1
|
Nikolova MT, He Z, Seimiya M, Jonsson G, Cao W, Okuda R, Wimmer RA, Okamoto R, Penninger JM, Camp JG, Treutlein B. Fate and state transitions during human blood vessel organoid development. Cell 2025:S0092-8674(25)00387-3. [PMID: 40250419 DOI: 10.1016/j.cell.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2024] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Human blood vessel organoids (hBVOs) have emerged as a system to model human vascular development and disease. Here, we use single-cell multi-omics together with genetic and signaling pathway perturbations to reconstruct hBVO development. Mesodermal progenitors bifurcate into endothelial and mural fates in vitro, and xenografted BVOs acquire definitive arteriovenous endothelial cell specification. We infer a gene regulatory network and use single-cell genetic perturbations to identify transcription factors (TFs) and receptors involved in cell fate specification, including a role for MECOM in endothelial and mural specification. We assess the potential of BVOs to generate organotypic states, identify TFs lacking expression in hBVOs, and find that induced LEF1 overexpression increases brain vasculature specificity. Finally, we map vascular disease-associated genes to hBVO cell states and analyze an hBVO model of diabetes. Altogether, we provide a comprehensive cell state atlas of hBVO development and illuminate the power and limitation of hBVOs for translational research.
Collapse
Affiliation(s)
- Marina T Nikolova
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Wuji Cao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ryo Okuda
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Reiner A Wimmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ryoko Okamoto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - J Gray Camp
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; Biozentrum, University of Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
2
|
Salvador-Barbero B, Alatsatianos M, Morton JP, Sansom OJ, Hogan C. KRASG12D Cells Override Homeostatic Cell Elimination Mechanisms in Adult Pancreas Via Wnt5a and Cell Dormancy. Gastroenterology 2025:S0016-5085(25)00603-1. [PMID: 40204099 DOI: 10.1053/j.gastro.2025.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/23/2025] [Accepted: 02/23/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND & AIMS The adult pancreas protects against cancer by actively expelling genetically mutated cells. Pancreatic cancer starts with cells carrying KRAS mutations; however, it is not clear how some KRAS mutant cells override cell elimination mechanisms to survive in tissues. METHODS An in vivo mouse model of sporadic tumorigenesis was used to induce Kras and/or Tp53 mutations in low numbers of cells in the adult pancreas. The mutant cell fate was monitored over time using quantitative fluorescence imaging. Gene signatures of noneliminated mutant cell populations were identified using bulk RNA sequencing. Differential gene expression was overlapped with publicly available datasets. Key molecular pathways were validated in murine pancreas using immunofluorescence and functionally tested using inhibitor studies in vivo and epithelial coculture systems in vitro. RESULTS Although most genetically mutant cells are eliminated from the adult pancreas, a population of KRASG12D- or p53R172H-expressing cells are stably retained. Wnt5a signaling, cell dormancy, and stemness were identified as key features of surviving KrasG12D cells in vivo. Wnt5a specifically inhibits apical extrusion of RasV12 cells by promoting stable E-cadherin-based cell-cell adhesions at RasV12: normal cell-cell boundaries in vitro. In the pancreas, Wnt signaling, E-cadherin, and β-catenin are increased at cell-cell contacts between noneliminated KrasG12D cells and normal neighbors. Active Wnt signaling is a general mechanism required to promote KrasG12D and p53R172H cell retention and cell survival in vivo. CONCLUSIONS RAS mutant cells activate Wnt5a and cell dormancy to avoid cell expulsion and to survive in the adult pancreas.
