1
|
Sun L, Ghouri F, Jin J, Zhong M, Huang W, Lu Z, Wu J, Liu X, Shahid MQ. Interspecific Hybridization Enhanced Tolerance to Salinity and Cadmium Stress Through Modifying Biochemical, Physiological, and Resistance Gene Levels, Especially in Polyploid Rice: A Sustainable Way for Stress-Resilient Rice. RICE (NEW YORK, N.Y.) 2025; 18:19. [PMID: 40119027 PMCID: PMC11928717 DOI: 10.1186/s12284-025-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
Polyploid plants exhibit strong resistance to salt and cadmium (Cd) stress, which can adversely affect their growth, reducing crop quality and yield. Transcriptome analysis, antioxidant enzymatic activities, physiological measurements of reactive oxygen species, and heterosis analysis were performed on hybrids with neo-tetraploid rice and its progenitors. The results showed that diploid hybrids had fluctuating yields in early and late seasons, while tetraploid hybrids had consistent grain yield throughout. Transcriptome analysis revealed that gene expression related to sugar metabolism processes increased in tetraploid hybrids. Transcriptome analysis revealed several genes associated with heterosis and stress, including OsEAF6, which is associated with heterosis, and OsCIPK14, which is involved in defense signalling pathways. Furthermore, compared to the parents, hybrids have a much higher number of genes associated with abiotic stress. Consequently, diploid and tetraploid hybrids were treated with Cd (0 and 100 µM) and NaCl (200 mM) in the present study. Under Cd toxicity, the levels of carotenoids were reduced by 33.31% and 45.59%, while the levels of chlorophyll a declined by 16.00% and 27.81% in tetraploid and diploid hybrids, respectively, compared to the control. Tetraploid hybrids had the highest germination rate under salt stress and the lowest Cd uptake compared to diploid hybrids and their parents. In general, the activities of antioxidant enzymes exhibited a considerable drop, whereas the levels of H2O2 and MDA showed a remarkable increase in parents compared to hybrids. Under cadmium toxicity, the expression of OsERF1 in tetraploid rice was increased, and OsABCC1 and OsHMA3 were highly expressed in neo-tetraploid rice. Interspecific hybrid (indica and japonica) displayed enhanced tolerance to cadmium and salinity stress, potentially serving as a natural resource to improve rice resilience. These findings provide a basis for understanding polyploid rice's gene expression pattern, environmental tolerance, and heterosis.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiacheng Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Weicong Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Tp MA, Kumar A, Anilkumar C, Sah RP, Behera S, Marndi BC. Understanding natural genetic variation for grain phytic acid content and functional marker development for phytic acid-related genes in rice. BMC PLANT BIOLOGY 2022; 22:446. [PMID: 36114452 PMCID: PMC9482188 DOI: 10.1186/s12870-022-03831-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The nutritional value of rice can be improved by developing varieties with optimum levels of grain phytic acid (PA). Artificial low-PA mutants with impaired PA biosynthesis have been developed in rice through induced mutagenesis. However, low-PA mutant stocks with drastically reduced grain PA content have poor breeding potential, and their use in rice breeding is restricted due to their detrimental pleiotropic effects, which include decreased seed viability, low grain weight, and low seed yield. Therefore, it is necessary to take advantage of the natural variation in grain PA content in order to reduce the PA content to an ideal level without compromising the crop's agronomic performance. Natural genetic diversity in grain PA content has not been thoroughly examined among elite genetic stocks. Additionally, given grain PA content as a quantitative trait driven by polygenes, DNA marker-assisted selection may be required for manipulation of such a trait; however, informative DNA markers for PA content have not yet been identified in rice. Here we investigated and dissected natural genetic variation and genetic variability components for grain PA content in rice varieties cultivated in Eastern and North-Eastern India during the last 50 years. We developed novel gene-based markers for the low-PA-related candidate genes in rice germplasm, and their allelic diversity and association with natural variation in grain PA content were studied. RESULTS A wide (0.3-2.8%), significant variation for grain PA content, with decade-wise and ecology-wise differences, was observed among rice varieties. Significant genotype x environment interaction suggested polygenic inheritance. The novel candidate gene-based markers detected 43 alleles in the rice varieties. The new markers were found highly informative as indicated by PIC values (0.11-0.65; average: 0.34) and coverage of total diversity. Marker alleles developed from two putative transporter genes viz., SPDT and OsPT8 were significantly associated with grain PA variation assayed on the panel. A 201 bp allele at the 3' UTR of SPDT gene was negatively associated with grain PA content and explained 7.84% of the phenotypic variation. A rare allele in the coding sequence of OsPT8 gene was positively associated with grain PA content which explained phenotypic variation of 18.49%. CONCLUSION Natural variation in grain PA content is substantial and is mostly controlled by genetic factors. The unique DNA markers linked with PA content have significant potential as genomic resources for the development of low-PA rice varieties through genomics-assisted breeding procedures.
