1
|
Achmad A, Hanaoka H, Holik HA, Endo K, Tsushima Y, Kartamihardja AHS. LAT1-specific PET radiotracers: Development and clinical experiences of a new class of cancer-specific radiopharmaceuticals. Theranostics 2025; 15:1864-1878. [PMID: 39897549 PMCID: PMC11780518 DOI: 10.7150/thno.99490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/05/2024] [Indexed: 02/04/2025] Open
Abstract
The quest for a cancer-specific positron emission tomography (PET) tracer has been ongoing for decades. Current evidence shows that targeting amino acid metabolism dysregulation is a valid alternative cancer detection method and can complement the conventional approach, which relies on targeting increased glucose metabolism. The rate of amino acid metabolism in all major organs is mostly equally low and does not change in any physiological dynamics. The amino acid metabolism rate only spikes in malignant tissues. PET imaging targeting LAT1 (L-type amino acid transporter 1) demonstrated accurate cancer imaging of various cancer types with nearly negligible background uptake. LAT1 is a pan-cancer biomarker of amino acid metabolism dysregulation. The upregulated LAT1 expression in cancer cells depicts their dynamic behavior and aggressiveness. This review discussed PET radiotracers developed as a LAT1-specific agent and how this new class of cancer-specific radiopharmaceuticals could deliver PET images with clinical properties we yearn for, such as high specificity toward various malignancies, robust non-cancer exclusion (mainly inflammatory reactions), accurate malignant lesion delineation, representative therapeutic monitoring, and long-term prognostication.
Collapse
Affiliation(s)
- Arifudin Achmad
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
- Theranostic Radiopharmaceutical Research Collaboration Center, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
- Oncology and Stem Cell Study Center, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
| | - Hirofumi Hanaoka
- Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Japan
- Department of Radiotheranostics, Gunma University Graduate School of Medicine, Maebashi 3718511, Japan
| | - Holis Abdul Holik
- Theranostic Radiopharmaceutical Research Collaboration Center, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Keigo Endo
- Kyoto College of Medical Science, Kyoto 6220041, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi 3178511, Gunma, Japan
| | - Achmad Hussein S. Kartamihardja
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, West Java, Indonesia
- Theranostic Radiopharmaceutical Research Collaboration Center, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| |
Collapse
|
2
|
Kaneda-Nakashima K, Shirakami Y, Hisada K, Feng S, Kadonaga Y, Ooe K, Watabe T, Manabe Y, Shimoyama A, Murakami M, Toyoshima A, Haba H, Kanai Y, Fukase K. Development of LAT1-Selective Nuclear Medicine Therapeutics Using Astatine-211. Int J Mol Sci 2024; 25:12386. [PMID: 39596451 PMCID: PMC11594329 DOI: 10.3390/ijms252212386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
We investigated nuclear medicine therapeutics targeting the L-type amino acid transporter 1 (LAT1). We previously reported that a nuclear medicine therapeutic drug using astatine 211 (211At), an alpha-emitting nuclide that can be produced in an accelerator and targets LAT1 as a molecular target, is effective. The seed compound was 3-[211At] Astato-α-methyl-L-tyrosine (211At-AAMT-OH-L). We used a unique labeling method. By changing the OH group of phenol to a methyl group, retention was successfully increased. It was also found that the amount of the L-isomer taken up by the D-isomer and L-isomer was clearly higher, and the L-isomer was superior as a therapeutic drug. Compounds in which the methyl group was replaced with an ethyl or propyl group were also examined, but their retention did not increase significantly. In fact, we observed increased non-specific accumulation and dynamics, suggesting that labeling may be off. In addition, 211At-AAMT-O-Me-L, which has a simple structure, was clearly superior in terms of uptake speed for several candidate compounds. As a result, we were able to develop a compound that can be easily labeled, has high specific radioactivity, is stable, and has a strong therapeutic effect.