Collapse
Affiliation(s)
- Beatriz Salvador-Barbero
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Markella Alatsatianos
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Jennifer P Morton
- Cancer Research UK Scotland Institute, Glasgow, UK; School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Owen J Sansom
- Cancer Research UK Scotland Institute, Glasgow, UK; School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Catherine Hogan
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
3
|
Yu XH, Guo XN, Li K, Li JW, Wang K, Wang D, Liu BC. The Role of Wnt5a in Inflammatory Diseases. Immunology 2025; 174:203-212. [PMID: 39668514 DOI: 10.1111/imm.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
Wnt5a plays an important role in cell development and maturation and is closely associated with various diseases, such as malignant tumours, metabolic disorders, fibrosis, growth and development. Recent studies have shown that Wnt5a expression and signal transduction are strongly involved in the inflammatory response. This study comprehensively reviewed the latest research progress on the association between Wnt5a and several inflammatory diseases, such as sepsis, asthma, chronic obstructive pulmonary disease, tuberculosis, rheumatoid arthritis, atherosclerosis and psoriasis vulgare. We elucidated the mechanism by which the Wnt5a protein is involved in the pathogenesis of these diseases, providing a basis for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xin-Hua Yu
- Department of Pediatrics, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Xin-Ning Guo
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kui Li
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Jia-Wei Li
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Kaijin Wang
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bi-Cui Liu
- Department of Respiratory and Critical Care Medicine, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Zhang C, Brunt L, Ono Y, Rogers S, Scholpp S. Cytoneme-mediated transport of active Wnt5b-Ror2 complexes in zebrafish. Nature 2024; 625:126-133. [PMID: 38123680 PMCID: PMC10764289 DOI: 10.1038/s41586-023-06850-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
Chemical signalling is the primary means by which cells communicate in the embryo. The underlying principle refers to a group of ligand-producing cells and a group of cells that respond to this signal because they express the appropriate receptors1,2. In the zebrafish embryo, Wnt5b binds to the receptor Ror2 to trigger the Wnt-planar cell polarity (PCP) signalling pathway to regulate tissue polarity and cell migration3,4. However, it remains unclear how this lipophilic ligand is transported from the source cells through the aqueous extracellular space to the target tissue. In this study, we provide evidence that Wnt5b, together with Ror2, is loaded on long protrusions called cytonemes. Our data further suggest that the active Wnt5b-Ror2 complexes form in the producing cell and are handed over from these cytonemes to the receiving cell. Then, the receiving cell has the capacity to initiate Wnt-PCP signalling, irrespective of its functional Ror2 receptor status. On the tissue level, we further show that cytoneme-dependent spreading of active Wnt5b-Ror2 affects convergence and extension in the zebrafish gastrula. We suggest that cytoneme-mediated transfer of ligand-receptor complexes is a vital mechanism for paracrine signalling. This may prompt a reevaluation of the conventional concept of characterizing responsive and non-responsive tissues solely on the basis of the expression of receptors.
Collapse
Affiliation(s)
- Chengting Zhang
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lucy Brunt
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Sally Rogers
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
5
|
Bao K, Jiao Y, Xing L, Zhang F, Tian F. The role of wnt signaling in diabetes-induced osteoporosis. Diabetol Metab Syndr 2023; 15:84. [PMID: 37106471 PMCID: PMC10141960 DOI: 10.1186/s13098-023-01067-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Osteoporosis, a chronic complication of diabetes mellitus, is characterized by a reduction in bone mass, destruction of bone microarchitecture, decreased bone strength, and increased bone fragility. Because of its insidious onset, osteoporosis renders patients highly susceptible to pathological fractures, leading to increased disability and mortality rates. However, the specific pathogenesis of osteoporosis induced by chronic hyperglycemia has not yet been fully elucidated. But it is currently known that the disruption of Wnt signaling triggered by chronic hyperglycemia is involved in the pathogenesis of diabetic osteoporosis. There are two main types of Wnt signaling pathways, the canonical Wnt signaling pathway (β-catenin-dependent) and the non-canonical Wnt signaling pathway (non-β-catenin-dependent), both of which play an important role in regulating the balance between bone formation and bone resorption. Therefore, this review systematically describes the effects of abnormal Wnt pathway signaling on bone homeostasis under hyperglycemia, hoping to reveal the relationship between Wnt signaling and diabetic osteoporosis to further improve understanding of this disease.
Collapse
Affiliation(s)
- Kairan Bao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China.
| | - Yinghua Jiao
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| | - Lei Xing
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Fang Zhang
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
| | - Faming Tian
- Department of Integrated Traditional & Western Medicine, Affiliated hospital of North, China University of Science and Technology, Jianshe South Road 73, Tangshan, 063000, Hebei, People's Republic of China
- North China University of Science and Technology, Bohai Road 21, Caofeidian Dis, Tangshan, 063210, Hebei, People's Republic of China
| |
Collapse
|
6
|
Zhang C, Ma Y, Zhang J, Kuo JCT, Zhang Z, Xie H, Zhu J, Liu T. Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy. Molecules 2022; 27:molecules27061943. [PMID: 35335310 PMCID: PMC8949521 DOI: 10.3390/molecules27061943] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Lipid-based nanoparticles (LBNPs) are biocompatible and biodegradable vesicles that are considered to be one of the most efficient drug delivery platforms. Due to the prominent advantages, such as long circulation time, slow drug release, reduced toxicity, high transfection efficiency, and endosomal escape capacity, such synthetic nanoparticles have been widely used for carrying genetic therapeutics, particularly nucleic acids that can be applied in the treatment for various diseases, including congenital diseases, cancers, virus infections, and chronic inflammations. Despite great merits and multiple successful applications, many extracellular and intracellular barriers remain and greatly impair delivery efficacy and therapeutic outcomes. As such, the current state of knowledge and pitfalls regarding the gene delivery and construction of LBNPs will be initially summarized. In order to develop a new generation of LBNPs for improved delivery profiles and therapeutic effects, the modification strategies of LBNPs will be reviewed. On the basis of these developed modifications, the performance of LBNPs as therapeutic nanoplatforms have been greatly improved and extensively applied in immunotherapies, including infectious diseases and cancers. However, the therapeutic applications of LBNPs systems are still limited due to the undesirable endosomal escape, potential aggregation, and the inefficient encapsulation of therapeutics. Herein, we will review and discuss recent advances and remaining challenges in the development of LBNPs for nucleic acid-based immunotherapy.