Collapse
Affiliation(s)
| | - Awadhesh Kumar
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Chandrappa Anilkumar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Rameswar Prasad Sah
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - Sasmita Behera
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Bishnu Charan Marndi
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| |
Collapse
|
3
|
Wang W, Xie Y, Liu L, King GJ, White P, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3375-3390. [PMID: 35275483 DOI: 10.1021/acs.jafc.1c06831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Breeding low phytic acid (lpa) crops is a strategy that has potential to both improve the nutritional quality of food and feed and contribute to the sustainability of agriculture. Here, we review the lipid-independent and -dependent pathways of phytate synthesis and their regulatory mechanisms in plants. We compare the genetic variation of the phytate concentration and distribution in seeds between dicot and monocot species as well as the associated temporal and spatial expression patterns of the genes involved in phytate synthesis and transport. Quantitative trait loci or significant single nucleotide polymorphisms for the seed phytate concentration have been identified in different plant species by linkage and association mapping, and some genes have been cloned from lpa mutants. We summarize the effects of various lpa mutations on important agronomic traits in crop plants and propose SULTR3;3 and SULTR3;4 as optimal target genes for lpa crop breeding.
Collapse
Affiliation(s)
- Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yiwen Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore New South Wales 2480, Australia
| | - Philip White
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Hongmei Cai
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Chuang Wang
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- Microelement Research Center, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
4
|
Horiguchi G, Matsumoto K, Nemoto K, Inokuchi M, Hirotsu N. Transition From Proto-Kranz-Type Photosynthesis to HCO 3 - Use Photosynthesis in the Amphibious Plant Hygrophila polysperma. FRONTIERS IN PLANT SCIENCE 2021; 12:675507. [PMID: 34220895 PMCID: PMC8242947 DOI: 10.3389/fpls.2021.675507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Hygrophila polysperma is a heterophyllous amphibious plant. The growth of H. polysperma in submerged conditions is challenging due to the low CO2 environment, increased resistance to gas diffusion, and bicarbonate ion (HCO3 -) being the dominant dissolved inorganic carbon source. The submerged leaves of H. polysperma have significantly higher rates of underwater photosynthesis compared with the terrestrial leaves. 4,4'-Diisothiocyanatostilbene-2,2'-disulfonate (DIDS), an anion exchanger protein inhibitor, and ethoxyzolamide (EZ), an inhibitor of internal carbonic anhydrase, repressed underwater photosynthesis by the submerged leaves. These results suggested that H. polysperma acclimates to the submerged condition by using HCO3 - for photosynthesis. H. polysperma transports HCO3 - into the leaf by a DIDS-sensitive HCO3 - transporter and converted to CO2 by carbonic anhydrase. Additionally, proteome analysis revealed that submerged leaves accumulated fewer proteins associated with C4 photosynthesis compared with terrestrial leaves. This finding suggested that H. polysperma is capable of C4 and C3 photosynthesis in the terrestrial and submerged leaves, respectively. The ratio of phosphoenol pyruvate carboxylase to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the submerged leaves was less than that in the terrestrial leaves. Upon anatomical observation, the terrestrial leaves exhibited a phenotype similar to the Kranz anatomy found among C4 plants; however, chloroplasts in the bundle sheath cells were not located adjacent to the vascular bundles, and the typical Kranz anatomy was absent in submerged leaves. These results suggest that H. polysperma performs proto-Kranz type photosynthesis in a terrestrial environment and shifts from a proto-Kranz type in terrestrial leaves to a HCO3 - use photosynthesis in the submerged environments.