Collapse
Affiliation(s)
- Kazuko Kaneda-Nakashima
- Radiation Biological Chemistry, MS-CORE, FRC, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Shirakami
- Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kentaro Hisada
- Radiation Biological Chemistry, MS-CORE, FRC, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Sifan Feng
- Radiation Biological Chemistry, MS-CORE, FRC, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuichiro Kadonaga
- Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuhiro Ooe
- Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tadashi Watabe
- Department of Radiology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshiyuki Manabe
- Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
- Natural Product Chemistry, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Atsushi Shimoyama
- Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
- Natural Product Chemistry, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masashi Murakami
- Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Toyoshima
- Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromitsu Haba
- Nishina Center, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshikatsu Kanai
- Premium Research Institute for Human Metaverse Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koichi Fukase
- Institute for Radiation Sciences, Osaka University, 2-4 Yamadaoka, Suita, Osaka 565-0871, Japan
- Natural Product Chemistry, Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
Soma Y, Tohyama S, Kubo A, Yamasaki T, Kabasawa N, Haga K, Tani H, Morita-Umei Y, Umei TC, Sekine O, Nakamura M, Moriwaki T, Tanosaki S, Someya S, Kawai Y, Ohno M, Kishino Y, Kanazawa H, Fujita J, Zhang MR, Suematsu M, Fukuda K, Ieda M. Metabolic changes of human induced pluripotent stem cell-derived cardiomyocytes and teratomas after transplantation. iScience 2024; 27:111234. [PMID: 39569381 PMCID: PMC11576393 DOI: 10.1016/j.isci.2024.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Cardiac regenerative therapy using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has been applied in clinical settings. Herein, we aimed to investigate the in vivo metabolic profiles of hiPSC-CM grafts. RNA sequencing and imaging mass spectrometry were performed in the present study, which revealed that hiPSC-CM grafts matured metabolically over time after transplantation. Glycolysis, which was active in the hiPSC-CM grafts immediately after transplantation, shifted to fatty acid oxidation. Additionally, we examined the metabolic profile of teratomas that may form when non-CMs, including undifferentiated human induced pluripotent stem cells (hiPSCs), remain in transplanted cells. The upregulated gene expression of amino acid transporters and the high accumulation of amino acids, such as methionine and aromatic amino acids, were observed in the teratomas. We show that subcutaneous teratomas derived from undifferentiated hiPSCs can be detected in vivo using positron emission tomography with [18F]fluorophenylalanine ([18F]fPhe). These results provided insights into the clinical application of cardiac regenerative therapy.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shugo Tohyama
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Akiko Kubo
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Noriko Kabasawa
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Heartseed Inc, Minato-ku, Tokyo 105-0023, Japan
| | - Kotaro Haga
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
| | - Hidenori Tani
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Center for Prevention Medicine, Keio University School of Medicine, Minato-ku, Tokyo 106-0041, Japan
| | - Yuika Morita-Umei
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Tomohiko C Umei
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Otoya Sekine
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Nakamura
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taijun Moriwaki
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Sho Tanosaki
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shota Someya
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yujiro Kawai
- Department of Cardiovascular Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masatoshi Ohno
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Fujita Health University, Ota-ku, Tokyo 144-0041, Japan
- Department of Cardiovascular Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideaki Kanazawa
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- WPI-Bio2Q, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Central Institute for Experimental Medicine and Life Science, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Heartseed Inc, Minato-ku, Tokyo 105-0023, Japan
| | - Masaki Ieda
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Cheng X, Wang Y, Gong G, Shen P, Li Z, Bian J. Design strategies and recent development of bioactive modulators for glutamine transporters. Drug Discov Today 2024; 29:103880. [PMID: 38216118 DOI: 10.1016/j.drudis.2024.103880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Glutamine transporters are integral to the metabolism of glutamine in both healthy tissues and cancerous cells, playing a pivotal role in maintaining amino acid balance, synthesizing biomolecules, and regulating redox equilibrium. Their critical functions in cellular metabolism make them promising targets for oncological therapies. Recent years have witnessed substantial progress in the field of glutamine transporters, marked by breakthroughs in understanding of their protein structures and the discovery of novel inhibitors, prodrugs, and radiotracers. This review provides a comprehensive update on the latest advancements in modulators targeting the glutamine transporter, with special attention given to LAT1 and ASCT2. It also discusses innovative approaches in drug design aimed at these transporters.
Collapse
Affiliation(s)
- Xinying Cheng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yezhi Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guangyue Gong
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhiyu Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Jinlei Bian
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Li S, Lin Z, Chen H, Luo Q, Han S, Huang K, Chen R, Zhan Y, Chen B, Yao H. Synthesis and Application of a Near-Infrared Light-Emitting Fluorescent Probe for Specific Imaging of Cancer Cells with High Sensitivity and Selectivity. Drug Des Devel Ther 2024; 18:29-41. [PMID: 38225973 PMCID: PMC10788685 DOI: 10.2147/dddt.s439038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024] Open
Abstract
Background The preclinical diagnosis of tumors is of great significance to cancer treatment. Near-infrared fluorescence imaging technology is promising for the in-situ detection of tumors with high sensitivity. Methods Here, a fluorescent probe was synthesized on the basis of Au nanoclusters with near-infrared light emission and applied to fluorescent cancer cell labeling. Near-infrared methionine-N-Hydroxy succinimide Au nanoclusters (Met-NHs-AuNCs) were prepared successfully by one-pot synthesis using Au nanoclusters, methionine, and N-Hydroxy succinimide as frameworks, reductants, and stabilizers, respectively. The specific fluorescence imaging of tumor cells or tissues by fluorescent probe was studied on the basis of SYBYL Surflex-DOCK simulation model of LAT1 active site of overexpressed receptor on cancer cell surface. The results showed that Met-NHs-AuNCs interacted with the surface of LAT1, and C_Score scored the conformation of the probe and LAT1 as five. Results Characterization and in vitro experiments were conducted to explore the Met-NHs-AuNCs targeted uptake of cancer cells. The prepared near-infrared fluorescent probe (Met-NHs-AuNCs) can specifically recognize the overexpression of L-type amino acid transporter 1 (LAT1) in cancer cells so that it can show red fluorescence in cancer cells. Meanwhile, normal cells (H9c2) have no fluorescence. Conclusion The fluorescent probe demonstrates the power of targeting and imaging cancer cells.