Collapse
Affiliation(s)
- Chi Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Yifan Ma
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (Y.M.); (J.Z.)
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA; (Y.M.); (J.Z.)
| | - Jimmy Chun-Tien Kuo
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Zhongkun Zhang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (C.Z.); (J.C.-T.K.); (Z.Z.)
| | - Haotian Xie
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Jing Zhu
- College of Nursing and Health Innovation, The University of Texas Arlington, Arlington, TX 76010, USA
- Correspondence: (J.Z.); (T.L.); Tel.: +1-614-570-1164 (J.Z.); +86-186-6501-3854 (T.L.)
| | - Tongzheng Liu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
- Correspondence: (J.Z.); (T.L.); Tel.: +1-614-570-1164 (J.Z.); +86-186-6501-3854 (T.L.)
| |
Collapse
|
7
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
8
|
Caveolin 1 is required for axonal outgrowth of motor neurons and affects Xenopus neuromuscular development. Sci Rep 2020; 10:16446. [PMID: 33020520 PMCID: PMC7536398 DOI: 10.1038/s41598-020-73429-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Caveolins are essential structural proteins driving the formation of caveolae, specialized invaginations of the plasma membrane. Loss of Caveolin-1 (Cav1) function in mice causes distinct neurological phenotypes leading to impaired motor control, however, the underlying developmental mechanisms are largely unknown. In this study we find that loss-of-function of Xenopus Cav1 results in a striking swimming defect characterized by paralysis of the morphants. High-resolution imaging of muscle cells revealed aberrant sarcomeric structures with disorganized actin fibers. As cav1 is expressed in motor neurons, but not in muscle cells, the muscular abnormalities are likely a consequence of neuronal defects. Indeed, targeting cav1 Morpholino oligonucleotides to neural tissue, but not muscle tissue, disrupts axonal outgrowth of motor neurons and causes swimming defects. Furthermore, inhibition of voltage-gated sodium channels mimicked the Cav1 loss-of-function phenotype. In addition, analyzing axonal morphology we detect that Cav1 loss-of-function causes excessive filopodia and lamellipodia formation. Using rescue experiments, we show that the Cav1 Y14 phosphorylation site is essential and identify a role of RhoA, Rac1, and Cdc42 signaling in this process. Taken together, these results suggest a previously unrecognized function of Cav1 in muscle development by supporting axonal outgrowth of motor neurons.
Collapse
|
9
|
Wang T, Hao Z, Liu C, Yuan L, Li L, Yin M, Li Q, Qi Z, Wang Z. LEF1 mediates osteoarthritis progression through circRNF121/miR-665/MYD88 axis via NF-кB signaling pathway. Cell Death Dis 2020; 11:598. [PMID: 32732957 PMCID: PMC7393488 DOI: 10.1038/s41419-020-02769-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) is a joint disease that causes great pain to patients and imposes a tremendous burden on the world’s medical resources. Regulatory noncoding RNAs, including circular RNAs (circRNAs) and microRNAs (miRNAs), play an important role in OA progression. Here, we identified differential expression of transcription factor LEF1 that increased circRNA circRNF121 levels in normal and OA cartilage tissues. The expression of LEF1 and circRNF121 was positively associated with Mankin’s scores. Alteration of circRNF121 mediated the degradation of extracellular mechanisms (ECM), apoptosis, and proliferation of chondrocytes. MiR-665 was identified as a direct regulatory target of circRNF121 and MYD88. Functional analysis showed that circRNF121 and MYD88 modulated ECM degradation, apoptosis, and proliferation of chondrocytes, which could be reversed by miR-665. MYD88 regulated the activity of the NF-кB signaling pathway by circRNF121 via sponging miR-665. Collectively, these data indicated that LEF1 impacted OA progression by modulating the circRNF121/miR-665/MYD88 axis via NF-кB pathway. Our research proposed a new molecular mechanism for the development of OA, and provided a prospective therapeutic target for OA.
Collapse
Affiliation(s)
- Tianfu Wang
- Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian, 116033, Liaoning Province, China.,Department of Spinal Surgery, The Second Hospital of Dalian Medical University, Dalian, 116033, Liaoning Province, China
| | - Zhiyu Hao
- Department of Medical Imageology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Changcheng Liu
- Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian, 116033, Liaoning Province, China
| | - Lebin Yuan
- Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian, 116033, Liaoning Province, China
| | - Li Li
- Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian, 116033, Liaoning Province, China
| | - Menghong Yin
- Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian, 116033, Liaoning Province, China
| | - Qing Li
- Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian, 116033, Liaoning Province, China
| | - Zhiming Qi
- Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian, 116033, Liaoning Province, China
| | - Zi Wang
- Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian, 116033, Liaoning Province, China.
| |
Collapse
|