipin has been shown to have hepatoprotective activity, acting as an effective antioxidant and inhibitor of mitochondrial UCP2, and is also reported to exert significant anticancer effects. In this review, the author presents the latest progress of genipin as an anticancer agent and concisely describes its various mechanisms of action. In brief, genipin inhibits UCP2 to attenuate generation of reactive oxygen species (ROS), leading to ROS/c-Jun N-terminal kinase-dependent apoptosis of cancer cells. Genipin also increases the tissue inhibitors of matrix metalloproteases (MMP)-2, a kind of tumor promoter in a variety of cancers, as well as induces caspase-dependent apoptosis in in vitro and in vivo models. These findings suggest that genipin can serve as a promising novel antitumor agent that could be applicable for chemotherapy and/or chemoprevention for cancers.
Collapse
|
15
|
Braet H, Rahimi-Gorji M, Debbaut C, Ghorbaniasl G, Van Walleghem T, Cornelis S, Cosyns S, Vervaet C, Willaert W, Ceelen W, De Smedt SC, Remaut K. Exploring High Pressure Nebulization of Pluronic F127 Hydrogels for Intraperitoneal Drug Delivery. Eur J Pharm Biopharm 2021; 169:134-143. [PMID: 34634467 DOI: 10.1016/j.ejpb.2021.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Peritoneal metastasis is an advanced cancer type which can be treated with pressurized intraperitoneal aerosol chemotherapy (PIPAC). Here, chemotherapeutics are nebulized under high pressure in the intraperitoneal (IP) cavity to obtain a better biodistribution and tumor penetration. To prevent the fast leakage of chemotherapeutics from the IP cavity, however, nebulization of controlled release formulations is of interest. In this study, the potential of the thermosensitive hydrogel Pluronic F127 to be applied by high pressure nebulization is evaluated. Therefore, aerosol formation is experimentally examined by laser diffraction and theoretically simulated by computational fluid dynamics (CFD) modelling. Furthermore, Pluronic F127 hydrogels are subjected to rheological characterization after which the release of fluorescent model nanoparticles from the hydrogels is determined. A delicate equilibrium is observed between controlled release properties and suitability for aerosolization, where denser hydrogels (20% and 25% w/v Pluronic F127) are able to sustain nanoparticle release up to 30 hours, but cannot effectively be nebulized and vice versa. This is demonstrated by a growing aerosol droplet size and exponentially decreasing aerosol cone angle when Pluronic F127 concentration and viscosity increase. Novel nozzle designs or alternative controlled release formulations could move intraperitoneal drug delivery by high pressure nebulization forward.
Collapse
Affiliation(s)
- Helena Braet
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium.
| | - Mohammad Rahimi-Gorji
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium; IBiTech - bioMMeda, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium; Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Charlotte Debbaut
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium; IBiTech - bioMMeda, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Ghader Ghorbaniasl
- Department of Mechanical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, 1050, Belgium.
| | - Thibault Van Walleghem
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Senne Cornelis
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium
| | - Sarah Cosyns
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium; Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium.
| | - Wouter Willaert
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium; Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium; Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, Ghent, 9000, Belgium.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium.
| | - Katrien Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, Ghent, 9000, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Corneel Heymanslaan 10, Ghent, 9000 Belgium.
| |
Collapse
|
16
|
7-Epitaxol Induces Apoptosis and Autophagy in Head and Neck Squamous Cell Carcinoma through Inhibition of the ERK Pathway. Cells 2021; 10:cells10102633. [PMID: 34685613 PMCID: PMC8534141 DOI: 10.3390/cells10102633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
As the main derivative of paclitaxel, 7-Epitaxol is known to a have higher stability and cytotoxicity. However, the anticancer effect of 7-Epitaxol is still unclear. The purpose of this study was to explore the anticancer effects of 7-Epitaxol in squamous cell carcinoma of the head and neck (HNSCC). Our study findings revealed that 7-Epitaxol potently suppressed cell viability in SCC-9 and SCC-47 cells by inducing cell cycle arrest. Flow cytometry and DAPI staining demonstrated that 7-Epitaxol treatment induced cell death, mitochondrial membrane potential and chromatin condensation in OSCC cell lines. The compound regulated the proteins of extrinsic and intrinsic pathways at the highest concentration, and also increased the activation of caspases 3, 8, 9, and PARP in OSCC cell lines. Interestingly, a 7-Epitaxol-mediated induction of LC3-I/II expression and suppression of p62 expression were observed in OSCC cells lines. Furthermore, the MAPK inhibitors indicated that 7-Epitaxol induces apoptosis and autophagy marker proteins (cleaved-PARP and LC3-I/II) by reducing the phosphorylation of ERK1/2. In conclusion, these findings indicate the involvement of 7-Epitaxol in inducing apoptosis and autophagy through ERK1/2 signaling pathway, which identify 7-Epitaxol as a potent cytotoxic agent in HNSCC.