Collapse
Affiliation(s)
- Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Zhan Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Haobo Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Qiu Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Shengnan Han
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Kunlong Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Ruichan Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Yuying Zhan
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
| | - Bing Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, FuJian, People’s Republic of China
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
6
|
Xia P, Dubrovska A. CD98 heavy chain as a prognostic biomarker and target for cancer treatment. Front Oncol 2023; 13:1251100. [PMID: 37823053 PMCID: PMC10562705 DOI: 10.3389/fonc.2023.1251100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
The SLC3A2 gene encodes for a cell-surface transmembrane protein CD98hc (4F2). CD98hc serves as a chaperone for LAT1 (SLC7A5), LAT2 (SLC7A8), y+LAT1 (SLC7A7), y+LAT2 (SLC7A6), xCT (SLC7A11) and Asc1 (SLC7A10) providing their recruitment to the plasma membrane. Together with the light subunits, it constitutes heterodimeric transmembrane amino acid transporters. CD98hc interacts with other surface molecules, such as extracellular matrix metalloproteinase inducer CD147 (EMMPRIN) and adhesion receptors integrins, and regulates glucose uptake. In this way, CD98hc connects the signaling pathways sustaining cell proliferation and migration, biosynthesis and antioxidant defense, energy production, and stem cell properties. This multifaceted role makes CD98hc one of the critical regulators of tumor growth, therapy resistance, and metastases. Indeed, the high expression levels of CD98hc were confirmed in various tumor tissues, including head and neck squamous cell carcinoma, glioblastoma, colon adenocarcinoma, pancreatic ductal adenocarcinoma, and others. A high expression of CD98hc has been linked to clinical prognosis and response to chemo- and radiotherapy in several types of cancer. In this mini-review, we discuss the physiological functions of CD98hc, its role in regulating tumor stemness, metastases, and therapy resistance, and the clinical significance of CD98hc as a tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Pu Xia
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
7
|
Martins C, Araújo M, Malfanti A, Pacheco C, Smith SJ, Ucakar B, Rahman R, Aylott JW, Préat V, Sarmento B. Stimuli-Responsive Multifunctional Nanomedicine for Enhanced Glioblastoma Chemotherapy Augments Multistage Blood-to-Brain Trafficking and Tumor Targeting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300029. [PMID: 36852650 DOI: 10.1002/smll.202300029] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Indexed: 06/02/2023]
Abstract
Minimal therapeutic advances have been achieved over the past two decades for glioblastoma (GBM), which remains an unmet clinical need. Here, hypothesis-driven stimuli-responsive nanoparticles (NPs) for docetaxel (DTX) delivery to GBM are reported, with multifunctional features that circumvent insufficient blood-brain barrier (BBB) trafficking and lack of GBM targeting-two major hurdles for anti-GBM therapies. NPs are dual-surface tailored with a i) brain-targeted acid-responsive Angiopep-2 moiety that triggers NP structural rearrangement within BBB endosomal vesicles, and ii) L-Histidine moiety that provides NP preferential accumulation into GBM cells post-BBB crossing. In tumor invasive margin patient cells, the stimuli-responsive multifunctional NPs target GBM cells, enhance cell uptake by 12-fold, and induce three times higher cytotoxicity in 2D and 3D cell models. Moreover, the in vitro BBB permeability is increased by threefold. A biodistribution in vivo trial confirms a threefold enhancement of NP accumulation into the brain. Last, the in vivo antitumor efficacy is validated in GBM orthotopic models following intratumoral and intravenous administration. Median survival and number of long-term survivors are increased by 50%. Altogether, a preclinical proof of concept supports these stimuli-responsive multifunctional NPs as an effective anti-GBM multistage chemotherapeutic strategy, with ability to respond to multiple fronts of the GBM microenvironment.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
| | - Alessio Malfanti
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Catarina Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Stuart J Smith
- School of Medicine, University of Nottingham Biodiscovery Institute, Children's Brain Tumour Research Centre, University Park, Nottingham, NG7 2RD, UK
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Ruman Rahman
- School of Medicine, University of Nottingham Biodiscovery Institute, Children's Brain Tumour Research Centre, University Park, Nottingham, NG7 2RD, UK
| | - Jonathan W Aylott
- School of Pharmacy, Boots Science Building, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, University of Louvain, Brussels, 1200, Belgium
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-393, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|
8
|
Nozaki S, Nakatani Y, Mawatari A, Hume WE, Doi H, Watanabe Y. In vitro evaluation of (S)-2-amino-3-[3-(2- 18F-fluoroethoxy)-4-iodophenyl]-2-methylpropanoic acid ( 18F-FIMP) as a positron emission tomography probe for imaging amino acid transporters. EJNMMI Res 2023; 13:36. [PMID: 37115356 PMCID: PMC10147893 DOI: 10.1186/s13550-023-00988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND (S)-2-amino-3-[3-(2-18F-fluoroethoxy)-4-iodophenyl]-2-methylpropanoic acid (18F-FIMP) as a promising PET probe for imaging the tumor-specific L-type amino acid transporter (LAT) 1. Our previous study revealed that 18F-FIMP had a higher affinity for LAT1 than for LAT2 abundantly expressed even in normal cells. 18F-FIMP showed high accumulation in LAT1-positive tumor tissues and low accumulation in inflamed lesions in tumor-bearing mice. However, the affinity of 18F-FIMP for other amino acid transporters was not determined yet. Here, we aimed to determine whether 18F-FIMP has affinity for other tumor-related amino acid transporters, such as sodium- and chloride-dependent neutral and basic amino acid transporter B(0 +) (ATB0,+), alanine serine cysteine transporter 2 (ASCT2), and cystine/glutamate transporter (xCT). PROCEDURES Cells overexpressing LAT1, ATB0,+, ASCT2, or xCT were established by the transfection of expression vectors for LAT1, ATB0,+, ASCT2, or xCT. Protein expression levels were determined by western blot and immunofluorescent analyses. Transport function was evaluated by a cell-based uptake assay using 18F-FIMP and 14C-labeled amino acids as substrates. RESULTS Intense signals were observed only for expression vector-transfected cells on western blot and immunofluorescent analyses. These signals were strongly reduced by gene-specific small interfering ribonucleic acid treatment. The uptake values for each 14C-labeled substrate were significantly higher in the transfected cells than in the mock-transfected cells and were significantly inhibited by the corresponding specific inhibitors. The 18F-FIMP uptake values were significantly higher in the LAT1- and ATB0,+-overexpressing cells than in the corresponding mock cells, but no such increase was seen in the ASCT2- or xCT-overexpressing cells. These 18F-FIMP uptake values were significantly decreased by the specific inhibitors for LAT1- and ATB0,+. CONCLUSIONS We demonstrated that 18F-FIMP has affinity not only for LAT1, but also for ATB0,+. Our results may be helpful for understanding the mechanisms of the whole-body distribution and tumor accumulation of 18F-FIMP.