Collapse
Affiliation(s)
- Genki Horiguchi
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | | | - Kyosuke Nemoto
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Mayu Inokuchi
- Faculty of Life Sciences, Toyo University, Gunma, Japan
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
- Faculty of Life Sciences, Toyo University, Gunma, Japan
| |
Collapse
|
5
|
Gil J, Andrade-Martínez JS, Duitama J. Accurate, Efficient and User-Friendly Mutation Calling and Sample Identification for TILLING Experiments. Front Genet 2021; 12:624513. [PMID: 33613641 PMCID: PMC7886796 DOI: 10.3389/fgene.2021.624513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful reverse genetics method in plant functional genomics and breeding to identify mutagenized individuals with improved behavior for a trait of interest. Pooled high throughput sequencing (HTS) of the targeted genes allows efficient identification and sample assignment of variants within genes of interest in hundreds of individuals. Although TILLING has been used successfully in different crops and even applied to natural populations, one of the main issues for a successful TILLING experiment is that most currently available bioinformatics tools for variant detection are not designed to identify mutations with low frequencies in pooled samples or to perform sample identification from variants identified in overlapping pools. Our research group maintains the Next Generation Sequencing Experience Platform (NGSEP), an open source solution for analysis of HTS data. In this manuscript, we present three novel components within NGSEP to facilitate the design and analysis of TILLING experiments: a pooled variants detector, a sample identifier from variants detected in overlapping pools and a simulator of TILLING experiments. A new implementation of the NGSEP calling model for variant detection allows accurate detection of low frequency mutations within pools. The samples identifier implements the process to triangulate the mutations called within overlapping pools in order to assign mutations to single individuals whenever possible. Finally, we developed a complete simulator of TILLING experiments to enable benchmarking of different tools and to facilitate the design of experimental alternatives varying the number of pools and individuals per pool. Simulation experiments based on genes from the common bean genome indicate that NGSEP provides similar accuracy and better efficiency than other tools to perform pooled variants detection. To the best of our knowledge, NGSEP is currently the only tool that generates individual assignments of the mutations discovered from the pooled data. We expect that this development will be of great use for different groups implementing TILLING as an alternative for plant breeding and even to research groups performing pooled sequencing for other applications.
Collapse
Affiliation(s)
- Juanita Gil
- Systems and Computing Engineering Department, Universidad de Los Andes, Bogotá, Colombia
| | - Juan Sebastian Andrade-Martínez
- Research Group on Computational Biology and Microbial Ecology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia.,Max Planck Tandem Group in Computational Biology, Universidad de Los Andes, Bogotá, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
6
|
Fukushima A, Uchino G, Akabane T, Aiseki A, Perera I, Hirotsu N. Phytic Acid in Brown Rice Can Be Reduced by Increasing Soaking Temperature. Foods 2020; 10:foods10010023. [PMID: 33374851 PMCID: PMC7824421 DOI: 10.3390/foods10010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/23/2022] Open
Abstract
Phytic acid (PA) is a storage form of phosphorus in seeds. Phytase enzyme is activated at germination and hydrolyses PA into myo-inositol and inorganic phosphate. PA inhibits the absorption of minerals in the human intestine by chelation. Its degradation, therefore, is a key factor to improve mineral bioavailability in rice. Germinated brown rice (GBR) is favoured because it improves the availability of nutrients, and thus have a positive effect on health. In this study, we show the effects of soaking temperature on phytase activity and PA content in GBR. Rice phytase showed thermostability and its activity peaked at 50 °C. After 36 h of soaking, phytase activity was significantly increased at 50 °C and PA content was significantly decreased, compared to that at 30 °C. Zinc (Zn) analysis revealed that there was no significant difference in Zn content among different temperature treatments. Calculated total daily absorbed Zn (TAZ) was significantly higher in GBR compared with non-soaked seeds. Moreover, brown rice grains germinated at 50 °C showed a higher TAZ value than that at 30 °C. Seed germination and seed water soaking at high temperatures reduce PA content in brown rice showing a potentially effective way to improve mineral bioavailability in brown rice.
Collapse
Affiliation(s)
- Ayaka Fukushima
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (A.F.); (T.A.)
| | - Gun Uchino
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (G.U.); (A.A.)
| | - Tatsuki Akabane
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (A.F.); (T.A.)
| | - Ayaka Aiseki
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (G.U.); (A.A.)
| | - Ishara Perera
- Grain Legume and Oil Crops Research and Development Centre, Department of Agriculture, Angunakolapelessa 82220, Sri Lanka;
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (A.F.); (T.A.)
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (G.U.); (A.A.)