Collapse
|
17
|
Hazra RS, Dutta D, Mamnoon B, Nair G, Knight A, Mallik S, Ganai S, Reindl K, Jiang L, Quadir M. Polymeric Composite Matrix with High Biobased Content as Pharmaceutically Relevant Molecular Encapsulation and Release Platform. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40229-40248. [PMID: 34423963 DOI: 10.1021/acsami.1c03805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug delivery systems (DDS) that can temporally control the rate and extent of release of therapeutically active molecules find applications in many clinical settings, ranging from infection control to cancer therapy. With an aim to design a locally implantable, controlled-release DDS, we demonstrated the feasibility of using cellulose nanocrystal (CNC)-reinforced poly (l-lactic acid) (PLA) composite beads. The performance of the platform was evaluated using doxorubicin (DOX) as a model drug for applications in triple-negative breast cancer. A facile, nonsolvent-induced phase separation (NIPS) method was adopted to form composite beads. We observed that CNC loading within these beads played a critical role in the mechanical stability, porosity, water uptake, diffusion, release, and pharmacological activity of the drug from the delivery system. When loaded with DOX, composite beads significantly controlled the release of the drug in a pH-dependent pattern. For example, PLA/CNC beads containing 37.5 wt % of CNCs showed a biphasic release of DOX, where 41 and 82% of the loaded drug were released at pH 7.4 and pH 5.5, respectively, over 7 days. Drug release followed Korsmeyer's kinetics, indicating that the release mechanism was mostly diffusion and swelling-controlled. We showed that DOX released from drug-loaded PLA/CNC composite beads locally suppressed the growth and proliferation of triple-negative breast cancer cells, MBA-MB-231, via the apoptotic pathway. The efficacy of the DDS was evaluated in human tissue explants. We envision that such systems will find applications for designing biobased platforms with programmed stability and drug delivery functions.
Collapse
Affiliation(s)
- Raj Shankar Hazra
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Babak Mamnoon
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Gauthami Nair
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Austin Knight
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sabha Ganai
- Division of Surgical Oncology, Sanford Research, Fargo, North Dakota 58122, United States
| | - Katie Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
18
|
Faria RS, de Lima LI, Bonadio RS, Longo JPF, Roque MC, de Matos Neto JN, Moya SE, de Oliveira MC, Azevedo RB. Liposomal paclitaxel induces apoptosis, cell death, inhibition of migration capacity and antitumoral activity in ovarian cancer. Biomed Pharmacother 2021; 142:112000. [PMID: 34426249 DOI: 10.1016/j.biopha.2021.112000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
The main goal of this study is to evaluate the efficacy of the paclitaxel (PTX) drug formulated with a liposomal nanosystem (L-PTX) in a peritoneal carcinomatosis derived from ovarian cancer. In vitro cell viability studies with the human ovarian cancer line A2780 showed a 50% decrease in the inhibitory concentration for L-PTX compared to free PTX. A2780 cells treated with the L-PTX formulation demonstrated a reduced capacity to form colonies in comparison to those treated with PTX. Cell death following L-PTX administration hinted at apoptosis, with most cells undergoing initial apoptosis. A2780 cells exhibited an inhibitory migration profile when analyzed by Wound Healing and real-time cell analysis (xCELLigence) methods after L-PTX administration. This inhibition was related to decreased expression of the zinc finger E-box-binding homeobox 1 (ZEB1) and transforming growth factor 2 (TGF-β2) genes. In vivoL-PTX administration strongly inhibited tumor cell proliferation in ovarian peritoneal carcinomatosis derived from ovarian cancer, indicating higher antitumor activity than PTX. L-PTX formulation did not show toxicity in the mice model. This study demonstrated that liposomal paclitaxel formulations are less toxic to normal tissues than free paclitaxel and are more effective in inhibiting tumor cell proliferation/migration and inducing ZEB1/TGF-β2 gene expression.
Collapse
Affiliation(s)
- Raquel Santos Faria
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Luiza Ianny de Lima
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Raphael Severino Bonadio
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil
| | - João Paulo Figueiró Longo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Marjorie Coimbra Roque
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - João Nunes de Matos Neto
- Cettro - Centro de Câncer de Brasília e Instituto Unity de Ensino e Pesquisa, Edifício de Clínicas - SMH/N Quadra 02, 12º Andar - Asa Norte, Brasília, DF 70710-904, Brasília, DF, Brazil
| | - Sergio Enrique Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, San Sebastian, Guipúzcoa, Spain
| | - Mônica Cristina de Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Ricardo Bentes Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
19
|
Omtvedt LA, Kristiansen KA, Strand WI, Aachmann FL, Strand BL, Zaytseva-Zotova DS. Alginate hydrogels functionalized with β-cyclodextrin as a local paclitaxel delivery system. J Biomed Mater Res A 2021; 109:2625-2639. [PMID: 34190416 DOI: 10.1002/jbm.a.37255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022]
Abstract
Modification of drug delivery materials with beta-cyclodextrins (β-CyD) is known to increase solubility of poorly water-soluble drugs, protect drugs from degradation and sustain release. In this study, we developed a hydrogel drug delivery system for local paclitaxel delivery using the natural polysaccharide alginate functionalized with β-CyD-moieties. Paclitaxel was chosen due to its ability to form inclusion complexes with cyclodextrins. The rheological and mechanical properties of the prepared hydrogels were characterized, as well as in vitro release of the paclitaxel and in vitro activity on PC-3 prostate cancer cells. Introduction of β-CyD-moieties into the hydrogel reduces the mechanical properties of the gels compared to nonmodified gels. However, gelation kinetics were not markedly different. Furthermore, the β-CyD-modified alginate helped to reduce undesired crystallization of the paclitaxel in the gel and facilitated paclitaxel diffusion out of the gel network. Remarkably, the β-CyD grafted alginate showed increased capacity to complex paclitaxel compared to free HPβ-CyD. Release of both paclitaxel and degradation products were measured from the gels and were shown to have cytotoxic effects on the PC-3 cells. The results indicate that functionalized alginate with β-CyDs has potential as a material for drug delivery systems.