Collapse
Affiliation(s)
- Satoshi Nozaki
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachiinamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Novel PET Diagnostics Laboratory, RIKEN Innovation Center, Hyogo, Japan
| | - Yuka Nakatani
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachiinamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - William Ewan Hume
- Novel PET Diagnostics Laboratory, RIKEN Innovation Center, Hyogo, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachiinamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
9
|
Tahara T, Takatani S, Tsuji M, Shibata N, Hosaka N, Inoue M, Ohno M, Ozaki D, Mawatari A, Watanabe Y, Doi H, Onoe H. Characteristic Evaluation of a 11C-Labeled Leucine Analog, l-α-[5- 11C]methylleucine, as a Tracer for Brain Tumor Imaging by Positron Emission Tomography. Mol Pharm 2023; 20:1842-1849. [PMID: 36802622 DOI: 10.1021/acs.molpharmaceut.2c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Amino acid transporters are upregulated in many cancer cells, and system L amino acid transporters (LAT1-4), in particular, LAT1, which preferentially transports large, neutral, and branched side-chain amino acids, are considered a primary target for cancer positron emission tomography (PET) tracer development. Recently, we developed a 11C-labeled leucine analog, l-α-[5-11C]methylleucine ([5-11C]MeLeu), via a continuous two-step reaction of Pd0-mediated 11C-methylation and microfluidic hydrogenation. In this study, we evaluated the characteristics of [5-11C]MeLeu and also compared the sensitivity to brain tumors and inflammation with l-[11C]methionine ([11C]Met) to determine its potential for brain tumor imaging. Competitive inhibition experiments, protein incorporation, and cytotoxicity experiments of [5-11C]MeLeu were performed in vitro. Further, metabolic analyses of [5-11C]MeLeu were performed using a thin-layer chromatogram. The accumulation of [5-11C]MeLeu in tumor and inflamed regions of the brain was compared with [11C]Met and 11C-labeled (S)-ketoprofen methyl ester by PET imaging, respectively. Transporter assay with various inhibitors revealed that [5-11C]MeLeu is mainly transported via system L amino acid transporters, especially LAT1, into A431 cells. The protein incorporation assay and metabolic assay in vivo demonstrated that [5-11C]MeLeu was neither used for protein synthesis nor metabolized. These results indicate that MeLeu is very stable in vivo. Furthermore, the treatment of A431 cells with various concentrations of MeLeu did not change their viability, even at high concentrations (∼10 mM). In brain tumors, the tumor-to-normal ratio of [5-11C]MeLeu was more elevated than that of [11C]Met. However, the accumulation levels of [5-11C]MeLeu were lower than those of [11C]Met (the standardized uptake value (SUV) of [5-11C]MeLeu and [11C]Met was 0.48 ± 0.08 and 0.63 ± 0.06, respectively). In brain inflammation, no significant accumulation of [5-11C]MeLeu was observed at the inflamed brain area. These data suggested that [5-11C]MeLeu was identified as a stable and safe agent for PET tracers and could help detect brain tumors, which overexpress the LAT1 transporter.