- Correspondence: ; Tel.: +81-276-82-9027
| |
Collapse
|
7
|
Genetic Analysis and Molecular Mapping of the Quantitative Trait Loci Governing Low Phytic Acid Content in a Novel LPA Rice Mutant, PLM11. PLANTS 2020; 9:plants9121728. [PMID: 33302334 PMCID: PMC7762397 DOI: 10.3390/plants9121728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/26/2022]
Abstract
Breeding rice varieties with a low phytic acid (LPA) content is an effective strategy to overcome micronutrient deficiency in a population which consume rice as a staple food. An LPA mutant, Pusa LPA Mutant 11 (PLM11), was identified from an ethyl methane sulfonate (EMS)-induced population of Nagina 22. The present study was carried out to map the loci governing the LPA trait in PLM11 using an F2:3 population derived from a cross between a high phytic acid rice variety, Pusa Basmati 6, with PLM11. The genotyping of the F2 population with 78 polymorphic SSR markers followed by the estimation of phytic acid content in the seeds harvested from 176 F2 plants helped in mapping a major QTL, qLPA8.1, explaining a 22.2% phenotypic variation on Chromosome 8. The QTL was delimited to a 1.96 cM region flanked by the markers RM25 and RM22832. Since there are no previous reports of a QTL/gene governing the LPA content in rice in this region, the QTL qLPA8.1 is a novel QTL. In silico analysis based on the annotated physical map of rice suggested the possible involvement of a locus, Os08g0274775, encoding for a protein similar to a phosphatidylinositol 3- and 4-kinase family member. This needs further validation and fine mapping. Since this QTL is currently specific to PLM11, the linked markers can be utilized for the development of rice varieties with reduced phytic acid (PA) content using PLM11 as the donor, thus enhancing the bioavailability of mineral micronutrients in humans.
Collapse
|
8
|
Basak N, Krishnan V, Pandey V, Punjabi M, Hada A, Marathe A, Jolly M, Palaka BK, Ampasala DR, Sachdev A. Expression profiling and in silico homology modeling of Inositol penta kisphosphate 2-kinase, a potential candidate gene for low phytate trait in soybean. 3 Biotech 2020; 10:268. [PMID: 32523862 DOI: 10.1007/s13205-020-02260-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/14/2020] [Indexed: 11/27/2022] Open
Abstract
Low phytate soybeans are desirable both from a nutritional and economic standpoint. Inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase (IPK1), optimizes the metabolic flux of phytate generation in soybean and thus shows much promise as a likely candidate for pathway regulation. In the present study, the differential spatial and temporal expression profiling of GmIpk1 and its two homologs Glyma06g03310 and Glyma04g03310 were carried out in Glycine max L. var Pusa 9712 revealing the early stages of seed development to be the potential target for gene manipulation. NCBI databank was screened using BLASTp to retrieve 32 plant IPK1 sequences showing high homology to GmIPK1 and its homologs. Bio-computational tools were employed to predict the protein's properties, conserved domains, and secondary structures. Using state-of-the-art in silico physicochemical approach, the three-dimensional (3D) GmIPK1 protein model (PMD ID-PM0079931), was developed based on Arabidopsis thaliana (PDB ID: 4AQK). Superimposition of 4AQK and best model of GmIPK1 revealed that the GmIPK1 aligned well and shows a sequence identity score of 54.32% with 4AQK and a low RMSD of 0.163 nm and almost similar structural features. The modeled structure was further refined considering the stereochemical geometry, energy and packing environment between the model and the template along with validation of its intrinsic dynamics. Molecular dynamics simulation studies of GmIPK1 were carried out to obtain structural insights and to understand the interactive behavior of this enzyme with ligands ADP and IP6. The results of this study provide some fundamental knowledge on the distinct mechanistic step performed by the key residues to elucidate the structure-function relationship of GmIPK1, as an initiative towards engineering "low phytate soybean".
Collapse
Affiliation(s)
- Nabaneeta Basak
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Crop Physiology and Biochemistry Division, ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vanita Pandey
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Quality and Basic Sciences Division, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana 132001 India
| | - Mansi Punjabi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Alkesh Hada
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Ashish Marathe
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
- Biotechnology Lab, ICAR-National Institute of Biotic Stress Management, Raipur, Chattisgarh 493225 India
| | - Monica Jolly
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Dinakara R Ampasala
- Centre for Bioinformatics, Pondicherry University, Puducherry, 605 014 India
| | - Archana Sachdev
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
9
|
Phytic Acid and Mineral Biofortification Strategies: From Plant Science to Breeding and Biotechnological Approaches. PLANTS 2020; 9:plants9050553. [PMID: 32357504 PMCID: PMC7285160 DOI: 10.3390/plants9050553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023]
Abstract
Mineral deficiencies, particularly for iron and zinc, affect over two billion people worldwide, mainly in developing countries where diets are based on the consumption of staple crops. Mineral biofortification includes different approaches aimed to increase mineral concentration and to improve mineral bioavailability in the edible parts of plants, particularly the seeds. A multidisciplinary approach, including agronomic, genetic, physiological, and molecular expertise, is necessary to obtain detailed knowledge of the complex homeostatic mechanisms that tightly regulate seed mineral concentrations and the molecules and mechanisms that determine mineral bioavailability, necessary to reach the biofortification objectives. To increase bioavailability, one strategy is to decrease seed content of phytic acid, a highly electronegative molecule present in the cell that chelates positively charged metal ions, many of which are important for human nutrition. All the contributions of the current Special Issue aim at describing new results, reviewing the literature, and also commenting on some of the economic and sociological aspects concerning biofortification research. A number of contributions are related to the study of mineral transport, seed accumulation, and approaches to increase seed micronutrient concentration. The remaining ones are mainly focused on the study of low phytic acid mutants.