Collapse
Affiliation(s)
- Line Aanerud Omtvedt
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Kåre Andre Kristiansen
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche Iren Strand
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Finn Lillelund Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Berit Løkensgard Strand
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Daria Sergeevna Zaytseva-Zotova
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
20
|
Fei Y, Wang Y, Wu S, Shen F, Fan G. Evaluation of the efficacy and safety of a new formulation-lipid emulsion-based PTX injection: Pharmacokinetics, tissue distributions and anticancer effect on human gastric cancer cells in vitro. Biomed Chromatogr 2021; 35:e5107. [PMID: 33651440 DOI: 10.1002/bmc.5107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/23/2022]
Abstract
Paclitaxel (PTX) is one of the most widely used chemotherapeutic agents. The commercial PTX formulation was based on Cremophor EL and ethanol owing to its poor aqueous solubility. However, Cremophor EL has been shown to cause toxic effects such as life-threatening anaphylaxis. In our study, we diluted PTX in a commercially available 20% (w/v) lipid emulsion (Lip-PTX) in order to avoid Cremophor EL. The purpose of this study was to evaluate the pharmacokinetics and tissue distributions between Lip-PTX and PTX injection. We also investigated the effects of Lip-PTX and PTX injection on human gastric cancer cells HGC-27 by MTT assay. The apoptosis was detected by flow cytometry with Annexin V/propidium iodide (PI) double staining. Furthermore, the safety such as acute toxicity was also assessed. The results showed that PTX in Sprague-Dawley rats administered Lip-PTX exhibited extended half-life, increased clearance (P < 0.05) and smaller area under the concentration-time curve compared with PTX injection and there was little significant difference in the distribution of PTX in Sprague-Dawley rats or tumor-bearing mice between Lip-PTX and PTX injection. The cells treated with Lip-PTX had a higher percentage of apoptosis and a higher G2 /M phase ratio, which indicated that the anticancer effect of Lip-PTX was significantly better than that of PTX injection. Moreover, our study highlighted the safety of Lip-PTX. This study demonstrated the feasibility and potential advantages of Lip-PTX for clinical therapy.
Collapse
Affiliation(s)
- Yibo Fei
- Tongji University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University school of medicine, Shanghai, China
| | - Yuanyuan Wang
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University school of medicine, Shanghai, China
| | - Shengyuan Wu
- Tongji University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University school of medicine, Shanghai, China
| | - Fuming Shen
- Tongji University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University school of medicine, Shanghai, China
| | - Guorong Fan
- Tongji University School of Medicine, Shanghai, China.,Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
21
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
22
|
Zhang Y, Liu Y, Wang N, Liu H, Gou J, He H, Zhang Y, Yin T, Wang Y, Tang X. Preparation of mPEG-b-PLA/TM-2 Micelle Lyophilized Products by Mixed Lyoprotectors and Antitumor Effect In Vivo. AAPS PharmSciTech 2021; 22:38. [PMID: 33409712 DOI: 10.1208/s12249-020-01885-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to encapsulate the poorly water-soluble drug TM-2 into polymer micelles using mPEG2k-b-PLA2.4k to increase its aqueous solubility and improve its therapeutic effect for liver cancer. Furthermore, in order to achieve long-term storage, the micelle solution was successfully freeze-dried. This study theoretically clarified the possibility of enhancing the water solubility of TM-2 using mPEG2k-b-PLA2.4k micelles as well as the protective effects of mixed lyoprotectants. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were performed, which showed that the drug has a good affinity with the polymer (χ = 0.489) according to Flory-Huggins theory and that lyoprotectants reduced the crystallinity of PEG in mPEG2k-b-PLA2.4k and played a space-protective role in the lyophilization process. In vivo experiments showed that micellization could improve the drug bioavailability and give a high therapeutic effect with a tumor inhibition rate of 84.5% under the tolerated dose.
Collapse
|
23
|
Roy P, Mignet N, Pocard M, Boudy V. Drug delivery systems to prevent peritoneal metastasis after surgery of digestives or ovarian carcinoma: A review. Int J Pharm 2021; 592:120041. [DOI: 10.1016/j.ijpharm.2020.120041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
|