Collapse
Affiliation(s)
- Tsuyoshi Tahara
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of In Vivo Imaging, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima, Tokushima 770-8503, Japan
| | - Shuhei Takatani
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mieko Tsuji
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Nina Shibata
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Nami Hosaka
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Michiko Inoue
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiro Ohno
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Daiki Ozaki
- RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Aya Mawatari
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Doi
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hirotaka Onoe
- RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Life Science Technologies, 6-7-3 Minatojima Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Human Brain Research Center, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
10
|
Nozaki S, Nakatani Y, Mawatari A, Shibata N, Hume WE, Hayashinaka E, Wada Y, Doi H, Watanabe Y. Comparison of [ 18F]FIMP, [ 11C]MET, and [ 18F]FDG PET for early-phase assessment of radiotherapy response. Sci Rep 2023; 13:1961. [PMID: 36737550 PMCID: PMC9898523 DOI: 10.1038/s41598-023-29166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Several limitations of [18F]FDG have been reported, such as nonspecific uptake of inflammation foci. Moreover, [11C]MET has been found to accumulate in normal and inflammatory tissues as well as tumors. To increase specificity to tumor tissues, PET probes with tumor-specific molecular targets have been actively developed. [18F]FIMP was found to be highly accumulated in LAT1-positive tumors but not in inflamed tissue. The aim of this study was to explore whether [18F]FIMP can be used for the early-phase evaluation of radiotherapy accompanied by inflammation, and compare its effectiveness with those of [11C]MET and [18F]FDG. Tumor uptake of [18F]FIMP decreased at day 1 after irradiation, and remained low until day 14. Comparatively, that of [18F]FDG initially decreased at day 3 but was transiently elevated at day 7 and then decreased again at day 10. Decreased tumor uptake of [11C]MET was observed at day 10. In line with the uptake of [18F]FIMP, the ratio of Ki-67 immuno-positive cells in tumor tissues significantly decreased at day 1, 7, and 10 as compared with that in the control. These findings suggest that [18F]FIMP may be a PET probe involved in the early detection and prediction of radiotherapy efficacy, although further clarification is needed.
Collapse
Affiliation(s)
- Satoshi Nozaki
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.,Novel PET Diagnostics Laboratory, RIKEN Innovation Center, Kobe, Hyogo, Japan
| | - Yuka Nakatani
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Aya Mawatari
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Nina Shibata
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - William E Hume
- Novel PET Diagnostics Laboratory, RIKEN Innovation Center, Kobe, Hyogo, Japan
| | - Emi Hayashinaka
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Yasuhiro Wada
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Hisashi Doi
- Laboratory for Labeling Chemistry, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
11
|
Martins C, Pacheco C, Moreira-Barbosa C, Marques-Magalhães Â, Dias S, Araújo M, Oliveira MJ, Sarmento B. Glioblastoma immuno-endothelial multicellular microtissue as a 3D in vitro evaluation tool of anti-cancer nano-therapeutics. J Control Release 2023; 353:77-95. [PMID: 36410614 DOI: 10.1016/j.jconrel.2022.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Despite being the most prevalent and lethal type of adult brain cancer, glioblastoma (GBM) remains intractable. Promising anti-GBM nanoparticle (NP) systems have been developed to improve the anti-cancer performance of difficult-to-deliver therapeutics, with particular emphasis on tumor targeting strategies. However, current disease modeling toolboxes lack close-to-native in vitro models that emulate GBM microenvironment and bioarchitecture, thus partially hindering translation due to poorly predicted clinical responses. Herein, human GBM heterotypic multicellular tumor microtissues (MCTMs) are generated through high-throughput 3D modeling of U-251 MG tumor cells, tissue differentiated macrophages isolated from peripheral monocytes, and brain microvascular primary endothelial cells. GBM MCTMs mimicked tumor spatial organization, extracellular matrix production and necrosis areas. The bioactivity of a model drug, docetaxel (DTX), and of tumor-targeted DTX-loaded polymeric NPs with a surface L-Histidine moiety (H-NPs), were assessed in the MCTMs. MCTMs cell uptake and anti-proliferative effect was 8- and 3-times higher for H-NPs, respectively, compared to the non-targeted NPs and to free DTX. H-NPs provided a decrease of MCTMs anti-inflammatory M2-macrophages, while increasing their pro-inflammatory M1 counterparts. Moreover, H-NPs showed a particular biomolecular signature through reduced secretion of an array of medium cytokines (IFN-γ, IL-1β, IL-1Ra, IL-6, IL-8, TGF-β). Overall, MCTMs provide an in vitro biomimetic model to recapitulate key cellular and structural features of GBM and improve in vivo drug response predictability, fostering future clinical translation of anti-GBM nano-therapeutic strategies.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Catarina Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Moreira-Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ângela Marques-Magalhães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
12
|
Keeling G, Man F. Nuclear Imaging of Inflammation. PROGRESS IN INFLAMMATION RESEARCH 2023:23-90. [DOI: 10.1007/978-3-031-23661-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Cappoli N, Jenkinson MD, Russo CD, Dickens D. LAT1, a novel pharmacological target for the treatment of glioblastoma. Biochem Pharmacol 2022; 201:115103. [PMID: 35618000 DOI: 10.1016/j.bcp.2022.115103] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
The L-Type Amino Acid transporter, LAT1 (SLC7A5), has a crucial role in mediating amino acid uptake into the cells, thus modulating cell growth and proliferation as well as other intracellular functions. Different studies have reported a central role of LAT1 in glioblastoma development and progression, suggesting that the modulation of its activity could be a novel therapeutic strategy. LAT1 also has an important role in the peripheral immune system, by regulating the activation status of several immune cells through modulation of the mechanistic target of rapamycin kinase. In glioblastoma (GBM), the blood-brain barrier is disrupted, which allows the recruitment of peripheral immune cells to the tumour site. These cells, together with resident microglia, contribute to cancer growth and progression. Currently, little is known about the function of LAT1 in the reprogramming of the immune component of the tumour microenvironment in the context of GBM. In this article, we review the available data on the role of LAT1 in the regulation of GBM biology, including its potential role in the tumour microenvironment, particularly in infiltrating-peripheral immune cells and resident microglial cells. In addition, we review the available data on the main pharmacological inhibitors of LAT1, aiming to evaluate their possible role as novel therapeutics for GBM.