Collapse
|
10
|
Ram H, Gandass N, Sharma A, Singh A, Sonah H, Deshmukh R, Pandey AK, Sharma TR. Spatio-temporal distribution of micronutrients in rice grains and its regulation. Crit Rev Biotechnol 2020; 40:490-507. [DOI: 10.1080/07388551.2020.1742647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hasthi Ram
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Nishu Gandass
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Ankita Sharma
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anmol Singh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Humira Sonah
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Rupesh Deshmukh
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Ajay Kumar Pandey
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Tilak Raj Sharma
- Department of Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| |
Collapse
|
11
|
Fukushima A, Perera I, Hosoya K, Akabane T, Hirotsu N. Genotypic Differences in the Effect of P Fertilization on Phytic Acid Content in Rice Grain. PLANTS 2020; 9:plants9020146. [PMID: 31979223 PMCID: PMC7076419 DOI: 10.3390/plants9020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/25/2022]
Abstract
Phytic acid (PA) prevents the absorption of minerals in the human intestine, and it is regarded as an antinutrient. Low PA rice is beneficial because of its higher Zn bioavailability and it is suggested that the gene expression level of myo-inositol 3-phosphate synthase 1 (INO1) in developing grain is a key factor to explain the genotypic difference in PA accumulation among natural variants of rice. P fertilization is also considered to affect the PA content, but it is not clear how it affects INO1 gene expression and the PA content in different genotypes. Here, we investigated the effect of P fertilization on the PA content in two contrasting rice genotypes, with low and high PA accumulation, respectively. Based on the results of the analysis of the PA content, inorganic P content, INO1 gene expression, and xylem sap inorganic P content, we concluded that the effect of P fertilization on PA accumulation in grain differed with the genotype, and it was regulated by multiple mechanisms.
Collapse
Affiliation(s)
- Ayaka Fukushima
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan;
| | - Ishara Perera
- Grain Legumes and Oil Crops Research and Development Centre, Department of Agriculture, Angunakolapelessa 82220, Sri Lanka;
| | - Koki Hosoya
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (K.H.); (T.A.)
| | - Tatsuki Akabane
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (K.H.); (T.A.)
| | - Naoki Hirotsu
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan;
- Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura-machi, Oura-gun, Gunma 374-0193, Japan; (K.H.); (T.A.)
- Correspondence: ; Tel.: +81-276-82-9027
| |
Collapse
|
12
|
Freed C, Adepoju O, Gillaspy G. Can Inositol Pyrophosphates Inform Strategies for Developing Low Phytate Crops? PLANTS (BASEL, SWITZERLAND) 2020; 9:E115. [PMID: 31963418 PMCID: PMC7020182 DOI: 10.3390/plants9010115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) are an emerging class of "high-energy" intracellular signaling molecules, containing one or two diphosphate groups attached to an inositol ring, that are connected with phosphate sensing, jasmonate signaling, and inositol hexakisphosphate (InsP6) storage in plants. While information regarding this new class of signaling molecules in plants is scarce, the enzymes responsible for their synthesis have recently been elucidated. This review focuses on InsP6 synthesis and its conversion into PP-InsPs, containing seven and eight phosphate groups (InsP7 and InsP8). These steps involve two types of enzymes: the ITPKs that phosphorylate InsP6 to InsP7, and the PPIP5Ks that phosphorylate InsP7 to InsP8. This review also considers the potential roles of PP-InsPs in plant hormone and inorganic phosphate (Pi) signaling, along with an emerging role in bioenergetic homeostasis. PP-InsP synthesis and signaling are important for plant breeders to consider when developing strategies that reduce InsP6 in plants, as this will likely also reduce PP-InsPs. Thus, this review is primarily intended to bridge the gap between the basic science aspects of PP-InsP synthesis/signaling and breeding/engineering strategies to fortify foods by reducing InsP6.
Collapse
Affiliation(s)
| | | | - Glenda Gillaspy
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA (O.A.)
| |
Collapse
|