Collapse
Affiliation(s)
- Natalia Cappoli
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Michael D Jenkinson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom; Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Cinzia Dello Russo
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom.
| | - David Dickens
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
First-in-human assessment of the novel LAT1 targeting PET probe 18F-FIMP. Biochem Biophys Res Commun 2022; 596:83-87. [PMID: 35121373 DOI: 10.1016/j.bbrc.2022.01.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
Abstract
In the first-in-human PET study, we evaluated the biodistribution and tumor accumulation of the novel PET probe, (S)-2-amino-3-[3-(2-18F-fluoroethoxy)-4-iodophenyl]-2-methylpropanoic acid (18F-FIMP), which targets the tumor-related L-type amino acid transporter 1 (LAT1), and compared it with L-[methyl-11C]methionine (11C-MET) and 2-Deoxy-2-18F-fluoro-D-glucose (18F-FDG). 18F-FIMP biodistribution was revealed by whole-body and brain scans in 13 healthy controls. Tumor accumulation of 18F-FIMP was evaluated in 7 patients with a brain tumor, and compared with those of 11C-MET and 18F-FDG. None of the subjects had significant problems due to probe administration, such as adverse effects or abnormal vital signs. 18F-FIMP was rapidly excreted from the kidneys to the urinary bladder. There was no characteristic physiological accumulation in healthy controls. 18F-FIMP PET resulted in extremely clear images in patients with suspected glioblastoma compared with 11C-MET and 18F-FDG. 18F-FIMP could be a useful novel PET probe for LAT1-positive tumor imaging including glioblastoma.
Collapse
|
15
|
Roesler R, Dini SA, Isolan GR. Neuroinflammation and immunoregulation in glioblastoma and brain metastases: Recent developments in imaging approaches. Clin Exp Immunol 2021; 206:314-324. [PMID: 34591980 DOI: 10.1111/cei.13668] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023] Open
Abstract
Brain tumors and brain metastases induce changes in brain tissue remodeling that lead to immunosuppression and trigger an inflammatory response within the tumor microenvironment. These immune and inflammatory changes can influence invasion and metastasis. Other neuroinflammatory and necrotic lesions may occur in patients with brain cancer or brain metastases as sequelae from treatment with radiotherapy. Glioblastoma (GBM) is the most aggressive primary malignant brain cancer in adults. Imaging methods such as positron emission tomography (PET) and different magnetic resonance imaging (MRI) techniques are highly valuable for the diagnosis and therapeutic evaluation of GBM and other malignant brain tumors. However, differentiating between tumor tissue and inflamed brain tissue with imaging protocols remains a challenge. Here, we review recent advances in imaging methods that have helped to improve the specificity of primary tumor diagnosis versus evaluation of inflamed and necrotic brain lesions. We also comment on advances in differentiating metastasis from neuroinflammation processes. Recent advances include the radiosynthesis of 18 F-FIMP, an L-type amino acid transporter 1 (LAT1)-specific PET probe that allows clearer differentiation between tumor tissue and inflammation compared to previous probes, and the combination of different advanced imaging protocols with the inclusion of radiomics and machine learning algorithms.
Collapse
Affiliation(s)
- Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Afonso Dini
- The Center for Advanced Neurology and Neurosurgery (CEANNE)-Brazil, Porto Alegre, RS, Brazil
| | - Gustavo R Isolan
- The Center for Advanced Neurology and Neurosurgery (CEANNE)-Brazil, Porto Alegre, RS, Brazil.,Mackenzie Evangelical University of Paraná (FEMPAR), Curitiba, PR, Brazil
| |
Collapse
|
16
|
Bolcaen J, Kleynhans J, Nair S, Verhoeven J, Goethals I, Sathekge M, Vandevoorde C, Ebenhan T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics 2021; 11:7911-7947. [PMID: 34335972 PMCID: PMC8315062 DOI: 10.7150/thno.56639] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Janke Kleynhans
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | | | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Mike Sathekge
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Wiriyasermkul P, Moriyama S, Kongpracha P, Nagamori S. [Drug Discovery Targeting an Amino Acid Transporter for Diagnosis and Therapy]. YAKUGAKU ZASSHI 2021; 141:501-510. [PMID: 33790117 DOI: 10.1248/yakushi.20-00204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nutrients are essential for all living organisms. Because growing cancer cells have strong metabolic demands, nutrient transporters are constitutively increased to facilitate the nutrient uptake. Among these nutrient transporters, L-type amino acid transporter 1 (LAT1), which transports large neutral amino acids including essential amino acids, is critical for cancer growth. Therefore, LAT1 has been considered as an attractive target for diagnosis and therapy of cancers. We have developed several lines of compounds for cancer diagnosis and therapy. To diagnose cancer by using positron emission tomography (PET) probes, we have created amino acid derivatives which are selectively transported by LAT1 and accumulated in cancer cells. In addition to amino acid derivatives as the LAT1 inhibitors, we also have made non-amino acid small compounds as anti-cancer drugs which inhibit LAT1 function and suppress tumor growth. The LAT1 targeting anti-cancer drug showed low toxicity but strong effects on various types of cancer cells in animal models. The novel PET probe is approved for clinical research and the new anti-cancer drug has been under clinical trial. Small compounds targeting the amino acid transporter bring us new tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Pattama Wiriyasermkul
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| | - Pornparn Kongpracha
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| | - Shushi Nagamori
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University
| |
Collapse
|
18
|
Physiological Imaging Methods for Evaluating Response to Immunotherapies in Glioblastomas. Int J Mol Sci 2021; 22:ijms22083867. [PMID: 33918043 PMCID: PMC8069140 DOI: 10.3390/ijms22083867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor in adults, with a dismal prognosis despite aggressive multi-modal therapy. Immunotherapy is currently being evaluated as an alternate treatment modality for recurrent GBMs in clinical trials. These immunotherapeutic approaches harness the patient's immune response to fight and eliminate tumor cells. Standard MR imaging is not adequate for response assessment to immunotherapy in GBM patients even after using refined response assessment criteria secondary to amplified immune response. Thus, there is an urgent need for the development of effective and alternative neuroimaging techniques for accurate response assessment. To this end, some groups have reported the potential of diffusion and perfusion MR imaging and amino acid-based positron emission tomography techniques in evaluating treatment response to different immunotherapeutic regimens in GBMs. The main goal of these techniques is to provide definitive metrics of treatment response at earlier time points for making informed decisions on future therapeutic interventions. This review provides an overview of available immunotherapeutic approaches used to treat GBMs. It discusses the limitations of conventional imaging and potential utilities of physiologic imaging techniques in the response assessment to immunotherapies. It also describes challenges associated with these imaging methods and potential solutions to avoid them.
Collapse
|
19
|
Lopes C, Pereira C, Medeiros R. ASCT2 and LAT1 Contribution to the Hallmarks of Cancer: From a Molecular Perspective to Clinical Translation. Cancers (Basel) 2021; 13:E203. [PMID: 33429909 PMCID: PMC7828050 DOI: 10.3390/cancers13020203] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
The role of the amino acid transporters ASCT2 and LAT1 in cancer has been explored throughout the years. In this review, we report their impact on the hallmarks of cancer, as well as their clinical significance. Overall, both proteins have been associated with cell death resistance through dysregulation of caspases and sustainment of proliferative signaling through mTOR activation. Furthermore, ASCT2 appears to play an important role in cellular energetics regulation, whereas LAT1 expression is associated with angiogenesis and invasion and metastasis activation. The molecular impact of these proteins on the hallmarks of cancer translates into various clinical applications and both transporters have been identified as prognostic factors in many types of cancer. Concerning their role as therapeutic targets, efforts have been undertaken to synthesize competitive or irreversible ASCT2 and LAT1 inhibitors. However, JHP203, a selective inhibitor of the latter, is, to the best of our knowledge, the only compound included in a Phase 1 clinical trial. In conclusion, considering the usefulness of ASCT2 and LAT1 in a variety of cancer-related pathways and cancer therapy/diagnosis, the development and testing of novel inhibitors for these transporters that could be evaluated in clinical trials represents a promising approach to cancer prognosis improvement.
Collapse
Affiliation(s)
- Catarina Lopes
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
| | - Carina Pereira
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- CINTESIS—Center for Health Technology and Services Research, University of Porto, Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.L.); (R.M.)
- Research Department of the Portuguese League Against Cancer—North (LPCC-NRNorte), Estrada da Circunvalação, 4200-177 Porto, Portugal
| |
Collapse
|
20
|
Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021; 13:E125. [PMID: 33401748 PMCID: PMC7796306 DOI: 10.3390/cancers13010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.
Collapse
Affiliation(s)
- Uğur Kahya
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Ayşe Sedef Köseer
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Valtorta S, Salvatore D, Rainone P, Belloli S, Bertoli G, Moresco RM. Molecular and Cellular Complexity of Glioma. Focus on Tumour Microenvironment and the Use of Molecular and Imaging Biomarkers to Overcome Treatment Resistance. Int J Mol Sci 2020; 21:E5631. [PMID: 32781585 PMCID: PMC7460665 DOI: 10.3390/ijms21165631] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023] Open
Abstract
This review highlights the importance and the complexity of tumour biology and microenvironment in the progression and therapy resistance of glioma. Specific gene mutations, the possible functions of several non-coding microRNAs and the intra-tumour and inter-tumour heterogeneity of cell types contribute to limit the efficacy of the actual therapeutic options. In this scenario, identification of molecular biomarkers of response and the use of multimodal in vivo imaging and in particular the Positron Emission Tomography (PET) based molecular approach, can help identifying glioma features and the modifications occurring during therapy at a regional level. Indeed, a better understanding of tumor heterogeneity and the development of diagnostic procedures can favor the identification of a cluster of patients for personalized medicine in order to improve the survival and their quality of life.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Daniela Salvatore
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Paolo Rainone
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano—Bicocca, 20900 Monza, Italy; (S.V.); (D.S.); (P.R.)
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), 20132 Milan, Italy;
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, 20090 Segrate, Italy
| |
Collapse
|
22
|
Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res 2020; 37:88. [PMID: 32377929 PMCID: PMC7203094 DOI: 10.1007/s11095-020-02826-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Our growing understanding of membrane transporters and their substrate specificity has opened a new avenue in the field of targeted drug delivery. The L-type amino acid transporter 1 (LAT1) has been one of the most extensively investigated transporters for delivering drugs across biological barriers. The transporter is predominantly expressed in cerebral cortex, blood-brain barrier, blood-retina barrier, testis, placenta, bone marrow and several types of cancer. Its physiological function is to mediate Na+ and pH independent exchange of essential amino acids: leucine, phenylalanine, etc. Several drugs and prodrugs designed as LAT1 substrates have been developed to improve targeted delivery into the brain and cancer cells. Thus, the anti-parkinsonian drug, L-Dopa, the anti-cancer drug, melphalan and the anti-epileptic drug gabapentin, all used in clinical practice, utilize LAT1 to reach their target site. These examples provide supporting evidence for the utility of the LAT1-mediated targeted delivery of the (pro)drug. This review comprehensively summarizes recent advances in LAT1-mediated targeted drug delivery. In addition, the use of LAT1 is critically evaluated and limitations of the approach are discussed.
Collapse
Affiliation(s)
- Elena Puris
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, 69120, Heidelberg, Germany.
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
23
|
Verhoeven J, Baguet T, Piron S, Pauwelyn G, Bouckaert C, Descamps B, Raedt R, Vanhove C, De Vos F, Goethals I. 2-[ 18F]FELP, a novel LAT1-specific PET tracer, for the discrimination between glioblastoma, radiation necrosis and inflammation. Nucl Med Biol 2019; 82-83:9-16. [PMID: 31841816 DOI: 10.1016/j.nucmedbio.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Considering the need for rapid change of treatment in recurrent glioblastoma (GB), it is of utmost importance to characterize PET radiopharmaceuticals that allow early discrimination of tumor from therapy-related effects. In this study, we examined the value of 2-[18F]FELP as a LAT1 tumor-specific PET tracer in comparison with [18F]FDG and [18F]FET in a combined orthotopic rat radiation necrosis and glioblastoma model. A second experiment compared 2-[18F]FELP to [18F]FDG in a mouse glioblastoma - inflammation model. METHODS Using the small animal radiation research platform (SARRP), radiation necrosis (RN) was induced in the left frontal lobe of the rat brain. When radiation-induced changes were visible on MRI, F98 rat glioblastoma cells were stereotactically inoculated in the contralateral right frontal lobe. When tumor growth was confirmed on MRI, 2-[18F]FELP, [18F]FET and [18F]FDG PET scans were acquired on three consecutive days. In an inflammation experiment, mice were inoculated in the left thigh with U87 human glioblastoma cells. After heterotopic tumor growth was confirmed macroscopically, inflammation was induced by injection of turpentine subcutaneously in the right thigh. Subsequently, 2-[18F]FELP and [18F]FDG scans were acquired on two consecutive days. RESULTS The in vivo PET images demonstrated that 2-[18F]FELP could differentiate glioblastoma and radiation necrosis using SUVmean (p = 0.0016) and LNRmean (p = 0.009), while [18F]FET was only able to differentiate both lesions by means of the SUVmean. (p = 0.047) Delayed [18F]FDGlate PET (4 h postinjection) was also able to distinguish glioblastoma from radiation necrosis, but smaller lesion-to-normal brain ratios were observed (SUVmean: p = 0.009; LNRmean: p = 0.028). In the inflammation study, 2-[18F]FELP showed no significant uptake in the inflammation lesion when compared to the control group (SUVmean: p = 0.149; LNRmean: p = 0.083). In contrast, both conventional and delayed [18F]FDG displayed significant uptake in the turpentine-invoked lesion (SUVmean: p = 0.021; LNRmean: p = 0.021). CONCLUSION This study suggests that the 2-[18F]FELP PET is able to differentiate glioblastoma from radiation necrosis and that the 2-[18F]FELP uptake is less likely to be contaminated by the presence of inflammation than the [18F]FDG signal. ADVANCES IN KNOWLEDGE These results are clinically relevant for the differential diagnosis between tumor and radiation necrosis because radiation necrosis always contains a certain amount of inflammatory cells. Hence, 2-[18F]FELP is preferred to discriminate tumor from radiation necrosis.
Collapse
Affiliation(s)
| | - Tristan Baguet
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Sarah Piron
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Glenn Pauwelyn
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Charlotte Bouckaert
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University Hospital, Ghent, Belgium
| | - Benedicte Descamps
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology (LCEN3), Ghent University Hospital, Ghent, Belgium
| | - Christian Vanhove
- IBiTech-MEDISIP, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Filip De Vos
- Laboratory for Radiopharmacy, Ghent University, Ghent, Belgium
| | - Ingeborg Goethals
- Department of Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|